IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
November 4-8, 1996. Osaka, Japan. Volume 3, pp.1304-1311

Planning Continuous-Curvature Paths
for Car-Like Robots

A. Scheuer and Th. Fraichard
INRIA® Rhéne-Alpes GRAVIR?
ZIRST. 655 avenue de I’Europe. 38330 Montbonnot Saint Martin. France
[Alexis.Scheuer, Thierry.Fraichard]@inria.fr

November 18, 1996

Abstract

This paper presents a Continuous-Curvature Path Planner (CCPP) for a car-
like robot. Previous collision-free path planners for car-like robots compute
paths made up of straight segments connected with tangential circular arcs.
The curvature of this type of path is discontinuous so much so that if a car-
like robot were to actually follow such a path, it would have to stop at each
curvature discontinuity so as to reorient its front wheels. CCPP s one of the
first planner to compute collision-free paths with continuous curvature profiles.
These paths are made up of clothoid arcs, i.e. curves whose curvature is a linear
function of theiwr arc length. CCPP uses a general planning technique called the
Ariadne’s Clew algorithm [17]. It is based upon two complementary functions:
SEARCH and EXPLORE. EXPLORE builds an approximation of the region of
the configuration space reachable from a start configuration by incrementally
placing a set of reachable landmarks in the configuration space. SEARCH checks
the existence of a solution path between a landmark newly placed and the goal
configuration.

Keywords — mobile-robot, path-planning, non-holonomic-system.

A cknowledgements — this work was supported by the INRIA-INRETS®
Praxitele programme on urban public transports.

%Inst. Nat. de Recherche en Informatique et en Automatique.
bLab. d’informatique GRAphique, VIsion et Robotique de Grenoble.
¢Inst. Nat. de Recherche sur les Transports et leur Sécurité.

Planning Continuous-Curvature Paths
for Car-Like Robots

A. Scheuer and Th. Fraichard

INRIA* Rhéne-Alpes

GRAVIR!

ZIRST. 655 avenue de I’Europe. 38330 Montbonnot Saint Martin. France
[Alexis.Scheuer, Thierry.Fraichard]@inria.fr

Abstract

This paper presents a Continuous-Curvature Path Plan-
ner (CCPP) for a car-like robot. Previous collision-free
path planners for car-like robots compute paths made up of
straight segments connected with tangential circular arcs.
The curvature of this type of path is discontinuous so much
so that if a car-like robot were to actually follow such a path,
it would have to stop at each curvature discontinuity so as
to reorient its front wheels. CCPP is one of the first plan-
ner to compute collision-free paths with continuous curva-
ture profiles. These paths are made up of clothoid arcs,
t.e. curves whose curvature is a linear function of their arc
length. CCPP uses a general planning technique called the
Ariadne’s Clew algorithm [17]. It is based upon two com-
plementary functions: SEARCH and EXPLORE. EXPLORE
builds an approximation of the region of the configuration
space reachable from a start configuration by incrementally
placing a set of reachable landmarks in the configuration
space. SEARCH checks the existence of a solution path
between a landmark newly placed and the goal configura-
tion.

1 Introduction

Ever since Laumond’s pioneering paper in 1986 [14], a lot
of research works have addressed path planning' for car-
like robots® (the reader is referred to [13] for a review on
this topic). The main difference between a car-like robot
and, say, a manipulator arm, is that a car-like robot is
subject to non-holonomic constraints?, that restricts the
set of its admissible directions of motion. Thus a car-like
robot can only move forward or backward in a direction
perpendicular to the orientation of the rear wheels axle;

*Inst. Nat. de Recherche en Informatique et en Automatique.

tLab. d’informatique GRAphique, VIsion et Robotique de
Grenoble.

11.e. computing a geometric path between a start and a goal
configuration of a robot.

?I.e. a mobile robot with two directional front wheels and
two rear wheels.

