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Abstract: This paper presents a set of paths, called
bi-elementary paths. These paths are smooth and feasible
for a car-like robot (i.e. their tangent direction is continu-
ous and they respect a minimum turning radius constraint),
and they can be followed by a real vehicle without stopping
(i.e. they have a continuous curvature profile) — which is
not the case of Dubins’ curves. These paths are composed
of arcs of clothoid (a clothoid is a curve whose curvature is
a linear function of its arc length), and are used to define
a simplified, i.e. non complete, planner. This simplified
planner is, in turn, used in two global planning schemes,
namely the Ariadne’s Clew algorithm and the Probabilistic
Path Planning. This paper proves an important property
of the bi-elementary paths, from which the completeness of
the two global planners is deduced.

1 Introduction

To the best of our knowledge, current path planners for
car-like robots (i.e. planners taking into account the non-
collision and mnon-holonomic kinematic constraints of the
robot) return paths made of line segments and circular
arcs [2, 6, 9, 15]. These paths do not have a continuous
curvature profile and thus, if a real vehicle were to fol-
low precisely one of them, it would have to stop at each
curvature discontinuity to reorient its front wheel(s). Con-
tinuous curvature paths have been previously considered,
but usually to generate paths for car-like robots (path gen-
eration deals with the kinematic constraints only, not the
obstacles) [11, 7, 3]. Fleury at al. did present a continu-
ous curvature path planner in [4], but it involved a mobile
robot of the Hilare family, which was not a car-like robot
(it did not have a minimum turning radius constraint).

A first continuous-curvature path planner (CCPP) was
presented in a previous paper [12]. This paper presented
the concept of elementary paths, which are a pair of sym-
metric clothoid arcs (a clothoid is a curve whose curvature
is a linear function of its arc length). It also presented a
simplified (or local) planner based on bi-elementary paths,
i.e. couples of elementary paths. As this local planner is
not complete, a global (i.e. complete) planner called CCPP
was build using this local planner and a global planning
method: the Ariadne’s Clew algorithm [10].

The aim of this paper is to prove the completeness of
CCPP and to show that the local planner can be used with
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other global planning methods in order to obtain a com-
plete planner. An example is given using the Probabilistic
Path Planning method PPP [15]. In order to demonstrate
the completeness (with respect to the set of paths con-
sidered) of both CCPP and PPP, we prove a continuity
property on the existence of a bi-elementary path between
two configurations.

Outline of the paper. After a short presentation of
the planning problem (§2), the elementary paths and bi-
elementary paths are defined (§3 and the different proper-
ties required to show the completeness of CCPP and PPP
are proved. Then, the simplified planner returning a bi-
elementary path between two configurations is described
(§4). CCPP, i.e. the path planner based on the Ariadne’s
Clew algorithm, is presented with the proof of its complete-
ness (§5). Finally, the same work is done for the planner
using the Probabilistic Path Planner method (§6).

2 Statement of the Problem

Our goal is to design a path planner for a fast car-like
robot. This induces two main problems: the paths gener-
ated by this planner have to avoid obstacles of the envi-
ronment, but the vehicle must also be able to follow them
precisely (this is not the case for the paths usually gener-
ated by path planners nowadays).

We will first recall the constraints to be verified by our
car-like robot. Then, the kind of path which can be fol-
lowed by the robot will be explained and the resulting path
planning problem will be stated.

2.1 Feasible and Smooth Paths

We model a car-like robot moving on a plane surface.
Thus, the workspace W of our robot A is equivalent
to a sub-space of IR?. In this workspace, the obstacles
are represented by a set of polygonal regions noted Bj,
j €{1,...,n5}. A configuration of A is defined by the co-
ordinates (z, y) of the rear axle midpoint R and the orienta-
tion 6 of A, i.e. the angle between the z-axis and the main
axis of A. The configuration space (the zyf-space) is de-
noted by C, Ccollision 18 the subset of the configurations for
which A collides one of the obstacle’s Bj, 5 € {1,...,n5},
Ciree is the complement of Ceolligion in €, and Cj,... is the
subset of the configurations of Cgee whose distance (in C)
t0 Ceollision 18 greater than e.

