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Abstract

Most path planners for car-like robots compute “Reeds and
Shepp paths” made up of line segments connected with circu-
lar arcs. Such paths have a discontinuous curvature that makes
them difficult to track (curvature is related to the orientation of
the front wheels). The purpose of this paper is to present one
of the first path planner for car-like robots that computes paths
with continuous-curvature and upper-bounded curvature deriva-
tive (curvature derivative is related to the steering velocity).
The approach presented herein relies upon a steering method,
i.e. an algorithm that computes paths without taking into ac-
count the obstacles of the environment, which is then embedded
within a general path planning scheme in order to deal with the
obstacles and thus solve the full problem. The paths computed
are made up of line segments, circular arcs and clothoid arcs.

1 Introduction

Ever since Laumond’s pioneering paper in 1986 [8], a lot of re-
search works have addressed path planning for nonholonomic
systems in general and car-like robots in particular (the reader
is referred to [10] for an up-to-date review on this topic). Non-
holonomic systems are subject to kinematic constraints that
restrict their admissible directions of motion. Car-like robots
are archetypal nonholonomic systems: they can only move for-
ward or backward in a direction perpendicular to the orientation
of their rear wheels axle; besides their turning radius is lower
bounded (because of the mechanical limits on the steering an-
gle).

The study of the research works that plan collision-free paths
for car-like robots shows that most of them compute paths made
up of line segments connected with tangential circular arcs of
minimum radius, e.g. [1, 5, 7, 9, 17]. One reason for this choice
is that it has been shown by Reeds and Shepp that the shortest
path between two configurations of a car-like robot is such a
path [12]. No doubt that another reason for this choice is that
they are easy to deal with from a computational point of view.

However the curvature of this type of path is discontinuous:
discontinuities occur at the transitions between segments and
arcs. The curvature is directly related to the orientation of the
front wheels of the car. Accordingly, if a car were to track pre-
cisely such a type of path, it would have to stop at each curvature
discontinuity so as to reorient its front wheels. It is therefore
desirable to plan continuous-curvature paths!. Besides, since
the derivative of the curvature is directly related to the steering

*This work was partially supported by the French programme
“La Route Automatise”: <http://www-lara.inria.fr/>.

1As a matter of fact, it is emphasized in [3] that feedback
controllers for car-like robots require this property in order to
guarantee the exact reproducibility of a path.

velocity of the car, it is also desirable that the derivative of the
curvature be upper-bounded.

The purpose of this paper is therefore to address the problem
of planning collision-free paths with continuous-curvature and
upper-bounded curvature derivative for car-like robots. Solu-
tions that compute paths with continuous-curvature and upper-
bounded curvature derivative have been proposed before but
they never seemed to address the full problem: for instance, the
lower bound on the turning radius or the obstacles would be dis-
regarded, e.g. [2]. This paper is an attempt to bridge this gap.
In [14], the authors addressed the case of a car moving forward
only. The work reported here is the extension to the case of a
car moving both forward and backward.

The approach chosen to solve the path planning problem at
hand relies upon the design of a steering method?, i.e. an algo-
rithm that computes a path between two configurations without
taking into account the obstacles of the environment. Given
such a steering method, it is possible to use it within a gen-
eral path planning scheme such as the Probabilistic Path Plan-
ner [17] or the Ariadne’s Clew Algorithm [11] or the Holonomic
Path Approximation Algorithm [10], in order to solve the full
problem.

The steering method is therefore a key component in this
planning scheme and the main contribution of this paper is
the first steering method that computes paths with continuous-
curvature and upper-bounded curvature derivative for car-like
robots. The paper is organized as follows: the problem at hand
is stated in §2, it introduces a model for car-like robots. whose
properties (controllability, optimal paths, etc.) are explored
in §3. The steering method proposed is then described in §4
while §5 presents experimental results.

2 Statement of the Problem

Fig. 1: a car-like robot.

2¢Steering method’ is a term borrowed from [10].



