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Abstract — This paper addresses motion planning for
a car-like robot moving in a changing planar workspace, i.e.
with moving obstacles. First, this motion planning problem
18 formulated in the state-time space framework. The state-
time space of a robot is its state space plus the time dimen-
sion. In this framework part of the constraints at hand are
translated into static forbidden regions of state-time space,
and a trajectory maps to a state-time curve which must
respect the remaining constraints. Then an approximate
solution to the problem is presented.

1 Introduction

Imagine a car-like robot moving on the roadway or a shop
floor. It must avoid collision with the various obstacles,
moving or not. Besides such a robot has a limited steer-
ing range, this is a kinematic constraint which restricts
the geometric shape of its motion. Finally it is subject to
various dynamic constraints (engine power, ground/wheel
interaction, etc.) which cannot be neglected especially if
it moves fast. In short planning a motion for this type of
robot does require to take into account all the various con-
straints which restrict its motion capabilities, i.e. kinematic
and dynamic constraints, stationary and mowving obstacles.

In the past 25 years, a lot of research works have ad-
dressed motion planning but most of them have focused
on path planning, i.e. computing the geometric path to be
followed', and very little attention has been paid to what
can be referred to as dynamic trajectory planning, i.e. mo-
tion planning including all the aforementioned constraints.

This paper follows upon [4] which introduced the novel
concept of state-time space® as a tool to address dynamic
trajectory planning. In this framework part of the con-
straints at hand are translated into static forbidden re-
gions of state-time space, and a trajectory maps to a state-
time curve which must respect the remaining constraints.
[4] addressed the case of a car-like robot moving along a
given path. In this paper we address the more general
case of a car-like robot moving on R? and concentrate

*This work was supported by the European EUREKA EU-
153 project “PROMETHEUS Pro-Art” and the French INRIA-
INRETS Praxitéle programme.

! The reader is referred to [9] for a recent survey of this topic.

2The state space of a robot is the space of its configuration
parameters and their derivatives. State-time space is state space
plus the time dimension.

on planning forward motions only, i.e. without backing-
up manceuvres. We start by formulating the problem at
hand in the state-time space framework. Then we present
the solution we have designed. For reasons which are to be
discussed later, this method follows the paradigm of near-
time-optimization [2, 7]: the search for the time-optimal
solution is performed over a restricted set of canonical tra-
jectories, hence the near-time-optimality of the solution.
These canonical trajectories are defined as having a piece-
wise constant acceleration that can only change its value at
given times. Besides the acceleration is selected among a
finite and discrete set. Under these assumptions, it is pos-
sible to transform the problem of finding the time-optimal
canonical trajectory to finding the shortest path in a di-
rected graph embedded in state-time space.

Content of the Paper. After a short review of the
works related to dynamic trajectory planning (§2), the
robot and its workspace are described (§3 and 4). Then
the problem at hand is formulated in the state-time space
framework (§5). Finally a solution algorithm is presented

(86).
2 Related Works

To the best of our knowledge, [5] and [11] are the only
references which truly address dynamic trajectory plan-
ning. However they do so with far too simplifying assump-
tions. [11] considers a particle with bounded acceleration
moving along a given path in-between two moving parti-
cles. The solution proposed is exact and operates both in
state space and configuration-time space. The algorithm
presented in [5] deals with a particle with bounded ve-
locity, acceleration and centrifugal force which moves on
R? among translating polygons. The solution proposed is
approximate and operates in the discretized configuration-
time space.

On the other hand there is a large body of works which
are of some interest to our problem since they address ei-
ther moving obstacles, e.g. [3, 6, 8], or dynamic constraints,
e.g. [13, 12, 2, 7]. Through lack of space they will not be
reviewed here. Suffice it to say that they are interesting be-
cause they emphasize the role of configuration-time space
as a tool to deal with moving obstacles, and state-space
as a tool to deal with dynamic constraints. Accordingly
it seems only natural to merge these two concepts within
state-time space when it comes to address dynamic trajec-



tory planning.

3 The Robot A

In the next two sections we start by presenting the kine-
matic model of a car-like robot A so as to derive the cor-
responding kinematic constraints. Then we state the sim-
plified dynamic model of A that we are going to use along
with the corresponding dynamic constraints.