The movement of A is constrained physically for two
reasons: the non-sliding of the wheels and the bounds on
the front wheels’ orientation. The non-sliding of the rear



wheels implies that the main axis of .A remains collinear
to the derivate vector of the position of R. This constraint
(called orientation constraint) can be written:

zsinf —ycosf =0 (1)
The non-sliding of the front wheels and the bounds on
their orientation implies a minimum on the turning radius

of A, i.e. bounds on the curvature of the curve followed by
R. Thus, the following turning radius constraint holds:
(i'ﬂz + 1)2 - pmin2é2 >0 (2)

A path TI for A is a continuous curve in C but, when it
respects the constraint (1), it is equivalent to its projection
in W, which is called its zy-curve [8]. This path is feasi-
ble if and only if a) the tangent direction of its zy-curve
is piecewise continuous with opposite semi-tangents at the
cusp points (which are the change of the direction of mo-
tion), and b) the curvature of its zy-curve is at each point
less than 1/p;,- As our robot will be fast, we prefer to
have a smooth path (i.e. without manceuvre), so its tan-
gent direction has to be continuous. A smooth path can
be represented by the curvature function of its xy-curve,
what we call its curvature profile.

Usual path planners return paths made of straight seg-
ments connected with tangential circular arcs of minimum
radius. If these paths are feasible, they cannot be followed
by a real vehicle without stopping at each curvature discon-
tinuity to reorient the front wheels. This is not acceptable
for a fast vehicle. For this reason, the generated path has
to be a continuous-curvature one, i.e. its curvature profile
has to be continuous.

2.2 Our Path-Planning Problem

In summary, given a starting configuration ¢s and a goal
configuration gy (both in Cgree), we need to plan a path II
such that:

o II verifies the end conditions, i.e. it is a curve of C
linking g. to qg;

o Ilis afeasible, smooth and continuous-curvature path;

o II is collision-free, i.e. it is a curve included in Cgpee.

Such a path II is said to be a solution path. As the set
of the solution paths is too wide to be considered, we limit
the search of our planner to a subset of it: we only search
paths made of a sequence of elementary paths.

3 Elementary and Bi-Elementary

Paths

In this section, the definition of the elementary paths is
given, which leads to the definition of the bi-elementary
paths. Then, the definitions and properties of these paths,
which are needed to prove the completeness of our global
planners, will be presented. Due to lack of place, the proof
of these properties can be hard to understand. The com-
plete proofs are detailed in a research report [14].

3.1 Definitions of the Elementary and Bi-
Elementary Paths

As we saw in 2.1, a feasible path Il in C is equivalent to

its projection in W. If II is smooth, it can be represented

by its length and its curvature profile (see §3 in [7], or

§3.2 in [12]). An elementary path, which is made of two
symmetric arcs of clothoid (see Fig. 1), can therefore be
defined as follows:

Definition 1 (Elementary Path) A smooth path of
length 1 is an elementary path if and only if its curvature
profile k verifies:

do € R/ Vs €[0,1/2], (s)=k(l—s) =05

Thus, an elementary path can be represented by a pair
(1,0) € IR?, where o is called the sharpness of the path.

,
.7 Ya

Figure 1: x(s) and zy-curve of an elementary path.

An elementary path is a symmetric path (its curvature
profile is a symmetric function), and it can therefore only
link two configurations ¢, and g, that are symmetric. This
means that the orientations of ¢, and g, are symmetric
with respect to the line joining their position (see Fig. 1,
the proof is given in [7], proposition 1). Formally, the co-

ordinates of g, and g, must verify:

0b+0a 9b+9a
2 2

The deflection of an elementary path is the orientation
variation along this path, here 8, — 6, = 28 [7]. Such a
path is feasible if and only if it respects the turning ra-
dius constraint (2). As its curvature is maximum (or min-
imum) at its middle configuration, it is feasible if and only
if 01/2 < 1/pmin'

We define bi-elementary paths as sequences of two ele-
mentary paths (cf. Figure 2):

(z6 — #a)sin = (y» — Ya) COS

Definition 2 (Bi-Elementary Path) A smooth path of
length 1l is a bi-elementary path if and only there exists
three reals 0g,01,1l; such that:
Vs € [0,1: /2], k(s) = k(li — 8) = 005
Vs e [(14+16:)/2,1], k(s)=k(l+1li—35)=—01(l—3)

qa~

Figure 2: a bi-elementary path.

