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Abstract

This paper presents an approach to detect and localize contact between deformable polyhedra, which
can be convex or concave depending on the time step. Usual contact detection algorithms, defined
for convex polyhedra, cannot be used efficiently as they would imply to compute the conver decom-
position of the considered polyhedra at each time step, as it can change due to the deformability of
these polyhedra. The computation of this conver decomposition being very expensive (in complexity
and computation time), we propose an algorithm to detect and localize the contact in linear time
w.r.t. the number of vertices. this algorithm returns the direction of this contact and the value of
the mazimum intersection distance between the convez hulls of the two considered polyhedra. Exper-
imental results, taken from a dynamic simulation application, are presented with their computation
time to complete the complexity analysis.
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Abstract

This paper presents an approach to detect and local-
ize contact between deformable polyhedra, which can be
convex or concave depending on the time step. Usual
contact detection algorithms, defined for convex poly-
hedra, cannot be used efficiently as they would imply
to compute the convexr decomposition of the consid-
ered polyhedra at each time step, as it can change due
to the deformability of these polyhedra. The compu-
tation of this convexr decomposition being very expen-
sive (in complexity and computation time), we propose
an algorithm to detect and localize the contact in lin-
ear time w.r.t. the number of vertices. this algorithm
returns the direction of this contact and the value of
the mazimum intersection distance between the convex
hulls of the two considered polyhedra. FExperimental
results, taken from o dynamic simulation application,
are presented with their computation time to complete
the complexity analysis.

1 Introduction

It is well known that collision detection is a bottle neck
for a large number of geometrical based algorithms,
and in particular for dynamical based simulation (a
large percentage of computational time is devoted to
collision detection). Several interesting results have
been obtained for processing collision between rigid
polyhedra: Lin and Canny [5] have proposed an incre-
mental algorithm which, in constant time, gives the
positive distance! between two rigid and convex poly-
hedra in motion. This algorithm has been extended by
Kotoku [4] in order to localize the contact when the
distance between the two rigid and convex polyhedra
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IThe distance between two polyhedra is called positive when
the two polyhedra do not intersect.

is negative?. Gilbert and al [3] have proposed an al-
gorithm (called GJK) which computes, in linear time
w.r.t. the number of vertices, the positive distance be-
tween the convex-hulls of two sets of points (without
computing these convex hulls), and gives an approx-
imation of the negative distance in the case of small
intersections. Garcia-Alonso et al [2], proposed an al-
gorithm which represent an object by its min-max box,
by its container and by voxels.

These algorithms can be used for concave polyhe-
dra, dividing them into convex ones and applying the
algorithms to the set of convex polyhedra. However,
if this method can be used for rigid bodies (whose
convex decomposition will never change), it cannot be
used when deformable polyhedra are considered: the
convex decomposition of each deformable object can
have to be recomputed, which takes a quadratic time
w.r.t. its number of vertices. To avoid this problem,
Baraff & Witkin [1] divide objects into convex sub-
objects that can only obey to first order polynomial
deformation (a facet or an edge can not be curved),
which guarantees that they stay convex during the
simulation. Thus a fast collision detection algorithm
between convex objects may be applied for each com-
bination of sub-objects to detect the collision between
the two main objects. However, the number of these
sub-objects may be large when representing a highly
deformable object. To reduce the computation cost,
Volino & Thalmann [6] proposed a hierarchical algo-
rithm which use the curvature properties of a surface
in order to solve the self-collision problem. We will
present in this paper another method to reduce the
number of sub-object pairs considered for collision.

2When two polyhedra intersect, their negative distance is the
opposite of the smallest length of the translations needed to
separate the polyhedra.



Outline of our approach

Let us first define a few notations: if X is a polyhedron,
fx and vx are its respective number of facets and
vertices, F% (i € {1,..., fx}) is its ith facet and Cx is
its convex hull.

Given two deformable polyhedra A and B, sys-
tematically detecting collision between each pair of
facets (F4,F%) (i € {1,....fat,j € {1,...,fB}) re-
quires O(f4 * fp) operations. To reduce this complex-
ity, we begin by eliminating from each polyhedron, be-
fore considering these pair of facets, some facets that
can not be in contact, in order to determine two min-
imal sets of facets on which non-collision has to be
verified. This elimination of facets is made in linear
time O(fa + fB) using three criteria, defined in § 3.
These criteria are based on four entities, whose com-
putation is deduced from an extension of the GJK al-
gorithm, which computes the real value of the negative
distance (§ 4). Once the two sets of potentially collid-
ing facets are computed, using these four entities and
the three associated criteria, GJK algorithm can be
used between facets of each set in order to compute
the distance between the two deformable polyhedra A
and B. Results obtained with this method are given
(§ 5), and future works are presented (§ 6).