Model of a Car-Like Robot. Let A be a car-like robot,
it moves on a planar workspace W = IR? cluttered up with a set
of stationary obstacles B;,% € {1,...,b}, modelled as forbidden
regions of W. A is modelled as a rigid body moving on the plane
supported by four wheels making point contact with the ground:
two rear wheels and two directional front wheels. It takes three
parametres to characterize the position and orientation of A
and an additional parametre to characterize the orientation of
its front wheels. As per [2], a configuration of A is defined by
the 4-tuple ¢ = (x,y,0,k) € RZxS!XIR where (z,y) are the
coordinates of the rear axle midpoint A and # the orientation
of A (Fig. 1). k is the curvature of the xy-curve traced by A, it
is used to characterize the orientation of the front wheels of A:
% = w~! tan ¢, where w is the wheelbase of A and ¢ its steering
angle®. Note that considering x as a configuration parametre
ensures that it will vary continuously.

Under perfect rolling assumption, a wheel moves in a direc-
tion normal to its axle. Therefore A must move in a direction
normal to the rear wheels axle and the following constraint holds
accordingly (perfect rolling constraint):

{:b = wcosf

y = wsinf

(1)

where v is the driving velocity of A, |v| < Ymax (A moves for-
ward when v > 0, stands still when v = 0, and moves back-
ward when v < 0). The steering angle is mechanically limited,
|¢| < ¢max, and the following constraint holds (bounded curva-
ture constraint):

‘h‘,‘ < Kmax = 11171 tan ¢max (2)

Let o denote the derivative of k: ¢ = qﬁ/ cos? ¢. The steer-
ing wvelocity of A is physically limited, |¢| < ¢max, and the
following constraint is introduced (bounded curvature derivative
constraint): .
‘0'| S Omax = d)max (3)
Accordingly the model of A can be described by the following
differential system:

T cos 8
g _ 512 4 vt
K 0

o (4)

_OoOOoOOo

with || < Kmax, || < Umax and |o| < omax. Henceforth the
term CC car (for Continuous-Curvature car) is used to denote
a car-like robot whose model is (4).

Admissible Paths. Let II denote a path for A,
it is a continuous sequence of configurations: II(t) =
(z(t),y(t),0(¢),k(t)). An admissible path is a solution of the
differential system (4); it is such that:

((z(t) = +f (1) cos O(1)dr
y(t) = +f v(7)sin 6(7)dT

< \ ()
o(t) = 6(0)+ [) v(r)r(r)dr

L <) = n(O)—l—fotUTT

with |k(t)| < Kmax, |V(t)| < Vmax and |0(t)| < omax. The focus
in this paper is on shortest path planning, it is therefore assumed
that |v(¢)| = 1 (thus the time and the arc length of a path are
the same). Then an admissible path II is fully characterized
by its start configuration gs, its length [, its curvature profile
K : [0,]] — [—Kmax,Kmax], and its speed profile v : [0,I] —

)

3¢ is the average orientation of the two front wheels of A.

Planning Problem. Given a start configuration ¢s; and
a goal configuration gg, find an admissible path IT = (gs,1, &, v)
such that:

o II links gs and gg, i.e. II(0) = g5 and II(l) = gy.

e II is collision-free, i.e.:

vt € [0,1],Vi € {1,...,b}, A(TI(t)) N B; =0

where A(q) denotes the region of W occupied by A at
configuration g.

Finally the length of IT should be minimum.

3 Properties of the CC Car

A CC car is a small-time controllable system? [15, Theorem 1].
The small-time controllability of a CC car implies that the ex-
istence of an admissible collision-free path is equivalent to the
existence of a collision-free path [10, Theorem 3.1]. As far as
optimal —i.e. shortest— paths are concerned it can be shown
that, in the absence of obstacles, if a path exists between two
configurations then an optimal path exists [15, Theorem 2]. The
nature of the optimal paths is more difficult to establish. How-
ever [13] demonstrates that, for the forward CC car, i.e. the
CC car moving forward only, the optimal paths are made up
of: (a) line segments, (b) circular arcs of radius 1/Kkmax, and
(c) clothoid arcs® of sharpness Zomax. Unfortunately, it ap-
pears that, whenever the shortest path includes a line segment,
it is irregular and contains an infinite number of clothoid arcs
that accumulate towards each endpoint of the segment [2]. Fur-
thermore, when the distance between two configurations is large
enough, the shortest path contains a line segment (hence an in-
finite number of clothoid arcs) [4].