As we will see in the following, these paths can link any
two configurations and are therefore much more interesting
for planning. To obtain the property of these bi-elementary
paths which allows to prove the completeness of our plan-
ners, we have to state first a few properties of the elemen-
tary paths.



3.2 Properties of Elementary Paths

We will first give a characterization of the set of config-
urations which can be linked using a feasible elementary
path (i.e. an elementary path which respects the turning
radius constraint (2)). Therefore, we have to find the con-
ditions two configurations have to respect for a feasible
elementary path linking them to exist.

Theorem 1 (Existence of an Elementary Path) Let
qa = (Za,Ya,ba) and qu = (zs,Ys,0) be two symmetric
configurations. Let us rewrite the vector (£y — Ta,Ys — Ya)
in polar coordinates as (r cos(8o + B),rsin(fa + B)), with
r € [0,400[ and B € |-m,x]. A feasible elementary path
linking qa to qv exists if and only if r and 3 are such that:

{ 18] € [0,8ro0tl  and v > 4ppminy/18[D1(|8])
18] = Oroot and r=20

where D1 is the function defined over [0, 7] as:

Ve Ve
D (a) = cos a/ cos uldu + sina/ sin u?du
0 0

and where O ro0t 1s the unique root of Dy over 0, x| (cf.
Fig. 3).
We then note qa R qv (qa reach g ).

D1 (oz)
.
0
UKJE\ Z'F
“{ Oroot o
o

Figure 3: the function D; along [0, ].

Proof: By rotation and translation, the configuration g,
can be transformed into the configuration (0, 0,0). There-
fore, go will be supposed to be equal to (0,0,0) in the
following, and 23 will be the path’s deflection.

To prove this theorem, we will suppose that there ex-

ists a feasible elementary path ¥ linking ¢, = (0,0,0) to
qv, find the constraint ¢, has to verify and then calculate
the parameters of ¥ depending on ¢,. Thus, we will have
proved that the existence of ¥ implies the constraint and
that, if this constraint is verified, ¥ exists. To obtain the
constraint, we have to consider three different cases.
1. First, let us suppose that r and 3 are not null (this
means that the position of g is not on the half-line [Oz)). If
l and o are the length and the sharpness of the elementary
path U linking (0,0,0) (= ¢a) to gs, the coordinates of the
middle configuration of ¥ are (let & be the sign of o):

z = [P cos(ot?/2)dt = /2] [P cos u?du

m:y y = f0l/2 sin(ot®/2)dt = /2] 5f0msin u?du
6 =o(l/2)*/2 =ol?/8

The proposition 1 of the paper [7] prove that the position
P,,, of this configuration is located on the bisecting line of
the segment [Py, Py], were P, is the position of g, and P,
the position of ¢g». Therefore, we have mm =r?/2,
which can be written as r1/2/p|D1(|8|) = r*/2 (using the

coordinates of g,, we just obtained). This implies that

D, (|B]) is strictly positive (as r is not null), i.e. that g
is in the set | — Oroot, Oroot[ (cf. Fig. 3), and that |o] =
8 Di(|8))/r".

On another hand, the same proposition 1 prove that the
orientation of g, is perpendicular to the bisecting line of
[P., Py]. Therefore, § = ¢1?>/8 = 3 and the parameters of
U can be deduced from r and 3 using the equations:

{ 7 = SSgn(ﬁ) D1(|ﬁ|)2/7"2 (3)
Il = 2v/28/c
To conclude, ¥ is feasible if and only if |o.0/2 < 1/pin,
which can be rewritten as r > 4 p_ . \/W D, (|8]), for
/8 E] - G)1‘001:7 G)root[\{o}-
2. We now suppose r null and 3 not null (g, and ¢, have the
same position but are not equal). The constraint o1%/8 = 3
still holds, but the other becomes /2/lp|D1(|3]) = O (see
[14] for more details). Thus, D1(|3]) has to be null, and
|8] = Oroot (B is supposed not null). An infinity of feasible
elementary paths linking ¢, to g, can then be found.
3. At last, if 8 is null, the position of ¢ is on the half-line
[Ox) and its orientation is the same as go’s. In this case,
the elementary path is a segment, and g, can always be
reached (go = (0,0,0)): r can have any value of [0, +oof.
The cases 1 and 3 give the first line of the theorem’s
constraint, the case 2 gives the second line. |

Figure 4: examples of elementary paths.