3A kinematic constraint is a relation involving the configu-
ration parametres of the robot and their derivatives. When the
derivative terms cannot be integrated, the constraint is non-
holonomic (see [13, chapter 9] for more details).

besides its turning radius is lower bounded.

Focusing on the research works that actually plan
collision-free paths for car-like robots, i.e. paths that avoid
collision with the obstacles present in the environment of
the robot, it appears that all these works compute paths
made up of straight segments connected with tangential
circular arcs of minimum radius, e.g. [2, 9, 6, 16]. The
primary reason for this is that it has been shown that the
shortest path for a car-like robot between two configura-
tions is such a path [4, 19]. The secondary reason is that
these paths are easy to deal with from a computational
point of view.

However it is important to note that the curvature of
this type of path is discontinuous; the discontinuities oc-
curring at the transitions between segments and arcs. Ac-
cordingly, when it is time for the robot to actually fol-
low such a path, it will have to stop at each transition
so as to reorient its front wheels. This is not really a
problem when the path contains both forward and back-
ward motions, but when it comes to smooth paths, i.e.
paths without manceuvres, it does not make much sense
to stop every now and then so as to reorient the wheels.
Planning smooth paths being our main concern, we aim
at designing a path planner for car-like robots that de-
termines smooth, collision-free and continuous-curvature
paths. This continuous-curvature path planner (CCPP) is
described in this paper and, to the best of our knowledge,
it is the first of its kind.

The paths computed by CCPP are made up of elemen-
tary paths, where an elementary path is the concatena-
tion of two symmetric clothoid arcs (a clothoid is a curve
whose curvature is a linear function of its arc length). The
elementary paths of a planned path are connected so as
to form a smooth and continuous-curvature curve; besides
they are collision-free with respect to the obstacles present
in the environment of the robot.

In order to compute the sequence of elementary paths
connecting a start and a goal configuration of the robot,
CCPP uses a general planning technique called the Ari-
adne’s Clew algorithm [17]. It is based upon two com-
plementary functions: SEARCH and EXPLORE. EXPLORE
builds an approximation of the region of the configuration
space reachable from the start configuration by incremen-

tally placing a set of reachable landmarks in the configura-
tion space; it does so by solving an optimization problem
over the set of elementary paths starting from one of the
existing landmarks. The purpose of SEARCH is to check
the existence of a simple solution path between a land-
mark newly placed and the goal configuration; it ensures
the termination of the algorithm.

Outline of the paper. After a short review of the
works related to the problem at hand (§2), the problem
to be solved is formally stated (§3). Then the solution
algorithm we have developed is presented (§4) along with
experimental results (§5).

2 Related Works

As mentioned earlier, all the research works on collision-
free path planning for car-like robots compute paths made
up of straight segments connected with tangential circu-
lar arcs of minimum radius, e.g. [2, 9, 6, 16]; this type
of path does not meet the continuous-curvature property.
Ref. [5] does address continuous-curvature path planning in
the presence of obstacles but it does so for a robot slightly
different from a car-like robot since its turning radius is
not lower bounded: in this case, the authors show that the
transition between two segments can be done with clothoid
arcs whose distance to the reference segments is never
greater than a given tolerance €. This property permits
then to design an algorithm that takes as input a collision-
free polygonal line and transforms it into a collision-free
continuous-curvature path. Unfortunately this property is
no longer true for a robot whose turning radius is lower

bounded.

On the other hand, several works compute continuous-
curvature paths but they do so without taking into account
the obstacles present in the environment. These works do
not address path planning in the classical sense of the word;
they are more concerned with issues related to the com-
mand of mobile robots. It is nonetheless interesting to
review them so as to gain an insight into the type of curve
that could be used. A few authors use curves as different as
B-splines [12], quintic polynomials [22] or polar splines [18].
However it appears that the most popular curves are by far
curves whose curvature is a polynomial function of their arc
length such as clothoids [8, 11, 21], cubic spirals [10], or,
more generally, intrinsic splines [3]. Although there are no
closed-form expressions for these curves, they are interest-
ing because they have a simple curvature profile that makes
them easy to track. It is this property that led us to select
the clothoids, i.e. the simplest among this type of curve,
for our path planning purposes.