This algorithm has one restriction: it only works
when the contact points remain on the same side of
each object (case 1 in Fig. 1). In other words, it does
not work when the contact points are on opposite sides
of one of the polyhedra (case 2 in Fig. 1).

Figure 1: Restriction: the algorithm works in case 1 but not
in case 2, as there exists in this case contact points on opposite
sides of B.

2 Contact Definitions

Before presenting our algorithm, we need to give a few
definitions about the contact of two polyhedra.

Let A and B be two polyhedra in IR® (whose inner
parts are not empty). We say that A and B are in
contact if, and only if, A N B is not empty but has
an empty inner part, i.e. A N B is either a point, a
segment or a planar region.

If {'is a translation in IR3, it is said to bring A into
contact with B if, and only if, 1?(A) and B are in contact
(F_l then brings B into contact with A). Depending of
the nature of AN#~1(B) (C A) and of {{4)NB (C B),
the contact is denoted as verter—vertex, vertex—edge,
vertex—facet, edge—edge, edge—facet or facet—facet.

At last, we denote as t 4 /B the translation of smallest
length (|fA/B|) which brings A into contact with B.
The existence and unicity of this translation can easily
be proved by considering each possibility of the nature
of the contact.

3 Selecting Potentially Collid-
ing Facets

Our algorithm is only used when the two convex hull
C'4 and Cp intersect, which can be detected using GJK
algorithm in linear time (O(va + vg)). Selection of
the potentially colliding facets then uses the following
entities, characterizing the contact (see Fig. 2):

e The negative distance d4,p between C4 and Cp
is the length of the smallest translation needed to
separate the two convex hulls C'4 and Cp:

da/p =|—tosjos| = ltoa/osl

e The contact direction 7i4,p from A to B is the
normalized vector of the previous smallest trans-
lation; it is directed from A to B:

fiasp = —toajon/ltca ol

e The contact plane P4,p from A to B is the plane
containing the point of C4 closest to Cg, and
whose normal vector is 7i 4 g; the space R? is sep-
arated by this plane in two parts 5;'1' /B and & /B
(the later contains A and Clya).

e The impact zone Z4,p from A to B is the projec-
tion on Py, 4 of the intersection of A and 51;/,4'

Given these four entities, one can eliminate, in linear
time, all facets from the polyhedron A that can not be
in contact with the polyhedron B. Three criteria are
evaluated for eliminating such facets:

o If ﬁA/B-ﬁqu < 0, where ﬁF}-{ is the external nor-
mal on the facet F%, then the facet is invisible
to the polyhedron B and can be eliminated; this
is the case of the facets Fy, F3, Fj, Fg, Fy in
Fig. 2.



Figure 2: The facets F, F3, F}, F3, F3 can not be in
contact, because they do not have the same side of the collision.
The facets F},, Fg, Fg can not be in contact because they are
far from the other polyhedron. The facets Fl}}, Fg, Fg, F]73 can
not be in contact because they are far from the impact zone of
the other polyhedron. Only Fg and Fé may be in contact.

o If Fj C £f, 4, then the facet cannot be in contact
with B as B is contained in SE/A; this is the case
of the facets F}, F, Fj.

e If the projection of F on Py /B does not intersect
Zp/a, then the facet can be eliminated; this is the
case of Fy, F}, F§, Fp.

After applying these three criteria to each facet of
each polyhedra (A and B), the algorithm returns two
sets of facets which have not been eliminated. In the
case illustrated in Fig. 2, these sets are {F3} and
{Fs}.

The two first criteria are atomic and can be made in
constant time O(1) for each facet, once 74, p and 5§/A
are computed. To perform the facet selection is linear
O(fa + fB), the third criteria also needs to be com-
puted in constant time. This is not possible if Zp,4 is
computed exactly, as it will have O(vp) vertices: com-
putation of the intersection will then cost O(vg). To
obtain constant time, the impact zone Zp,4 will be
approximated by a disk.

In that case, facet selection will be obtained in linear
time O(fa + fp) if the entities (d4,5, 7a;B, EE/A and
the disk approximation of Zp,4) can be computed in
linear time O(fa + fB).

4 Computing Contact Entities
with a GJK Extension

As we already said, GJK algorithm computes, in linear
time O(v4 + vg), the Euclidean distance between two
convex hulls defined by their vertices in m-dimensional
space. Algebraic tools are used in order to find itera-
tively the minimum (positive) distance between these
two convex hulls, without considering the v4 xvp cou-
ples of vertices.