In summary, although the exact nature of the optimal paths
for the CC car has not been established yet, it seems reason-
able to conjecture that they will (at least) be made up of line
segments, circular arcs and clothoid arcs, and that they will be
irregular in most cases.

4 Steering the CC Car

As mentioned in §1, the approach chosen to solve the path
planning problem at hand relies upon the design of a steering
method, i.e. an algorithm that computes an admissible path be-
tween two configurations without taking into account the obsta-
cles of the environment. The steering method computes steering
paths.

1/Klmax

Fig. 2: computing Reeds and Shepp’s paths.

In the absence of obstacle, optimal paths are the natural
choice for the steering paths. Unfortunately, the conjectured
irregularity of the optimal paths for the CC car prevents their
use (cf. §3). It was decided instead to compute steering paths
derived from the “Reeds and Shepp’s paths” (henceforth called
RS paths) [12]. The RS path between two configurations is made

4The set of configurations reachable from ¢ before a time ¢
contains a neighbourhood of ¢ for any ¢.

5A clothoid is a curve whose curvature varies linearly with
its arc length.



up of line segments and circular arcs of radius 1/Kmax. The cir-
cular arcs are supported by the circles of radius 1/Kmax tangent
to the configurations considered or tangent to two of these cir-
cles. The line segments are tangent to these circles (Fig. 2).
Note the key role played by the circles of radius 1/kmax tangent
to the start and goal configurations. These circles represent the
locus of the set of configurations that can be reached by mov-
ing forward/backward while turning to the left/right with the
maximum steering angle.

Steering paths are similar to RS paths but, in order to ensure
curvature continuity, the circular arcs are replaced by transitions
called CC turns whose curvature varies continuously from 0 up
and then down back to 0, and that are made up of circular arcs
of radius 1/kmax and clothoid arcs.

As explained further down, CC turns are defined so that they
yield circles similar to the tangent circles used to compute RS
paths. Accordingly CC turns and line segments can be com-
bined in order to form the steering paths in the way circular arcs
and line segments are combined to form the RS paths. Steer-
ing paths are made up of a finite number of (a) line segments,
(b) circular arcs of radius 1/kmax, and (c) clothoid arcs. They
are not optimal but, based upon the result already established
in [15] for the forward CC car, it is conjectured that they are
suboptimal, i.e. longer than the optimal path of no more than a
given constant. This result is yet to be demonstrated however.

The next two sections respectively presents the CC turns
and their properties (§4.1), and the way to compute steering
paths (§4.2).

4.1 CC Turns

A natural way to change the car orientation is to: (a) move for-
ward while turning the front wheels as fast as possible. (b) follow
a circular arc once the maximum steering angle is reached, and
(c) move forward while turning the front wheels back to a null
steering angle. Hence the following definition of a CC turn: in
the general case, a CC turn is made up of three parts: (a) a
clothoid arc of sharpness ¢ = Zomax whose curvature varies
from 0 to Kmax, (b) a circular arc of radius 1/Kmax, and (c) a
clothoid arc of sharpness —o whose curvature varies from Kmax
to 0. CC turns were first introduced in [14] for the forward
CC car. The key properties of CC turns are recalled and an
extension for the CC car is proposed afterwards.

4.1.1 CC Turns for the Forward CC Car

Cita)

Fig. 3: CC turns: general case.

What happen when the forward CC car follows a CC turn
is illustrated in Fig. 3. Let ¢s = (s,Ys,0s,0) be the start
configuration. It is assumed that the forward CC car moves

forward while turning to the left. First it follows a clothoid
arc of sharpness omax until it reaches ¢; = (x;,¥i, 8i, Kmax)-
Then it follows a circular arc of radius 1/Kmax until it reaches
¢; = (%j,Y;,0;, kmax)- The centre of this circular arc is:

Q o { Teet = T — sin ai/'ﬁ?max
ccet — — .
Yeet = Yi + COs ez/nmax
Finally it follows a clothoid arc of sharpness —omax until it
reaches the goal configuration ¢4 = (z4,yg,04,0). Let § = 65 —
05 denote the change of orientation between gs; and g. § is the
deflection of the CC turn, it is used to characterize CC turns;
d € [0,2n] for left CC turns.