3 Statement of the Problem

In this section, we start by presenting the model of the
robot, its non-holonomic kinematic constraints and its
workspace. Then we define what a feasible path for a car-
like robot is. Finally we state the path planning problem
to be solved formally.

3.1 The Robot and Its Workspace

Let A be a car-like robot. It moves on a planar workspace
W = IR? that is cluttered up with a set of stationary ob-
stacles B;,1 € {1,...,b}, modelled as polygonal regions of
W. A is modelled as a rigid body moving on the plane.
It is supported by four wheels making point contacts with
the ground. A has two rear wheels and two directional
front wheels. A configuration of A is defined by a triple
(z,y,8) € R*x[0, 27[where (z,y) are the coordinates of
the rear axle midpoint R and 6 the orientation of A, i.e. the
angle between the z axis and the main axis of A (Fig. 1).

Figure 1: a car-like robot.

A body moving on the plane has only one centre of ro-
tation. Under perfect rolling assumption, a wheel must
move in a direction which is normal to its axle. Therefore,
when A is moving, the axles of its wheels intersect at G,
the centre of rotation of .A. The orientation of the rear
wheels being fixed, G must be located on the rear wheels
axle (possibly at an infinite distance) and R must move in
a direction which is normal to this axle. In other words,
the following constraint holds:

—zsinf 4+ ycosf =0 (1)

Besides, owing to the fact that the front wheels orienta-
tion is mechanically limited, the distance p between R and
G, i.e. the curvature radius at point R, is lower bounded
by a certain value pmin and the following constraint holds:

&2 49 = pminb” >0 (2)

Ref. [2] shows that (1) and (2) are non-holonomic; the
derivative terms cannot be eliminated. Accordingly they
restrict the shape of the feasible paths for .A by reducing
its set of admissible velocity vectors (z, 9, 9) (see [13, chap-
ter 9] for more details).

3.2 Feasible Paths

Let € be the configuration space of A, i.e. the xyf-space.
A path for A is a continuous sequence of configurations,
i.e. a curve in C. However it stems from (1) that § is
always tangent to the zy-curve traced by R on W = IR%.

Therefore there is a one-to-one relationship between a path
in € and its projection on W [15]. It is therefore possible to
represent a path for .A by a continuous zy-curve. Let II be
such a zy-path. It is feasible, i.e. it respects (1) and (2), if
and only if a) its tangent direction is piecewise continuous
with opposite semi-tangents at the cusp points?, and b) the
curvature at each point of IT is less than 1/pmin, where
Pmin 1s the minimum turning radius of A. In addition TI
is smooth, i.e. without backing-up manceuvres, if and only
if its tangent direction is continuous [15].

Thus paths made up of straight segments connected with
tangential circular arcs of minimum radius are feasible.
They can also be smooth if their tangent direction is con-
tinuous. As mentioned earlier however, the curvature of
this type of path is discontinuous; the discontinuities oc-
curring at the transitions between segments and arcs. Ac-
cordingly, when A follows such a path, it has to stop at each
curvature discontinuity in order to reorient its front wheels
(an instantaneous reorientation of the wheels is physically
impossible). The continuity of the curvature is therefore
a desirable property for paths. This leads us to define a
continuous-curvature path as a path whose curvature pro-
file is continuous® .

Let us define the representation of a finite-length path TI
for A. Tt is a pair (I,x) where [is a positive arc length and
k: [0,1]] — IR a curvature profile. The tangent direction
along the path is given by:

o(s) = /Osm(t.)dt

and a point on II is given by:

z(s) = /S cosf(t)dt and y(s) = /Ssin o(t)dt

with s € [0,1]. Accordingly, a configuration of A along II
is given by q(s) = (z(s), y(s),8(s)).