3.1 The Kinematics of A

Let A be a car-like robot. It is modelled as a rigid body
moving on the plane R?. It is supported by four wheels
making point contacts with the ground. .4 has two rear
wheels and two directional front wheels. A configuration
of A is defined by a triple (z, y,8) € R*x[0, 27 where (=, y)
are the coordinates of the rear axle midpoint R and 6 the
orientation of A, i.e. the angle between the x axis and the
main axis of A (Fig. 1).

Y

Figure 1: a car-like robot.

8

A body moving on the plane has only one rotation cen-
tre. Under perfect rolling assumption, a wheel must move
in a direction which is normal to its axle. Therefore, when
A is moving, the axles of its wheels intersect at G, the rota-
tion centre of .A. The orientation of the rear wheels being
fixed, G must be located on the rear wheels axle (possibly
at an infinite distance) and R moves in a direction which
is normal to this axle. In other words, the following con-
straint holds:

—zsind +gycosf =0 (1)

Besides, owing to the fact that the front wheels orienta-
tion is mechanically limited, the distance p between R and
G, i.e. the curvature radius at point R, is lower bounded
by a certain value pmin and the following constraint holds:

&% 4 P — pminb” >0 (2)

Relations (1) and (2) are non-holonomic [1]. As depicted
in Fig. 2, they compel (,y) to point forward or backward
along the main axis of A and (&, y,6) to be in a two-sided
cone contained in the plane perpendicular to the zy-plane
that projects on this plane along the main axis of A [9,
chapter 9].

Furthermore our main concern being in planning forward

motions only, (#,y) should be not null and point forward

Pmin

6

xr

Figure 2: set of possible velocity vectors of R.

along A’s main axis. Accordingly, it should satisfy the
following constraint:

Zcosf + ysind >0 (3)

When (3) holds, § can be derived in a unique and
straightforward manner from (z,y). This property can be
used to address trajectory planning for A in the zy-space
instead of the zyf#-space. More precisely A will be as-
similated to a point moving on R? whose trajectory is a
time-indexed curve of the zy-space.

3.2 The Dynamics of A

As mentioned earlier, A is assimilated to a point, say R,
moving on R2. In other words the moment of inertia of
A is neglected and its centre of mass is assumed to be R.
Finally the reaction and friction forces between the wheels
and the ground are transferred to R. A configuration of
A is henceforth defined by a pair ¢ = (z,y) € R* and a
state of A by a pair (q,¢) where ¢ = (z,9) € R®. Let (f‘,
i, l_;) be the inertial frame attached to .A at point R. The
b axis points towards the positive direction normal to the
plane. The 7 axis is chosen so that (, 7, l_;) is right-handed
(Fig. 1). Tt stems from (1) and (3) that the orientation of £
should be 6. The motion of A obeys Newtonian dynamics.
The external forces acting on .4 are the gravity G and
the ground reaction R which can be decomposed into their
perpendicular components:

G = —mg b (4)
R = R{i{+R,#+Ryb (5)
where m is the mass of A and g the gravity constant. The
equation of motion of A can be expressed in terms of the
tangent acceleration a:; and the normal acceleration an,
namely G + R = ma; { + may, . Using (4) and (5), this
equation can be rewritten:

Rt = mag (6)
R, = man (7)
Ry = myg (8)

A is subject to various dynamic constraints (curvature,
engine force, sliding and velocity). Each constraint can be



transformed into constraints on the velocity and accelera-
tion as shown below.