From this theorem, we can deduce the set Qreach(qa) of
configurations reachable from a configuration ¢, with a fea-
sible elementary path: Qreach(ga) = {q € Ctree / 9a R q}.
Figure 4 gives, starting from configuration (0, 0, 0), the set
of the reachable symmetric configurations (white zone),
and some examples of elementary paths. This helps to un-
derstand why the half-deflection 8 has to be bounded by
Oroot: with a deflection of 20r00t, the elementary path
comes back to its starting position; if the deflection is
greater than 2@pqet, the elementary path makes a loop
and comes back to the half-plane (z > 0).

The set Qreach(ga) is not open-ended. We want to prove
that the existence of a feasible and non-colliding elemen-
tary path linking two configurations can be extended to
a neighbourhood of both configurations, assuming certain
conditions. Therefore, as neighbourhoods are concerned,
the set of configurations considered has to be open-ended.
Thus, let us set the following definition:

Definition 3 Let ¥ be an elementary path, and qo = (24,
Ya,8a) and gy = (s, Ys, 05) be its starting and final configu-
rations. We also rewrite the vector (z4—%a, Yo—Yya) tn polar
coordinates as (r cos(8q+8),rsin(6,+8)), with r € [0, +o00[



and 8 € |-, w]. U is said to be extreme if and only if it is
feasible but |B| = Oroot or r =4 p;in /18] D1(18])-

Therefore, if ¥ is a non-extreme (feasible) elementary
path linking ¢, to ¢s, any configuration in a neighbourhood
(small enough) of g5 can be reached from g, with a feasible
elementary path. This is true because this neighbourhood
can be totally included in Qreach(qa), if it is small enough.

On the other hand, we must take obstacles into account.

Definition 4 Given a configuration q, and a subset S of
C, we call RCy(qa,S) the set of configurations which can
be reached from q, with a feasible elementary path included

inS.

Thus, each time we will write in the following ¢, €
RC1(qa,S), this will mean there exists a feasible elemen-
tary path included in S, linking g, to q». We have found the
equations giving Qreach(¢a) = RC1(ga,C), for all g, € C.
We now prove a second main property of elementary paths:

Theorem 2 The workspace W of A is assumed to be
bounded, and ¢ > 0 is a real constant. Let qo and q» be
two configurations linked by a non-extreme (feasible) ele-
mentary path ¥ in C}Tee. There exists §1 > 0 such that:

an’v qb, S Cfree7

(d(qa’ s qa) < 81) A (d(qv', q0) < 61) A
(qa' and ¢’ symmetric) = @' € RCI(QaIa Ciree)

Proof: Assuming that the hypotheses of this theorem are
true, we search the constraints §; > 0 has to verify for the
implication to be true.

Let ¢.' and ¢’ be two symmetric configurations of Cree
such that d(qa’,ga) < 61 and d(g', qs) < 81. Let r be the
length and 8,+ 3 the orientation of the vector P_aﬁb, joining
the respective positions P, and Pj of the configurations ¢,
and g, (same notations as in the Theorem 1). Similarly, r’
and B’ are defined concerning ¢.’ and ¢’

It is easily shown that |r' —r| < 26; and |8’ — 8| < 41.
As U is a non-extreme elementary path, we have || <
Oroot and r >4 prin \/W D1(|8]). As the function 8 —
VIBD1(|3) is continuously derivable along -7, 7], with a
derivate bounded by 3/2, to have the similar inequalities
concerning 3’ and r’, §; must verify the following condition:

0 < 61 < min (emt — | = 16pmin /A1 (8)