It is the measure of the circular arc of a CC turn that actually
determines where the goal configuration is and the main result
established in [14] is that the locus of the goal configurations
is a circle Cj;i(qs) whose centre is Q_., and whose radius is
Teet = \/(accct —Z5)2 + (Yeet — Ys)2. In addition, the angle p
between the orientation of g4 and the tangent to Cj;lt(qs) at gy is

constant; it is the opposite of the angle between the orientation
of gs and the tangent to Cctlt (gs) at gs (Fig. 3).

Fig. 4: CC turns: “d = 0” and “0 < § < dmin” cases.

Let dmin = Kmax>/0max be the deflection of the CC turn
whose circular arc has zero length. With the above definition, a
CC turn of deflection 0 < § < dmin makes a loop and intersects
itself (Fig. 4). In this case, it is proposed in [14] to use instead
a loopless and shorter path made up of: (a) a clothoid arc of
sharpness 0 < omax and (b) a symmetric clothoid arc of sharp-
ness —o. Such a path is admissible and it is shown in [14] that
there is a unique o such that the goal configuration belongs to
Cctlt(%)'

As for the é = 0 case, the CC turn becomes the line segment
of length 2rq.¢ sin u so as to ensure that the goal configuration
also belongs to Cctlt(qs) (Fig. 4).

4.1.2 CC Turns for the CC Car

CC turns allow the forward CC car to reach any goal config-
uration gg with a null curvature which is located on the circle

C’j;lt(qs) and such that the angle between the orientation of gq4
and the tangent to Cctlt(qs) at gy is constant and equal to the
opposite of the angle between the orientation of g5 and the tan-
gent to Cj;lt (¢s) at gs. Extending the CC turns to CC cars
consists in taking advantage of the fact that the CC car can
make back and forth motion so as to produce shorter CC turns
while keeping the above property satisfied.

A straightforward extension concerns the CC turns of large
deflection for which it is shorter, once g¢; is reached, to back up
to g; instead of moving forward (Fig. 5). The limit deflection
for which it is shorter to back up is determined as follows: the
measure of the circular arc of the CC turn of deflection § is
0 — dmin when the CC car moves forward from ¢; to ¢;, and
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Fig. 5: CC turns: “dpin + 7 < < 27" case.

0 —0min —27 when it moves backward. Accordingly the backward
motion is shorter when § > min + 7.

In summary, the CC turns as defined above allow the CC
car to reach any goal configuration gy with a null curvature
which is located on the circle C;Ht(qs) and such that the angle

C
between the orientation of ¢ and the tangent to C’ctlt (gs) at gg
is constant and equal to the opposite of the angle between the
orientation of ¢s and the tangent to C‘ctlt(qs) at ¢s. It is the
deflection associated with gy that determines the nature of the
CC turn:

e § = 0: the CC turn is a line segment.

® 0 < d < Omin: the CC turn is made up of (a) a clothoid
arc of sharpness ¢ < omax and (b) a symmetric clothoid
arc of sharpness —o.

® Omin < 0 < Omin + 7 the CC turn is made up of (a) a
clothoid arc of sharpness omax Whose curvature varies from
0 t0 Kmax, (b) a forward circular arc of radius 1/Kmax, and
(c) a clothoid arc of sharpness —omax whose curvature
varies from Kmax t0 0.

® Omin + 7 < 0 < 2w the CC turn is made up of (a) a
clothoid arc of sharpness omax Whose curvature varies from
0 t0 Kmax, (b) a backward circular arc of radius 1/Kmax,
and (c) a clothoid arc of sharpness —omax whose curvature
varies from Kmax to 0.

Cior(as) P/ L O (as)

Fig. 6: CFl(gs), C17(gs), Cok(gs) and C 7 (gs).

cct cc
The above analysis was carried out for the case of the CC
car moving forward while turning to the left. The case where
the CC car is turning to the right is dealt with in the same
manner, it yields a symmetric circle Cj;; (gs) (Fig. 6). Two
similar circles, CC_Ci(qS) and C__}(gs), represent the locus of the

set of configurations with null curvature allowing the CC car
to reach g5 with a CC turn turning to the left or to the right
(Fig. 6). They are readily obtained by considering that the CC
car moves backward (cf. [13]).