Curvature Constraint. Let x be the signed curva-
ture of the trajectory followed by R (k is positive if the
radial direction coincides with 7 and negative otherwise).
The lower bound (2) on the curvature radius p entails that
|k| < Kmaz where Kmaz = 1/pmin. Accordingly, an, which
is equal to kv?, where v is the tangent velocity of R, is
bounded in the following way: |a.| < Kmag¥2, OF equiva-
lently:

|—yé+agl
Engine Force Constraint. When A is moving, the
torque applied by the brakes or the engine on the wheels
is translated into a planar force of direction # whose mod-
ulus F' = ma; is bounded in the following way: Fpin <
F < Finaz, where Fr iy is the minimum braking force and
Fraz the maximum engine force. This relation yields the
following feasible tangent acceleration range: Fin/m <
at < Finaz/m, which can be expressed equivalently by:

maa (& +9°) (9)

Fmin < Jm’-l-yy < Fma.r

m_\/m_m

Sliding Constraint. The component of R in the plane
£'x 13 represents the friction that is applied from the ground
to the wheels. It is constrained by the following relation:
v/ R:? + R,2 < uRp where p is the friction coefficient be-
tween the wheels and the ground. If this constraint is vi-
olated then A slides. Substituting (6), (7) and (8) in this
relation yields the following feasible acceleration range due
to the sliding constraint: a:> + an> < p?g®, which can be
expressed equivalently by:

(10)

i+ <u’g’ (11)

Note that this constraint implies that || and |gj| are both
upper-bounded by ug.

Velocity Constraint. The modulus of A’s tangent ve-
locity ¢ cannot be null or greater than a certain value vy,qx:

0< i+ < vmas” (12)

In short a trajectory of .A must satisfy the whole set of
constraints (9), (10), (11) and (12). Note that (12) depends
solely on the current state of A. It is a state constraint of
A. Tt yields a set of forbidden states, say FS, which is
defined as such:

FS={(q,9)|&* + ¢* <0or i’ +§° > vmas’)

As to (9), (10) and (11), they reduce the set of accelera-
tions § = (#, ) which can be applied to A at a given state.
Actually they yield a set of admissible accelerations which
depend solely on the current velocity ¢ of .A and which is

formally defined as such:

i + 5 — Kmar /3% + 5P <0

it — i) — Kmax\/E 4 . <0
AAD = V9| 3+ 95— Prnas/3° +9°/m <0

—ii — §ij + Fonin (/3% + 97 /m <0

‘i‘2+:&2_“292§0

Trivially AA(q) is a convex region of the #j-space; it
is the intersection of a disk of constant radius pg and four
half-planes whose boundaries are pairwise parallel and thus
define a rectangle. It looks as depicted in Fig. 3.

Figure 3: AA(g).

4 The Workspace W

A’s workspace, say W, is R%. It is cluttered up with a set
of stationary and moving obstacles B;,i € {1,n}. Let Bi(t)
denote the region of W occupied by B; at time ¢ and A(q)
the region of W occupied by A in configuration g. If, at
time ¢, A is at position g and there is an obstacle B; such
that B;(t) intersects .A(g), then a collision occurs between
A and B;. Accordingly, the constraints imposed by the
moving obstacles on .A’s motion can be represented by a
set of forbidden points of the gxt space. Let FC be this set
of forbidden points, it is defined as:

Fe = {(g,t) | 3i € {1,n), Alg) N Bi(t) # 0}

5 The State-Time Space of A

A trajectory for A is a continuous time-indexed sequence
of states between an initial and a final state which must
verify the no-collision and dynamic constraints (9), (10),
(11) and (12). However it is possible to reformulate the
trajectory planning problem at hand in the state-time space
framework [4]. A state-time is defined by adding the time
dimension to a state; hence it is represented by a triple
(g,4,t). The set of every state-time is the state-time space
of A, it is denoted by ST. A state-time is admissible if it
does not violate the no-collision and state constraint (12),
i.e. if and only if:

s € ST\ (FetuFst)



where FCt (resp. FST1) is the set of state-times entailing a
collision (resp. violating (12)) and E\F denotes the com-
plement of F in E. FC7 is simply derived from FC:

Fet ={(q,4,t) | 3 € {1,n}, A(q) N Bi(t) # 0}
and so is FST from FS:
FSt ={(q,4,t)|* + 9 <0 or i® + 9 > vnas”}

The set of every admissible state-time is the admissible
state-time space of A, it is denoted by .AST.