3.3 The Path Planning Problem

In summary, the problem to be solved can be stated for-
mally as follows: let (z.,ys,0.) be A’s start configuration
and (z4,yq,04) be its goal. A path IT = (I, k) is a solution
to the problem at hand if and only if:

o End conditions:

{ Q(O) = (1757y5795)

k(0) =0 k(l)=0

and { q(l) = (zg,Y4,04)

Note that we impose the curvature to be null at the
ends of the path.

4The passage from forward to backward motion occurs at
these cusp points.

5Note that when the path contains cusp points, i.e. passage
from forward to backward motion, it would be possible to re-
orient the front wheels at these cusp points where the speed
becomes null. Thus a continuous-curvature path could alterna-
tively be defined as a path whose curvature profile is piecewise
continuous; the discontinuities occurring at the points where the
tangent direction changes its sign.

o II is continuous-curvature, smooth and feasible. In
other words, k is continuous and such that:

Vs € [0,1], |k(s)] <

Pmin
where pmin is the minimum turning radius of .A.

o II is collision-free:
vie{l,...,b},Vs €[0,1], A(q(s))nB;i =0

where A(q(s)) denotes the region of W occupied by
A when in the configuration g(s).

4 The Path Planning Algorithm

In this section, we start by giving an overview of the
continuous-curvature path planner (CCPP) we have de-
veloped in order to solve the problem at hand. Then we
detail three key points of CCPP, namely the so-called ele-
mentary paths that are used to build the solution path and
the two complementary functions, SEARCH and EXPLORE,
that lies at the heart of the algorithm.

4.1 Outline of the Algorithm

We have decided to adapt an existing planning algorithm
in order to solve the problem at hand: the so-called Ari-
adne’s Clew algorithm [17]. To begin with, let us briefly
recall the main features of this algorithm. The Ariadne’s
Clew algorithm is based upon two complementary func-
tions: SEARCH and EXPLORE. SEARCH is a local path
planner; it looks for a solution path between two given
configurations. In order to be efficient, SEARCH narrows
its search to a particular subset of the whole set of solu-
tion paths. This efficiency is thus obtained at the expense
of completeness. Therefore, in order to have a complete
planner (a resolution-complete planner actually), SEARCH
is completed by EXPLORE whose purpose it to build an
approximation of the region of the configuration space
reachable from the start configuration ¢;. EXPLORE builds
an approximation of the region of the configuration space
reachable from ¢. by incrementally placing a set of land-
marks in C in such a way that a solution path from ¢. to
any landmark is known. EXPLORE places the landmarks
as far as possible from one another. In other words, when
EXPLORE looks for a new landmark, it aims at maximiz-
ing the minimum distance between the new landmark and
the existing ones. This property guarantees the resolution-
completeness of the algorithm since, in a finite number of
iterations, EXPLORE eventually places a landmark at a dis-
tance less than e from any configuration of the region of
C reachable from gs;. In summary, EXPLORE solves an op-
timization problem over the set of solution paths starting
from one of the existing landmarks. Once again, for the
sake of efficiency, EXPLORE narrows its optimization to a
particular subset of the whole set of solution paths. The
reader is referred to [1] for a complete presentation of the
Ariadne’s Clew algorithm and its properties. Two impor-
tant features of this algorithm are worth recalling however:

o The configuration space C and its obstacles are never
explicitly computed. This accounts for the efficiency
of the algorithm.

o Because of the optimization performed in EXPLORE,
the algorithm automatically adapts itself to the diffi-
culty of a given planning problem.