2 ’ 24 24p..; (4)
pmln

Then, there exists a non-extreme elementary path ¥’
linking ¢.” to ¢’ in C. This path is included in Cjpee if we
can show that it stays at a distance less than ¢ from the
path W. If the length and sharpness of ¥ are ! and o, and
those of ¥’ are I’ and o', we note v the quotient of the
lengths: v = 1'/l. The distance between the two paths is
less than the maximum, for s € [0,1], of the distances be-
tween the configuration g(s) of ¥ at length s and the con-
figuration ¢'(s’) of ¥’ at length s’ = vs. As the paths are
symmetric, and the distance inequalities of their starting
and final configurations are also symmetric, the calculus
of the previous maximum distance can be limited to the
first part of the path (i.e. we can take s € [0,1/2]). There-
fore, we have to find the maximum of the distance between

q'(s') = (2'(s'),y'(s"),6'(s") and q(s) = (2(s),y(s),6(s)),

for s €[0,1/2] and s’ = vs. First, we note that:
9'(5') —8(s) = 8 + 0'5'2/2 — b, — 052/2
= 0, —0a+ (07 —0)s*/2
and, using the second line of the equation (3):
— o)/ = 88" - B)/V

Thus, as |3’ — 8| < 81, |o'y* — 0| < 881 /1%, and |¢'(s") —
8(s)| < |0, — 8a| + 46157 /1* < 261 (s < 1/2). Moreover:

|#'(s") = 2(s)]
zh —xe+(y=1) /h cos 8 (yu)du+

0

0172 o = (alllz

/OS (cos@'(‘yu) — cos H(U)) du

A

o=l v = 1ls+ [ 16/ = 8(a)jdu
0

< S|y —101/2 4 2615

[y —1I/2 4+ (1 +1)é:

A

A similar result can be obtained with |y'(s") — y(s)|.
Thus, we have the following inequalities:

|z'(s")y —z(s)] < ' =1/2+ (1 +1)é

V() =yl < /=112 + (1405
#(s) —0(s)] < 26,

Figure 5: the function f and f’ along [0, @0t

We now need to find a bound on [I' — . We de-
fine a function f along ] — Orgot, Oroot[ as f(0) = 1 and
f(a) = |a|/Di(a)? for o # 0. We have I* = f(3)r? and
1” = f(8')r"®. We can prove (using Taylor polynomials)
that f is continuous and derivable in 0, and therefore on
] — Oroot, Oroot[- Moreover, f and its derivate f’ increase
along [0, ©root] (cf. Fig. 5). For this reason, f(3) and f(3')
can be bounded by My = f((|8]+®Oroot)/2), and f'(8) and
(8" by My = f'((|8] + Oroot)/2). As 1’ and [ are posi-
tive, we can write |I' —1[* < |17 =] < |f(B)r? = F(B)r?| <
B = F BN+ (B)lr P12 < My +2(r"+r)My51.

Finaly, we must note that W is bounded. Let M
be a bound on its bigger dimension, we then have [’ —
I < (2[\421\41” + 6MMjy)6,. This leads us to write
d(q'(s"),q(s))? < (' =12/2 4+ (4 4+ 2(1 + 1)*)6:° < K6,
where K is a bound of ]Msz/ +3M My +6; (4+2(2M—|—1)2)
(for example, using the relation (4), M? Mp+3MMi+(2+
(2M + 1)) (Oro0r — ).

To conclude, the implication of the Theorem 2 is true if
41 verifies:

8, < min (Oroot - |/3| 7 — 16ppin \/HDl(H) i)

2 2 + 24ppin 'K




3.3 Properties of Bi-Elementary Paths

To prove a theorem similar to Theorem 2, we have to
extend the definitions of extreme path and of RCi(ga,S)
to the bi-elementary paths.

Definition 5 A bi-elementary path is said to be extreme if
one of its two elementary paths is extreme or if its starting
and final configurations have the same position.

Definition 6 Given a configuration qo and a subset S of
C, we call RC3(qa,S) the set of configuration which can be
reached from q, with a bi-elementary path included in S.

We also need to prove a theorem concerning the config-
urations symmetric to two given ones.

Theorem 3 The workspace W of A is assumed to be
bounded, and 61 > 0 is a real constant. Let qo and q
be two configurations with different positions. If q; is a
configuration symmetric to q, and qp stmultaneously, there
exists §; > 0 such that:

VQaI7QbI € Cfre67 (r(QaI7Qa) < '51) A (T(le7Qb) < '51) =
3q:‘ S Cfree / (T(q:‘7q¢‘) < 51) A
(4 configuration symmetric to g.' and ')