In this framework planning a trajectory between an ini-
tial state (gi, ¢i) and a final state (gy, ¢¢) can be regarded
as constructing a curve I' : [0, 1]—.AST between the ini-
tial state-time (g, ¢i, 0) and a final state-time (gy, gy,
t7) where ty is the time of the trajectory. Such a trajec-
tory being included in .AST, it does respect the no-collision
and state constraint (12). Besides the acceleration pro-
file G : [0,t;]—R? corresponding to I" must respect the
constraints (9), (10) and (11)°. Finally T must be strictly
monotone in time since no object can travel in the past,
i.e. it must satisfy the following constraint:

Vy,7" €[0,1], T(v)=(q,4,t), () =(d,q,t");
y<y =>t<t!

In short the problem to be solved can be stated formally
as such: let (g, ¢i) be A’s starting state and (gy, g¢) its
goal state. A trajectory I' : [0,1]—AST is a solution to
the problem at hand if and only if:

L. T(0) = (g, 4:,0) and I'(1) = (g7, 4y, t ).
2. Vy € [0,t5], G(v) € AA(G(7)).
3. T is strictly monotone in time.

Naturally we are interested in finding a time-optimal tra-
jectory, i.e. a trajectory such that ¢; should be minimal.

6 A Solution Algorithm

6.1 The General Idea

The method we have developed in order to solve the prob-
lem at hand was initially motivated by the paradigm of
near-time-optimization [2, 7]. We compute an approxi-
mate time-optimal solution by performing the search over
a restricted set of canonical trajectories. These canonical
trajectories are defined as having a piecewise constant ac-
celeration § that can only change its value at given times
kT where 7 is a time-step and k some positive integer. Be-
sides ¢ is selected among a finite and discrete set. Under
these assumptions, it is possible to transform the problem
of finding the time-optimal canonical trajectory into that
of finding the shortest path in a directed graph G embed-
ded in ST. The vertices of G form a regular grid embedded
in ST while the edges correspond to canonical trajectory
segments, each of which lasting 7. The next sections re-
spectively present the canonical trajectories, the graph G
and the search algorithm.

3¢ and ¢ are respectively defined as the first and second in-
tegral of § subject to an initial state.

6.2 The Canonical Trajectories

Before defining a canonical trajectory, let us recall that
AA(g) characterizes the set of accelerations that can be ap-
plied to A at a given velocity ¢. However this set changes
as soon as .A’s velocity changes. Accordingly, if a constant
acceleration § is applied to .A for a duration 7, it is not
certain that ¢ will always remain in 4A(¢) as time passes.
This observation leads us to define CA(q, 7) which is the set
of accelerations that can be applied for a duration 7 to A
at a given velocity ¢ and such that the corresponding tra-
jectory violates none of the dynamic constraints (9), (10)
and (11). CA(q, 7) is the conservative acceleration space, it
is formally defined in appendix A.

As mentioned earlier, a canonical trajectory has a piece-
wise constant acceleration § that can only change its value
at given times. Let ¢ be A’s velocity at a given time. As
in [2], § is selected out of nine extremum values only. One
of these values is the null acceleration while the eight others
correspond to accelerations which are either minimum, null
or maximum in the tangent and normal directions of mo-
tion, thus corresponding to extremum accelerating/braking
and steering commands. In our case, these extremum ac-
celerations lie on eight extremum vectors defined by the
Z{-rectangle underlying AA(g) (cf. §3.2). These vectors
respectively point towards the vertices and the midpoints
of the sides of this rectangle (Fig. 4).

From a practical point of view, the acceleration space,
i.e. the #y-space is discretized an acceleration-step 0z
(vesp. 03) is chosen for the # (resp. §) axis and the
acceleration applied to A at each time-step is selected from
this discrete space. Let DA(q,7) be the set of the nine
extremum accelerations allowed for a given velocity ¢ and
time-step 7, it is informally defined as:

§ = (ady, Boy) where (o, ) € N2

G € CA(g, 7)

g = (0,0) or the mazimum acceleration
along each extremum vectors

DA(g, 7) =< ¢

As we will see further down, choosing § out of DA(q, 7)
vields a regular grid in 8T. Let ' : [0,1]—ST be a tra-
jectory and ¢ : [0,t;]—R? its acceleration profile. T is a
canonical trajectory if and only if:

o § changes its value at times k7, k€N.

o G(kt) € DA(4(kT), 7).