Given SEARCH and EXPLORE, the Ariadne’s Clew algo-
rithm works in the following way: it incrementally builds
a tree rooted at the start configuration gs. A node of this
tree, i.e. a landmark, is a collision-free configuration while
an arc represents a collision-free feasible paths between two
landmarks. At each iteration, EXPLORE computes a new
landmark. SEARCH is used afterwards to check whether it
is possible to reach the goal configuration g4 from this new
landmark. More precisely, let A be the tree of landmarks
and € be the desired planning resolution. Let A, denote
the latest landmark computed by EXPLORE, the algorithm
can then be sketched as follows:

The Ariadne’s Clew algorithm

1. Init: A ={q:}, A\n = qs.

2. If SEARCH finds a solution path between A, and g4
then goto 7.

3. A\p = EXPLORE.

4. If the distance from A, to the other landmarks is less
than ¢ then exit, there is no solution.

5 A= AU{\}.
6. Goto 2.

7. End: return the path from ¢. to g4 using A’s tree
structure and the result of SEARCH.

SEARCH and EXPLORE functions both operate on a sub-
set of the whole set of solution paths. EXPLORE solves its
optimization problem over the set of so-called elementary
paths: an elementary path is the concatenation of two sym-
metric clothoid arcs, i.e. curves whose curvature is a linear
function of their arc length. As for SEARCH, it looks for
a solution path made up of two elementary paths. The
elementary paths are presented in the next section. Then
EXPLORE and SEARCH are detailed.

4.2 Elementary Paths

A clothoid is a curve whose curvature profile k is a linear
function of its arc length s, i.e. k(s) = os, where o is a
real constant called the sharpness of the clothoid. Now let
us consider the path IT = (I, k) such that:

{ Kk(s) =os, Vs € [0,1/2]
k(s)=oa(l —s), Vsell/2,]]

II is an elementary path. When o is strictly positive,
its curvature increases linearly from zero to its maximum
k(1/2) = ol/2, then it decreases linearly back to zero. Note
that II’s curvature is symmetric. Accordingly the resulting
path is symmetric and [10] shows that §(0) and §(1), i.e. the
orientations of A at the start and end of TI, are symmetric

with respect to the line that joins ¢(0) and g(1). This leads
us to define the notion of symmetric configurations. Two
configurations qu = (Za,Ya,0s) and g = (zv, ys, Os) are
symmetric if and only if:

(z6 — zq)sin (@) = (Yo — Ya) COS (@) (3)

An elementary path is depicted in Fig. 2. ¢(0) and ¢(1)
are symmetric. When an elementary path respects the
minimum turning radius constraint (2), i.e. is such that
|k(1/2)] < 1/pmin, then it is obviously smooth, continuous-
curvature and feasible. If an elementary path starting at
a given configuration g = ¢(0) is furthermore collision-free
then it is an elementary solution pathbetween ¢(0) and g(1).
Henceforth an elementary path is denoted by = and defined
by the triple (g,,0). Collision checking for an elementary
path = is done by computing the volume swept by .4 when
it moves along = and testing whether it intersects one of

the obstacle B;,1 € {1,...,b}.

AO/2

Figure 2: an elementary path, A8 = |6(1) — §(0)].

The following theorem establishes the conditions of ex-
istence of an elementary path between two symmetric con-
figurations. Due to lack of space, the proof is omitted here
and the reader is referred to [20] for more details.

Theorem 1 Let go = (%a,Ya,0a) and qo = (Zb, Yo, 0)
be two symmetric configurations. Let us rewrite the vec-
tor (zy — Ta,Yb — Ya) in polar coordinates as (rcos(fq +
a),rsin(f, + a)), with r € [0,+o0[and a €] — m, 7). An
elementary path = that respects the minimum turning ra-
dius constraint (2) exists between qo and qy if and only if
r and o respects the following constraints:

la] € [0,0r00e]f and r > 4pminy/|a|D1(|a|)
or

|| = Oroot and r=20

where Dy is the function defined over [0, 7] as:

V6 VB
D1(B) =cosﬁ/ cos uzdu—}—sinﬂ/ sin u’du
0 0

and where Oroot s the unique root of D1 over]0,w] (cf.
Fig. 3).