4.1.3 Arc Length of the CC turns

The arc length of a CC turn depends upon its nature which
in turn depends upon its deflection §. Let () denote the arc
length of a CC turn of deflection 4, it is defined as:

e § = 0: the CC turn is a line segment of length [(0) =
27cct sin y.

¢ 0 < 0 < Omin: let 0 be the sharpness characterizing
the CC turn in this case: 1(§) = 24/d/0. 1(8) increases
monotonously from 2rcc¢ sin g t0 lin = 2Kmax/Omax- Imin
is the arc length of the general CC turn whose circular arc
has zero length.

® Omin < 0 < Omin + m: in this case, the arc length of
the CC turn is I;min plus the arc length of its circular arc:
1(8) = lmin + (0 — 0min)/Kmax- 1(d) increases linearly from
Imin 10 lmin + W/’imax-

® Omin + ™ < 8 < 2m: this is the same case as above:
1(6) = lmin + (27 — 8 + Omin)/Kmax. 1(d) decreases linearly
from lmin + W/nma,x to lmin + Jmin/ﬂmax = 3K1max/0'max-

4.2 Steering Paths

Let CC-steering denote the function that computes the steering
paths for the CC car. As mentioned in §4, it is derived from the
function that computes RS paths. The RS path between two
configurations is the shortest among a set of paths that belong
to one of the nine following families [16]:

(7) =1t or rtr=rt

(42)(4dz) A|AA or AAA

(iv) AA|AA

(v) AlAAJA (6)
(vi) A|ASA|A

(vii)(viii) A|ASA or ASA|A

(ix) ASA

where A (resp. S) denotes a circular arc (resp. line segment). |
denotes a change of direction of motion (a cusp point). A may
be replaced by 7 or ! to specify a right (clockwise) or left (coun-
terclockwise) turn. A + or - superscript indicates a forward or
backward motion. CC-steering considers the same nine families
of paths but the circular arcs are replaced by CC turns. Like RS
paths, the steering paths are determined through the analysis of

the tangency relationships that exists between the circles Cctlt,

C’c";’;, C’C_clt and C__} defined earlier and attached to the start
and goal configurations.

Noting that the ASA, AA and A|A paths are building blocks
for the steering paths of the nine families above, the condition
of existence and the characteristics of these three types of path
are studied first in §4.2.1, §4.2.2 and §4.2.3. Then CC steering

is presented in §4.2.4.

4.2.1 ASA Paths

A RS path of type ASA is obtained by searching the tangent
(internal or external) to two of the circles of radius 1/kmax as-
sociated with the start and goal configurations. The steering
paths of type ASA are obtained in a similar way by using the
circles Cf, C7, L and C} defined earlier. However, due
to the fact that the orientations of the configurations located on
these circles make a constant angle u with the tangent to these
circles, the connecting line is not a tangent to the circles but
rather a u-tangent: the u-tangent crosses the two circles and in
both cases makes an angle u with the tangent at the intersec-
tion points. Fig. 7 illustrates how p-tangents are obtained. Cclct



Fig. 7: ASA paths.

and Cfct are the two circles associated with the start and goal
configurations. An inside arrow indicates the corresponding di-
rection of motion (clockwise or counterclockwise). Two cases

must be considered:

. C’Clct and Cczct have the same direction of motion: the

p-tangent is external and parallel to the line of centres
Q1,92 .. A straightforward geometric analysis shows that
an external p-tangent always exists but that the line seg-
ment ¢1q2 exists iff Qéctngct > 2recesinp (Fig. 7 top).

The length of the line segment g g2 is:
Uarg2) = Q4 Q% — 2rect sinp )

e C!  and C?, have an opposite direction of motion: the u-

cct cct

tangent is internal and crosses the line of centres Qéctﬂgct.
An internal u-tangent exists iff Qé tﬂf ¢ > 27Tcct cos u but
the line segment q1q2 exists iff Q7 ,QZ2,, > 2rcct (Fig. 7
bottom). The length of the line segment gi1q2 is (cf. [13]):
ol 0?2

cct” “cct
\/Qéctﬂgc: — Ar¢ct? cos2 p + 2rcet Sin p
4.2.2 AA Paths

C! C?

cct cct

2 2
— 4rect

qiq2) = (8)

Fig. 8: AA paths.