6.3 The State-Time Graph G

Let s be a state-time, i.e. a point of S7T. It is a triple
(g,4,t), where ¢ = (z,y). It can equivalently be repre-
sented by s(t) = (q(t),q4(t)). Let s(kt) = (¢(k1), 4(kT)) be
a state-time of A and s((k + 1)7) one of the state-times
that A can reach by a canonical trajectory of duration
7. s((k + 1)7) is obtained by applying an acceleration
G € DA(q(kt),7) to A for the duration 7. Accordingly,



Figure 4: the eight extremum vectors for a given ve-
locity.

we have:
z((k+1)r) = x(kr)-l—jn(kT)T-l—i’TQ/Z
y(k+1)7) = y(kr)+y(kr)T+ §r° /2
z((k+1)r) = z(kr)+ 27
y((k+1)7) = ylkr)+ir

By analogy with [2], the trajectory between s(kt) and
s((k +1)7) is called a (g, 7)-bang. The state-time s((k +
1)) is reachable from s(k7). Obviously a canonical trajec-
tory is made up of a sequence of (g, 7)-bangs.

Let s(mt), m > k, be a state-time reachable from s(kT).
Assuming that (k) is a multiple of §37 and that g(k7)
is a multiple of §;7, it can be shown that the following
relations hold for some integers a1, a2, as and a4:

z(mt) = z(kt)+ oz155'r2/2
ymr) = ylkt) + @2637°/2
#(mt) = &(k7)+ asdsT
y(mr) = glk7t)+ asdyT

Thus all the state-times reachable from one given state-
time by a canonical trajectory lie on a regular grid embed-
ded in ST. This grid has spacings of 437 /2 in =, of §;7%/2
iny, of 37 in &, of d37 in y and of 7 in time.

Consequently it becomes possible to define a directed
graph G embedded in 8§7. The nodes of G are the grid-
points while the edges of G are (§, 7)-bangs between pairs
of nodes. G is called the state-time graph. Let n be a
node in G, the state-times reachable from n by a (g, 7)-
bang lie on the grid, they are nodes of G. An edge between
n and one of its neighbours represents the corresponding
(¢, 7)-bang. A sequence of edges between two nodes de-
fines a canonical trajectory. The time of such a canoni-
cal trajectory is trivially equal to 7 times the number of
edges in the trajectory. Therefore the shortest path be-
tween two nodes is the time-optimal canonical trajectory
between these nodes.

Let s = (gi,¢i) be the initial state of A and g =
(g7,45) be its goal state. Without loss of generality it
is assumed that the corresponding initial state-time s* =
(¢i,¢i,0) and the corresponding set of goal state-times
G* = {(qf,4s,k7) with & > 0} are grid-points. Accord-
ingly, searching for a time-optimal canonical trajectory be-
tween s and g is equivalent to searching a shortest path in
G between the node s* and a node in G*.

6.4 Searching the State-Time Graph

Most classically, we use an A* algorithm to search G [10].
From a practical point of view, the state-time graph G
is embedded in a compact region of ST. More precisely,
the time component of the grid-points is upper bounded
by a certain value t,,4: which can be viewed as a time-
out. The number of grid-points is therefore finite and so is
G. Accordingly, the search for the time-optimal canonical
trajectory can be carried out in a finite amount of time.

Implementation and Experiments. The algo-
rithm presented earlier is currently being implemented in
C on a Sun SPARC-station. It is the extension of the al-
gorithm described in [4].

7 Conclusion and Discussion

In this paper we have studied dynamic trajectory plan-
ning, which is defined as trajectory planning for a robot
whose motion capabilities are restricted by kinematic and
dynamic constraints, and stationary and moving obstacles.
Our main purpose was to take into account all these con-
straints in the planning process. We have addressed the
case of a car-like robot moving on R2.

To begin with we have chosen a simple yet rich enough
model for our robot. Then we have formulated the mo-
tion planning problem at hand in the state-time space®
framework. In this framework part of the constraints at
hand are translated into static forbidden regions of state-
time space, and a trajectory maps to a state-time curve
which must respect the remaining constraints [4]. Finally
we have presented an approximate solution to the problem
at hand. The search for the time-optimal trajectory is per-
formed over a restricted set of canonical trajectories. These
canonical trajectories are defined as having a piecewise con-
stant acceleration selected out of a finite and discrete set
and which can only change its value at given times a
time-step 7 is chosen. Under these assumptions, it is pos-
sible to transform the problem of finding the time-optimal
canonical trajectory into that of finding the shortest path
in a directed graph embedded in state-time space.