Proof: Let Py and Py be the positions of the respective
configurations ¢, and ¢». The frame is set to Raqs, which is
centered in the middle I of the segment [P,P3] and whose
z-axis is oriented along the vector P,P. In this frame, the
coordinates of ga and gs are respectively (—r/2,0,«) and
(r/2,0,a"). If B = (o' —a)/2, r and B are similar to those
defined in Theorem 1 and in the proof of Theorem 2 (even
if the configurations g, and g are not symmetric). The set
of positions of configurations simultaneously symmetric to
qq and g is a curve containing P, and P, having constant
curvature k = 2sin 8/r: r is not null, so k € IR and the
set is a line or a circle. This is shown in [7], proposition 6
(these symmetric configurations are called split postures in
this article). The set of the symmetric configurations can
therefore be defined if k # 0 as (s refers to the length along
the set of positions):

w(k,s) =
qi(k,8) § (K, s) =
0(x,s)

and,if k=0( < B=0 & a=4a'), as:

¥

sin(ks)/k
(cos 3 —cos(ns))/n
ks — (a+a')/2

z(0,s) =s
qi(0,8) ¢ y(0,8)=0
6(0,8) = —(a+a')/2 = —a

Using Taylor polynomials, we can prove that the func-
tion giving the configuration g;(k, s) in IR? for each (k, s)
in IR?, is continuously differentiable along IR2.

Considering the configurations ¢,’ and ¢, we can de-
fine similar positions P, and P{, a similar frame R, and
similar notations r’ and B'. If §; < r/3, as |’ —r| < 26;,
we have r’ > r/3 > 0 and the set of configurations sym-
metric to g,/ and g»' respects similar equations in the
frame R,pr. Moreover, the partial derivates of the func-
tion which associates the curvature of this set to (3,r) or

/1\4\\7,

a

Ga i \< \K\ S

Figure 6: configurations symmetric to both ¢, and gp.

(8',r") can be bounded on the intervals of 8 and r con-
cerned. Let C1 and C5 be these bounds, we then can write
&' — k| <18 =B+ Ca|r' —r| < (C1 + 2C2) & < My 6.
It is important to note that C; and C5, and therefore M
tends toward infinity when r approaches zero.

Remember q., ¢» and gi(k, s) are given (so are x and
s). Let D be the bound of the partial derivation along
% of the function z(k,s), on an interval including the
values of x and x'. Then, as [s' — 5| < &, we have
|#' (k') ")~z (k, 8)| < Do|k'—k|+|s'—s| < (DaMi+1) 8i. Tt
is possible to find a similar inequality for the y-coordinates,
replacing the constant D; by a constant D,. If the center
of the frames are I and I’, and the orientations of their
x-axis are ¢ and ¢’, the distance between the configura-
tions ¢i(k,s) and ¢i(x',s’) verifies r(qi(x’,s"),qi(k,s)) <
26", 5') — 2(x,5)| + [y (K, 5") — g(,9)] + (", ) =
O(k, s)|+II'+(2M+1)|¢'—¢|. As the inequalities 11’ < 4;
and |¢' — ¢| < 28;/r holds, it is possible to conclude that
r(gi(x', 8"), qi(k,8)) < Mg §;, assuming that |s' — s| < §;.

To conclude, the implication of Theorem 3 is verified
when 0 < §; < min(r/3,48,/My). [ |

Then, we can deduce the important property:

Theorem 4 The workspace W of A is assumed to be
bounded, and ¢ > 0 is a real constant. Let q, and q» be
two configurations linked by a non-extreme bi-elementary
path @ included in C%.,. Then, there exists 62 > 0 such
that:

Vo', @p' € Cpree, (r(qa’,qa) < 62) A (r(a', ) < 62)
= qb, € RC2(qalvcfree)

Proof: Let ¥* and ¥ be the first and second elementary
path of ® respectively, and ¢; the configuration which ends
U< and starts ¥“. As ® is not extreme, neither are ¥* or
V¥, Thus, Theorem 2 can be applied to the configuration
pairs (qa,qi) and (gi, ¢s), fixing §1% > 0 and 6;“

If § = min(4:“,6:“), we can apply Theorem 3 and find
d; and q;. Setting d> = min(81,§;) finishes the proof. [ |

To conclude, bi-elementary paths are interesting curves
as they offer infinite possibilities to link almost any couple
of configurations (if there is no obstacle; this property is
stated more precisely and is proven in the report [14]). This
property can be used to build a simplified planner return-
ing a bi-elementary path, and a global path planner using
this simplified planner (some examples of this kind of path
planner are given in articles [10, 9, 15]). Theorem 4 can
be used to prove the completeness of these path planners,
assuming they satisfy a few properties. We will now give
examples of this possibility with two planners, using the
Ariadne’s Clew algorithm [10] and the Probabilistic Path
Planner method [15].