Figure 3: the diagram of the function Dy over [0, 7] .

Theorem 1 shows that the existence of an elemen-
tary path that respects the minimum turning radius con-
straint (2) between two symmetric configurations depends
on r and «, i.e. their respective position. This is illustrated
in Fig. 4 that depicts the set of symmetric configurations
that are reacheable from the null configuration (0,0, 0).
The unreachable symmetric configurations lies in the grey
areas.

eroot

Figure 4: symmetric configurations unreachable from
the null configuration (0,0, 0).

4.3 EXPLORE

The purpose of EXPLORE is to build an approximation of
the region of the configuration space C reachable from the
start configuration ¢s. It does so by incrementally plac-
ing a set of landmarks in € in such a way that a solution
path from g¢. to any landmark is known (the landmarks
are organized as a tree rooted at ¢.). EXPLORE places the
landmarks as far as possible from one another; it max-
imize the minimum distance between the new landmark

and the existing ones. A new landmark is the end configu-
ration of a solution path starting from one of the existing
landmarks. In other words, EXPLORE has to solve an op-
timization problem over the set of solution paths starting
from one of the existing landmarks. For the sake of effi-
ciency, EXPLORE narrows its optimization to a particular
subset of the whole set of solution paths; namely the set of
elementary solution paths presented earlier.

Formally EXPLORE must solve the following optimiza-
tion problem: let A = {A;...A,} be the current set of
landmarks placed in C. Let ESP(X) be the set of elemen-
tary solution paths starting from A, and let ESPY(A) be
defined as:

ESPY(A) =] ESP())

It is the set of paths considered by EXPLORE. Let e(Z)
denote the end configuration of = then EXPLORE must de-
termine the path =, € ESPY(A) such that:

min d(A, A) = max min d(e(Z), A 4
AeA () ZeESPY(A) <)\eA (e(5))> *)

where A, = e(Ey).

In order to solve the optimization problem (4), a ran-
domized optimization method, namely a genetic algorithm,
is used. The reader is referred to [7] for a detailed presen-
tation of genetic algorithms and their use as optimization
tools.

4.4 SEARCH

The purpose of SEARCH is to find a solution path between
two given configurations. In the framework of the Ari-
adne’s Clew algorithm, SEARCH does not have to be com-
plete; a local path planner suffices even if it fails to find
a solution in some cases. Actually efficiency is a more de-
sirable property [1]. In a first phase and with this idea
in mind, we have designed a very simple SEARCH func-
tion: it checks for the validity of only one path between
the two configurations. This particular path is called a bi-
elementary path; it is the concatenation of two elementary
paths. As shown earlier, elementary paths exist between
symmetric configurations only. By combining two of these
elementary paths, it becomes possible to link any pair of
configurations. Given two configurations g, and g, [10]
shows that there is at least one intermediate configuration
¢i such that ¢; is symmetric with both ¢, and g». Once ¢;
is known, it is easy to check for the existence of an elemen-
tary solution path from ¢, to ¢; and from ¢; to gs. If both
paths exists then SEARCH has succeeded otherwise it has
failed. As simple as it may seem, SEARCH combined with
EXPLORE gives nonetheless good results (cf. §5).

Fig. 5 depicts a bi-elementary path between two config-
urations ¢, and g that are in general disposition, i.e. they
are not symmetric and their orientations are not parallel.
In this case, there is an infinite number of candidate inter-
mediate configurations, they are located on a circle pass-
ing through g, and ¢ [10]. By using an iterative Newton

Figure 5: a bi-elementary path between g, and gs.

search algorithm, it is possible to compute the intermedi-
ate configurations ¢; that minimizes the total length of the
resulting bi-elementary path.

5 Experimental Results

vy /
/

Figure 6: experiments with 4 obstacles.