However, for our work, this algorithm has two main
drawbacks illustrated in Fig. 3:

e It computes the distance between convex hulls in-
stead of between polyhedra;

e It returns the Euclidean distance, and fails to find
the negative distance when the convex hulls inter-

sect.
Py Pp
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Figure 3: GJK algorithm gives the distance between two con-
vex hull and returns the two nearest points P4, Pg (1). When
the two convex hulls interpenetrate (2), the algorithm may give
a non correct negative distance (3), because it uses a local test
to compute this distance.

The first drawback limits the use of GJK in our
case: it checks whether the convex hulls C4 and Cp
intersect, and in that case starts our collision detection
algorithm. Indeed, as shown in Fig. 3, C4 and Cp can
present a significant intersection while A and B are
still apart.

The nearest points P4 and Pp returned by GJK
cannot be used to compute the negative distance d4,p
between C4 and Cp or the contact direction 7i4,p
from A to B, as the iterative nature of GJK does not
garantee that these points are the right ones: P4 and
Pg are not always respectively on C4 and Cp (cf.
Fig. 3-3). We will show how this algorithm has to be
extended in order to find the contact entities.

4.1 Finding the contact direction

The contact direction 7i4,p from A to B can only be
deduced correctly from the couple (P4, Pg) return by
GJK algorithm when the convex hulls C4 and Cp do
not intersect, i.e. when the contact direction is not
need (no collision can occur between A and B). When



Cy4 and Cp do intersect, we use a fast algorithm to
incrementally transform 7g = P4Pp/PsPp into the
contact direction 7i4,p. This algorithm is based on
two properties of intersecting polyhedra.

First of all, the nature of the contact between
to 4/05(Ca) and Cp can only be vertex—facet, edge-
facet or facet—facet. This can be proved considering
the Minkowski set difference between C'4 and C3, de-
noted as C4 © Cp: the contact between the origin O
(which is inside C4 © Cp as C4 and Cp intersect) and
t0./05(Ca © Cp) can only be of nature vertex—facet.

Thus contact between i, jcs(Ca) and Cp always im-
ply a facet.

We can thus prove that there exists a compact set
Sa/p of normalized vectors around 7i4,p such that,
for any §'€ Sy, p, if A is translated along 8 far enough
to separate C'4 and Cp, the new contact direction 7
(given by GJK, as C4 and Cp do not intersect any

more) will be closer to 4 p than § was.

iA/B

Sa/B

Figure 4: 1f 5; € S4B, any translation of A along §; will give
a new positive contact direction 7i; closer to the previous exact
contact direction @4/ p.

The second property is that the contact direction
iia/p does not change when A (or B) is translated
along i 4/p-

Using these two properties, and an initial value g
of the contact direction being given in S4,p, 4, can
be found using the following algorithm:

VECTOR Find_Contact_Direction(7)
{
Separate C4 and Cp according to 7.
Apply the Gilbert algorithm to get the
new positive contact direction 7.
IF (7o = 7;) THEN
return 7,
ELSE
return Find_Contact_Direction (7;)

3The Minkowski set difference between two sets X and Y is
defined as {z —y,z € X,y € Y}.

Remark: Direct computation of the contact direc-
tion would have a quadratic time O(va * vgp), ei-
ther using the Minkowski set difference C4 © Cp or
considering C'4 and Cp, as the contact sets between
fCA/CB(CA) and Cp have to be computed.

In the contrary, the previous algorithm find the con-
tact direction in linear time O(v4 +vp) as long as the
initial value of the contact direction is in the inner part
of S4/p. If the choice of the contact direction given
by GJK has experimentally proved to be a good ini-
tial value (the algorithm nearly always only need one
iteration to find the contact direction), theoretical jus-
tifications of this quality of this choice should be point
out for the final version of this article.

A 7 ) A
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Figure 5: Translating A in the direction i; and applying the
Gilbert algorithm gives ;1 as contact direction. In this exam-
ple, 73 is equal to i 4,p-

The behaviour of this algorithm is illustrated by an
example in Fig. 5. This behaviour depends on two
parameters:

ij a3
1 2

Figure 6: (1) The deepest point of C4 in Cp goes in the depth
inside Cg: although it becomes sometimes closer to an other
side of Cp, the algorithm always converge toward the side from
which C4 came in, because it uses the last contact direction in
order to initialize itself. (2) The deepest point follows the border
of Cg: when 7i; passes by through a new facet, the algorithm
converges toward the normal of this facet ;1.