The running time of the search algorithm depends on
the size of the graph which is to be explored. In turn this
size is directly related to the value of the time-step 7 — the
smaller 7, the higher the number of vertices in the graph.
On the other hand we intuitively feel that the quality of
the approximation is also related to the value of 7 — the
smaller 7, the better the approximation. Thus it is possi-
ble to trade off the computation time against the solution
quality. This property is very important and we would
like to advocate this type of approach when dealing with
an actual dynamic workspace. In such a workspace it is
usually impossible to have a full a priori knowledge of the
motion of the moving obstacles. The knowledge we have
of their motions is more likely to be restricted to a certain
time interval, a tsme horizon. This time horizon may rep-
resent the duration over which an estimate of the motions

4The state-time space of a robot is its state space plus the
time dimension.



of the moving obstacles is sound. The main consequence
of this assumption is to set an upper bound on the time
available to plan the motion of our robot (in a highly dy-
namic workspace, this upper bound may be very low). In
this case an approach such as the one we have presented is
most interesting because its average running time can be
tuned w.r.t. the time horizon considered.

Besides completing the implementation of our search al-
gorithm, future directions of work should include:

o Considering more complex models for car-like robots.

e Trying to establish that our search algorithm is prov-
ably good [2], i.e. that any trajectory of duration ¢ can
be approximated by a canonical trajectory of duration
at most (1+¢)t for a correct choice of 7. Such a result
should tell us exactly how close to the time-optimal
trajectory the time-optimal canonical trajectory is.

A Appendix

Let ¢ be A’s current velocity. The conservative accelera-
tion space CA(q, 7) is the set of accelerations that can be
applied to A for a duration 7, and such that the corre-
sponding (¢, 7)-bang trajectory violates none of the con-
straints (9), (10) and (11). It is a subset of .AA(g), i.e. the
set of accelerations that can be instantaneously applied to
A. In order to characterize CA(g, 7), let us study the condi-
tions for (9), (10) and (11) to be verified along a (g, 7)-bang
where § € AA(q).

First, let us consider (11). § is constant over [0, 7] and
so is #° + §°. Accordingly, (11), which is true at time 0
since § € AA(q), remains true along the (§, 7)-bang.

As for (10), a: keeps on increasing over [0, 7] since its
time derivative is positive. Accordingly, if (10),which is
true at time 0, is also true at time 7, then it is true along
the (g, 7)-bang.

Finally let us consider (9). It can be rewritten as such:

anl _ | =i + il

—y# + Ty i1s constant since its time derivative is null.
Accordingly, x is maximum when v is minimum. v reaches
a minimum when its time derivative is null, i.e. for a value
of t equal to t,, = —ii — §ij/i® + §°. If tm €10, 7[ then «
is monotone over [0, 7]. and (9) is true over the (g, 7)-bang
if and only if it is true at time O and 7. Otherwise, i.e. if
tm €10, 7[, (9) must also be true at time trm.

This observation leads us to define RA(g, 7) which is the
subset of AA(¢) such that, if § belongs to RA(q, 7), then
% reaches its maximum in ]0, 7[. The relation 0 < &, < 7
yields the two following inequalities:

|K| = S Kmazx

which can be rewritten as such:

{ G.g<0 _
i — 2dl > I

Accordingly, RA(q, 7) is formally defined as:

4.g<0 . }

i — 24| > lI%
Trivially RA(q, 7) is the intersection between AA(q), a

half-plane perpendicular to ¢ and the exterior of a disk

centered in —¢/27 of radius ||g/27]|.
Finally it becomes possible to formally define CA(q, 7):

RA(,7) = {q € AA()

G € AA(G)
CA(g,7) =4 q| §€ AA(G+gr)
G € RA(¢,7) = ¢ € AA(G + §itm)
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