A prototype of CCPP has been implemented in C and
tested on a SUN Sparc 10 workstation. It has been tested
on different workspaces generated manually or randomly.
A few examples are depicted in Figs. 6, 7 and 8. Because of
the stochastic nature of the optimization technique used by
EXPLORE, namely a genetic algorithm, the results obtained
are hard to evaluate. The running times and the number
of landmarks generated are very different from one exper-
iment to the next. Even when CCPP is run twice on the
same experiment, i.e. same workspace and same start and
goal configurations, the results obtained can differ signifi-
cantly: see for instance the top part of Fig. 7. It took 250s.
and 52 landmarks to determine the top left path and only
166s. and 29 landmarks for the top right example.

A summary of our experiments is shown in Tab. 1. For

)
}

> . A

D 4

-

A

a >
)

e YVa,

Figure 7: experiments with 5 obstacles.

\

}

Figure 8: experiments with 50 obstacles.

-

each workspace (4, 5 and 50 obstacles), 15 experiments
were made. The running time of the algorithm can be
very high. Most of the time is spent in the optimization
and the collision checking performed by EXPLORE. Ac-
cordingly the running time of the algorithm is directly re-
lated to the number of landmarks that EXPLORE has to
determine which, in turn, is related to the ‘complexity’ of
the workspace. Optimizing the current implementation of
EXPLORE would definitely increase the overall efficiency of
CCPP. However a more promising way to improve CCPP
would be in increasing SEARCH’s capabilities to find a path
between two configurations (at present, SEARCH checks for
the validity of only one path.). With a better SEARCH func-
tion, the number of necessary iterations could be reduced

Running time (in s.) Number of landmarks

Workspace min. | max. | average || min. | max. | average
4 obstacles 15 400 125 5 85 25
5 obstacles 15 300 150 5 60 33
50 obstacles 40 500 150 7 52 17
Over all tests 15 500 140 5 85 25

Table 1: summary of the experimental results.

dramatically. It is nonetheless interesting to notice that, as
simple as SEARCH may be, CCPP is able to find a solution
when it exists.

6 Conclusion and Discussion

In this paper, we have presented CCPP, one of the first
path planner for car-like robots that computes collision-
free paths with a continuous curvature profile. These paths
are made up of elementary paths, where an elementary
path is the concatenation of two symmetric clothoid arcs
(a clothoid is a curve whose curvature is a linear func-
tion of its arc length). CCPP uses a general planning
technique called the Ariadne’s Clew algorithm [17]. It is
based upon two complementary functions: SEARCH and
EXPLORE. EXPLORE builds an approximation of the region
of the configuration space reachable from a start configura-
tion by incrementally placing a set of reachable landmarks
in the configuration space. It does so by solving an opti-
mization problem over the set of elementary paths starting
from one of the existing landmarks. SEARCH checks the ex-
istence of a solution path between a landmark newly placed
and the goal configuration; it ensures the termination of the
algorithm.

CCPP has been implemented and tested successfully.
The way it is implemented now, CCPP returns the first
solution path found between two given configurations. In
general, due to the nature of the Ariadne’s Clew algorithm,
this is not the shortest path. This point could be dealt with
by a) turning the landmark tree structure into a graph tree
structure and b) adding a post-processing step that would
extract the shortest path from this graph. Furthermore
the efficiency of CCPP could be improved by increasing
SEARCH’s capabilities to find a path between two configu-
rations (at present, SEARCH checks for the validity of only
one path.). These two points are currently under develop-
ment.

Acknowledgements
This work was supported by the INRIA-INRETS® Prax-

itele programme on urban public transports.

6Inst. Nat. de Recherche sur les Transports et leur Sécurité.

References

(1]

[10]

J. M. Ahuactzin Larios. Le Fi d’Ariane : Une
M¢éthode de Planification Génerale. Application a la
Planification Automatique de Trajectoires. These de
doctorat, Inst. Nat. Polytechnique, Grenoble (F),
September 1994.