The convex hull of the impact zone

The impact zone

Figure 9: The impact zone is approximated by a disk, in order to keep a linear complexity of the algorithm.

e The initial direction 7y: Because of the continu-
ity of the motion, the obtained contact direction
can be used as an approximation of the contact
direction in the next time step. If initially the dis-
tance between the two objects were positive then
the Gilbert algorithm can give an initial value of
this direction, we can use this value to compute
the contact direction when the distance is negative
and use this one to compute the contact direction
in the next time step, etc... The fact that our
algorithm has a local convergence (it converges
always toward the facet by which passe 7y) make
it very robust for a significant amount of inter-
penetration (see Fig. 6).

St

Figure 7: Influence of the translation length on the quality of
the next contact direction obtained.

e The translation length at each iteration: The
quality of the next contact direction obtained is
inversely proportional to the difference between
the translation length and the contact distance
(which cannot be computed in linear time). This
property is illustrated in Fig. 7. Thus we choose
a translation length proportional to the negative
distance obtained in the last iteration. If this

value is not large enough, GJK algorithm will de-
tect a negative value and our algorithm will du-
plicates this displacement.

4.2 Finding the Negative Distance dyp

To find the value of the negative distance d4,p, the
polyhedron A is translated of a distance d along 7ip 4,
and GJK algorithm is used to compute the new posi-
tive distance dp, cf. Fig. 8). The original negative dis-
tance d4,p is equal to d — dp.

iB/A
A

dA/Bg

J

Figure 8: Computation of the negative distance.

4.3 Finding the Contact Region &, ,

When two polyhedra A and B have a very different
dimension, it is very useful not to consider as poten-
tially colliding all the facets of the bigger polyhedron
but only those which are close to the smaller one. A
wheel rolling on this ground, both being represented
as polyhedra, is a good example of this situation.

An other simplification for the collision check is to
only consider the part of B which intersects £, /B (as
defined in § 3). The contact direction 74,5 being
given, the plane P4, p can be computed in linear time
O(vp). The contact region &£, /p is then deduced from
P4yp in constant time.
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Figure 10: Real time deformation of a liver using AlaDyn3D.

4.4 Finding the Impact Zone Z,/p

The impact zone Z4,p can be constructed from Pp/4
and &g, in linear time O(v4). However, as we already
noticed at the end of § 3, the complexity of this region
is to high (its number of vertices is equivalent to v4)
to compute its intersection with B’s facets in constant
time (which is needed to have a linear complexity for
the general algorithm).

Thus, Z,,p is approximated, once computed, by
the smaller disk which can contain all its vertices (cf.
Fig. 9). The intersection of B’s facets with this disk is
then verified in constant time.

5 Implementation and tests

This distance algorithm is used in AlaDyn3D, a generic
dynamic simulation model written in C' + 4, to com-
pute the amount of interpenetration between two ob-
jects, from which collision penalty models compute the
collision response.

This allows to simulate the deformation by rigid
tools of soft objects. This deformation is obtained in
real time: a liver, represented by a polyhedra with 500
facets, is deformed by a rigid surgical tool with a rate
of 12 images per second (c¢f. Fig. 10). The contact
direction was monitored during these demonstrations
and the average number of iterations needed to find
the contact direction (in the Find_Contact_Direction
algorithm, § 4.1) was 1.

An other application of this fast collision detection
is the simulation of wide deformable objects, as soft
clothes. A simulated contact between a sphere and
a very flexible cloth has been experimented. Even
when the sphere is completely inside the flexible cloth,
the contact direction is still the same as in the be-
ginning. While the shortest translation to remove the
sphere from the cloth is through the cloth, the contact
direction remains in the other direction and pushes
the sphere out of the cloth, thanks to the local con-
vergence of the Find_Contact _Direction algorithm (cf.
Fig. 6).

6 Conclusion

This paper presented an incremental algorithm to de-
tect and localize contact in linear time between two
deformable polyhedra. This algorithm can be used
to confirm collision when the convex-hulls of the two
polyhedra intersect, without computing the convex
decomposition of each polyhedra, this decomposition
changing at every time step. The algorithm returns a
sets of potentially colliding facets for each polyhedron
and the translation of the length needed to separate
the two convex-hulls. Collision between these facets
can then be verified using classical collision detection
algorithms (the facets are and remain convex).

The complexity of our algorithm is linear w.r.t. the
number of facets (or of vertices) of both polyhedra, the
linear coeflicient depending on the precision of the esti-
mation of the minimum translation’s direction. Using
a classical algorithm (Gilbert, Johnson and Keerthi)
for this estimation, experimental results show that the
average value of this linear coeflicient is nearly mini-
mum.
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