4 The Simplified Planner

Given two configurations q. and ¢, the simplified plan-
ner searches a solution path linking g, to ¢, but, to avoid
the (high) complexity of this task, it only checks for a lim-
ited set of paths, namely the set of the bi-elementary paths.
Hence, our simplified planner has to find a configuration
q:; symmetric to both g, and g, such that the two elemen-
tary paths linking g to ¢; and ¢; to ¢, are feasible (i.e.
they exist and respect the turning radius constraint (2))
and collision-free. The search of this configuration ¢; along
the set of configurations symmetric to both g, and g (this
set is described in (7], proposition 6) can be executed using
technics as various as dichotomy or stochastic method.

5 The CCPP planner

We will quickly describe our implementation of the
Ariadne’s Clew algorithm before proving its resolution-
completeness (with respect to the set of paths considered).

5.1 Outline of the algorithm

From a general point of view, the Ariadne’s Clew algo-
rithm consists of exploring the configuration space from a
starting configuration, as long as a simplified planner can-
not link the explored region to the goal configuration and
the exploration can continue. This algorithm is presented
in article [10], and it is detailed in thesis [1].

The simplified planner corresponds to a function called
SEARCH. The exploration of the configuration space is an
approximation of the region of this space which can be
reached from the starting configuration ¢s with a solution
path. This approximation is obtained by incrementally
building a tree A of landmarks. The landmarks of this tree
are configurations of C (the root of A is set to g.), and
the edges are solution paths: the tree gives a solution path
linking ¢s to any of its landmarks. To increase this tree,
a function EXPLORE is used to find a new landmark A as
far as possible from the existing ones (those of the tree
A). Therefore, the function EXPLORE has to solve an op-
timization problem. A stochastic method, called a genetic
algorithm (a description of genetic algorithms and a review
of their use in optimization can be found in the book [5]),
is used to solve this optimization problem. In the CCPP
planner, the function EXPLORE limits the paths searched
to the set of feasible and non-colliding bi-elementary paths
starting from the landmarks of A.

The exploration is stopped when the goal configuration
can be reached or when the exploration is finished. For-
mally, this means that, if the new landmark A can be linked
to the goal configuration g4 using the simplified planner,
the algorithm succeeds. If it cannot, and if this landmark
is not far enough from the tree A, the algorithm suppose
that A represents the region of C reachable from g¢., and
that g4 is not in this region: CCPP fails.

The Ariadne’s Clew Algorithm:

Initialization : A = {q.}, A = g¢., fail = false;
While (SEARCH does not find a path from X to gq4)
and (fail is false), do
A = EXPLORE;
fail = (d(A, A) < 9)
A=AU{A):

End of While;

Conclusion : If fail
then no solution found by the algorithm,
else return the path from g. to g4, using A’s tree
structure and the result of SEARCH.

This planner is presented more precisely in article [12],
along with experimental results.

5.2 Resolution-Completeness of CCPP
Using Theorem 4, we now can prove the resolution-
completeness of CCPP.

Theorem 5 (Resolution-Completeness of CCPP)
The workspace W of A is assumed to be bounded, and
e > 0 is a real constant. Let 11 be a path linking a
configuration q. to a configuration qqg.

If 1 is a sequence of non-extreme elementary paths in-
cluded in C;Tee, there exists 6 > 0 such that CCPP finds,

with the resolution §, a path linking qs to qq.

Proof: Let (IL;);gq1,...,n} be the sequence of elementary
paths of II, and ¢;—1 and ¢; the start and final configura-
tions of the i*P elementary path IT; of II (g0 = ¢s and g~ =
qg)- Theorem 4 is applied to each of the bi-elementary
paths formed with TI; and Il;4, for 2 € {1,...,N — 1},
and 4 is set to the minimum of the (N — 1) > obtained. It
can be proven that:

Lemma 1 Under the hypotheses of Theorem 5, if CCPP
does not find with the resolution 6 a path linking q. to qqg,
there exists a landmark of A closer than 6 from each con-
figuration i, 1 € {0, ..., N}.