J. Barraquand and J.-C. Latombe. On non-holonomic
mobile robots and optimal maneuvering. Revue

d’Intelligence Artificielle, 3(2):77-103, 1989.

H. Delingette, M. Hébert, and K. Ikeuchi. Trajectory
generation with curvature constraint based on energy
minimization. In Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, volume 1, pages
206-211, Osaka (JP), November 1991.

L. E. Dubins.

constraint on average curvature, and with prescribed

On curves of minimal length with a

initial and terminal positions and tangents. American
Journal of Mathematics, 79:497-516, 1957.

S. Fleury, Ph. J.-P. Laumond,
R. Chatila. Primitives for smoothing paths of mobile
robots. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, volume 1, pages 832-839, Atlanta
(GA), September 1993.

Soueéres, and

Th. Fraichard. Smooth trajectory planning for a car in
a structured world. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pages 318 323, Sacramento
(CA), April 1991.

D. E. Goldberg.
timization and machine learning.
1989.

Genetic algorithms in search, op-

Addison-Wesley,

J. lijima, Y. Kanayama, and S. Yuta. A locomo-
tion control system for mobile robots. In Proc. of the
Int. Joint Conf. on Artificial Intelligence, Vancouver

(CAN), 1981.

P. E. Jacobs and J. Canny. Planning smooth paths
for mobile robots. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pages 2-7, Scottsdale (AZ),
May 1989.

Y. Kanayama and B. I. Hartman. Smooth local path
planning for autonomous vehicles. In Proc. of the
IEFEE Int. Conf. on Robotics and Automation, vol-
ume 3, pages 1265-1270, Scottsdale (AZ), May 1989.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Y. Kanayama and N. Miyake. Trajectory genera-
tion for mobile robots. In Proc. of the Int. Symp.
on Robotics Research, pages 16-23, Gouvieux (FR),
1985.

K. Komoriya and K. Tanie. Trajectory design and
control of a wheel-type mobile robot using B-spline
curve. In Proc. of the IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems, pages 398405, Tsukuba
(JP), September 1989.

J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Press, 1990.

J.-P. Laumond. Feasible trajectories for mobile robots
with kinematic and environment constraints. In Proc.
of the Int. Conf. on Intelligent Autonomous Systems,
pages 346-354, Amsterdam (NL), December 1986.

J.-P. Laumond. Finding collision-free smooth trajec-
tories for a non-holonomic mobile robot. In Proc. of
the Int. Joint Conf. on Artificial Intelligence, pages
1120-1123, Milan (I), August 1987.

J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M.
Murray. A motion planner for non-holonomic mo-
bile robots. IFEE Trans. Robotics and Automation,
10(5):577 593, October 1994.

E. Mazer, J.M. Ahuactzin, P. Bessi¢re, and E.G.
Talbi. Robot motion planning with the ariadne’s clew
algorithm. In Proc. of the Int. Conf. on Intelligent Au-
tonomous Systems, Pittsburgh (PA), February 1993.

W. L. Nelson. Continuous curvature paths for au-
tonomous vehicles. In Proc. of the IEFE Int. Conf.
on Robotics and Automation, volume 3, pages 1260-
1264, Scottsdale (AZ), May 1989.

J. A. Reeds and L. A. Shepp. Optimal paths for a
car that goes both forwards and backwards. Pacific
Journal of Mathematics, 145(2):367-393, 1990.

A. Scheuer and Th. Fraichard. Global continuous-
curvature path planners for car-like robots. Research
report, Inst. Nat. de Recherche en Informatique et en
Automatique, Grenoble (F), 1996. To appear.

D. Shin and S. Singh. Path generation for robot ve-
hicles using composite clothoid segments. Technical
Report CMU-RI-TR-90-31, Carnegiec Mellon Univ.,
Pittsburgh (PA), 1990.

A. Takahashi, T. Hongo, and Y. Ninomiya. Local
path planning and control for AGV in positionning.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 392 395, Tsukuba (JP),
September 1989.