Fig. 8 illustrates how a steering path of type AA is obtained.
It involves two circles Cclct and Cfct with an opposite direction
of motion. Let ¢1.2 denote the point of contact between the two
circles C},, and C2,,. It belongs to the line of centres Q1,02 ,.

Tce cct® X i cct
Accordingly such a path exists iff Q1,02 , = 2rcc.

4.2.3 A|A Paths

Fig. 9 illustrates how a steering path of type A|A is obtained.
In this case, it involves two circles C’clct and C’gct with the same
direction of motion and g;.2 does not belong to the line of centres
Ql Q2 .. It can be shown that QL ,Q2 , = 2rcc cos y; it is the
condition of existence of such a path.

Fig. 9: A|A paths.

4.2.4 CC-Steering

It is straightforward to combine the conditions of existence of the
ASA, AA and A|A paths in order to determine the condition of
existence of a steering path belonging to one of the nine families
presented earlier. Once the existence of a given type of steering
path is assessed, it is also straightforward to compute it and
determine its arc length using (7), (8) and the results established
in §4.1.3.

Given a start and a goal configurations gs and g4, CC-steering
determines for each family of steering paths and for each possible
pair of circles Cctlt, Cj;’;, Cc_clt and C__} whether the correspond-
ing steering path exists. If so, CC steering computes its length.
Then the shortest of these paths is selected as being the steering
path between gs and gq4.

The conditions of existence of the steering paths of the dif-
ferent families guarantee that at least one such path exists. Ac-
cordingly CC steering is complete, it always return a steering
path linking gs and qg4.

5 Experimental Results

As mentioned in §1, the motivation behind the design of CC-
steering was to use it within a general path planning scheme
so as to solve the full path planning problem as stated in §2.
The Probabilistic Path Planner [17] has been selected to be the
general path planning scheme because it is efficient in practice
and easy to implement. It is a two stage algorithm: in the first
stage, it builds a graph that captures the connectivity of the
collision-free space of the robot. The nodes of the graph are
collision-free configurations picked up at random. The edges of
the graph are collision-free steering paths computed thanks to
CC-steering and a collision-checking function such as the one
proposed in [14]. In the second stage, the graph is used to
solve specific path planning problems between a start and a
goal configurations.

deviation
0.172188

min. average max.
ratio | 1.00253 | 1.1065 | 2.45586

Table 1: RS ws. CC paths’ length.

RS (1000 paths) | CC (1000 paths) | average ratio

3.466586 s. 4.483492 s. 1.33

Table 2: RS vs. CC paths’ computation time.

CC steering has been implemented® along with a function
computing RS paths and their results have been compared.
Fig. 10 illustrates the results obtained. It appears that, for a
given pair of (initial, goal) configurations, the resulting RS and
CC paths may belong to the same family of path (Fig. 10, top
left), or to different families. CC paths may have the same num-
ber of back up manoeuvres (Fig. 10, top right), more (Fig. 10,
bottom left) or less (Fig. 10, bottom right).

6In Ct+ on a Pentium II 400 MHz. bi-processor PC.



Fig. 10: paths planning results for the CC car.

Further comparisons were made regarding the respective
length of the paths and the time required for their computa-
tion. The ratio of CC over RS paths’ lengths were computed for
one hundred pairs of (initial, goal) configurations. The results
obtained are summarized in Table 1. In most cases (82%), CC
paths are only about 10% longer than RS paths. Similar exper-
iments were carried out for the computation time. The running
time of both RS and CC-steering are of the same order of mag-
nitude (Table 2). Given that continuous curvature paths can be
tracked with a much greater accuracy by a real car-like vehicle
(¢f. the experimental results obtained in [15]), the results re-
ported herein demonstrate the interest of CC paths (about the
same computation time and same length).

The integration of CC steering within the Probabilistic Path
Planning scheme is straightforward. Due to lack of space, the
results obtained are not reported here, the reader is referred
to [6] for more details.
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