Sketch of the proof: This is proved by induction with a
step 2 (it is true for 0 and 1, and if it is true for ¢, it is true
for 1 4+ 2). The initializations and the step use a reductio
ad absurdum based on Theorem 4 and the failure of the
planner. O

The resolution-completeness is thus proven by reduction
to the absurd. If CCPP does not find a solution with the

resolution ¢, Lemma 1 allows us to say that:

Aby_2 €A/ r(by_2,qn_2) <8

As the bi-elementary path formed with IIx—1 and IIx
respects the conditions of Theorem 4, the simplified plan-
ner of CCPP should have found a path linking by_2 to gq4.
This is in contradiction with the failure of CCPP. |

6 Probabilistic Path Planning

The simplified planner can be used to define a probabilis-
tic path planner with either a single robot or with several
[15]. In this article, we will only briefly recall the single-
robot method and prove its completeness (with respect to
the set of paths considered).

Similarly to the Ariadne’s Clew algorithm, the Prob-
abilistic Path Planner (PPP) explores the configuration
space in search of a solution path. The difference is that
this exploration is based on the construction of a directed
graph (instead of a tree), and is independent of the start
and goal configurations, ¢. and g4 (instead of being only
independent of gg).



For these two reason, this exploration can be done as a
pre-treatment (it only depends on the environment), and
multiple planning (or queries) can be executed using its
resulting graph. The exploration is done by incrementally
adding a random configuration g of Cgee to the graph,
and by trying to connect this configuration to a number
of nodes of the graph, with the simplified planner. Each
query consists in connecting the start configuration ¢s and
the goal one g4 to nodes of (the same connected compo-
nent of) the graph, using the simplified planner, and then
performing a graph search between the resulting nodes.
The path deduced from the graph search is then smoothed
to reduce its length (this can still be performed using the
simplified planner).

This planner, using the simplified planner, is probabilis-
tically complete with respect to the set of paths considered.
This means that any problem which can be solved using
paths made of elementary paths will be solved provided
that the exploration is carried out for a sufficient amount
of time:

Theorem 6 (Probabilistic Completeness of PPP)
The workspace W of A is assumed to be bounded, let e > 0
be a real constant, and Il be a path linking a configuration
qs to a configuration q4.

If II is a sequence of non-extreme elementary paths in-
cluded in C;Tee, the planner PPP using our simplified plan-

ner will find a path linking qs to q4, as long as the explo-
ration has been carried out for a sufficient amount of time.

Proof: The proof of this property is similar to the demon-
stration of [16] (Theorem 4) or to the demonstration of the
completeness of CCPP (Theorem 5).

Taking the same notation that in this later proof, we
have a property similar to Lemma 1: after a sufficient
amount of time, the graph constructed by PPP will con-
tain a node in each ball (in the classic metric of C) of radius
6 and center g;. Using Theorem 4 and the bi-elementary
paths of II, we can prove that these nodes are in the same
connected component of the graph. We can also prove that
qs and g4 can be connected to the graph. Therefore, PPP
will find a path linking ¢. to gq4. |

7 Conclusion and Future Works

This paper presented bi-elementary paths, which are
smooth and feasible paths for a car-like robot with a contin-
uous curvature profile. It means that, in contrast to paths
made of line segments and circular arcs (as usually pro-
duced by path planners), these paths can be followed by a
real vehicle without stopping or diverging. A bi-elementary
path is a sequence of two elementary paths, which are
themselves composed of two symmetric arcs of clothoid (a
clothoid is a curve whose curvature is a linear function of
its arc length). These bi-elementary paths were used to de-
fine a simplified, i.e. non complete, planner which, in turn,
has been used in two global planning schemes, namely the
Ariadne’s Clew algorithm and the Probabilistic Path Plan-
ning. In this paper, an important property of these paths
has been shown, from which the completeness of the two
global path planners has been deduced.

Bi-elementary paths are a first step in continuous-
curvature path planning for car-like vehicles. Indeed, it

can be shown that these paths are not optimal in length.
This has led us to define new continuous-curvature paths
made up of straight segments, clothoid arcs and circular
arcs. First results concerning these new paths will hoppe-

fully be found in [13].
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