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Abstract

In this paper, we consider path planning for a car-like ve-
hicle. Previous solutions to this problem computed paths
made up of circular arcs connected by tangential line seg-
ments. Such paths have a non continuous curvature profile.
Accordingly a vehicle following such a path has to stop at
each curvature discontinuity in order to reorient its front
wheels. To remove this limitation, we add a continuous-
curvature constraint to the problem at hand. In addition,
we introduce a constraint on the curvature derivative, so as
to reflect the fact that a car-like vehicle can only reorient
its front wheels with a finite velocity.

We propose an efficient solution to the problem at hand
that relies upon the definition of a set of paths with contin-
wous curvature and mazimum curvature derivative. These
paths contain at most eight pieces, each piece being either
a line segment, a circular arc of mazimum curvature, or a
clothoid arc. They are called SCC-paths (for Simple Con-
tinuous Curvature paths). They are used to design a local
path planner, i.e. a non-complete collision-free path plan-
ner, which in turn is embedded in a global path planning
scheme. The result is the first path planner for a car-like
vehicle that generates collision-free paths with continuous
curvature and mazimum curvature derivative. Erperimen-
tal results are presented.

1 Introduction

In this paper, we focus on the path planning problem for
a car-like vehicle that goes only forward. Such a vehicle
is subject to two non-holonomic constraints: it can only
move along a direction perpendicular to its rear wheels
axle (continuous tangent direction), and its turning ra-
dius is lower bounded (maximum curvature) [1]. Numerous
works, e.g. [1, 14, 12, 20], have been done to plan paths for
such vehicles, but almost all of them generate sequence of
Dubins’ curves [5], i.e. paths made of circular arcs con-
nected by tangential line segments. The main reason for
this is that these paths are the shortest ones for such a
vehicle [5]. The main drawback of these paths is that their
curvature is not continuous. Accordingly a vehicle follow-
ing such a path has to stop at each curvature discontinuity
in order to reorient its front wheels.
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Since we are interested in planning forward paths only,
i.e. paths without manoeuvres, we do not want the vehicle
to stop, except possibly at the initial and final configu-
rations. For this reason, we add a continuous-curvature
constraint to the classical non-holonomic path planning
problem for car-like vehicles. In addition, we introduce a
constraint on the curvature derivative; it is upper bounded
so as to reflect the fact that the vehicle can only reorient
its front wheels with a finite velocity.

Addressing a similar problem (but without the maxi-
mum curvature constraint), Boissonnat et al. [2] proved,
using the Pontryagin’s Maximum Principle, that the short-
est path between two vehicle’s configurations is made up
of line segments and clothoid® arcs of maximum curvature
derivative. Later, Kostov and Degtiariova-Kostova proved
that these shortest paths are, in the general case, made of
an infinity of pieces [10, 11].

Similar results can be extended to the particular problem
we consider, adding circular arcs of maximum curvature to
the set of locally optimal paths. Therefore, in order to
come up with a practical solution to the problem at hand,
we define a set of paths, derived from Dubins’ curves, that
have continuous curvature and maximum curvature deriva-
tive. These paths contain at most eight pieces, each piece
being either a line segment, a circular arc of maximum cur-
vature, or a clothoid arc. They are called SCC-paths (for
Simple Continuous Curvature paths). They are used to
design a local path planner, i.e. a non-complete collision-
free path planner, which in turn is embedded in a global
path planning scheme, namely the Probabilistic Path Plan-
ner [21]. The result is the first path planner for a car-like
vehicle that generates collision-free paths with continuous
curvature and maximum curvature derivative.

After a short review of the works related to this topic
(§2), the problem at hand will be stated (§3). Then the
SCC-paths will be described, along with the local path
planner (§4). Finally the global planner will be presented,
along with experimental results (§5).

2 Related Works

As mentioned earlier, almost all the path planners for car-
like vehicles return a sequence of Dubins’ curves, i.e. paths
made up of circular arcs connected by tangential line seg-

1A clothoid is a curve whose curvature is a linear function of
its arc length.



ments [1, 14, 12, 20]. Fleury et al. [6] does propose a path
planner generating continuous-curvature paths, but unfor-
tunately, it does not take into account the maximum cur-
vature constraint and therefore do not apply to car-like
vehicles.

On the other hand, several works deal with continuous-
curvature path generation, i.e. computation of a path with-
out considering the obstacle avoidance. They return curves
as different as B-splines [9], quintic polynomials [19] or po-
lar splines [15]. However it appears that the most popular
curves are by far curves whose curvature is a polynomial
function of their arc length, such as clothoids [8], cubic
spirals [7] or, more generally, intrinsic splines [4].

Drawing upon Kanayama and Hartman’s work [7], we
previously proposed a path planner returning paths made
up of pairs of clothoid arcs [17, 18]. To the best of our
knowledge, it was the first continuous curvature path plan-
ner for a car-like vehicle. However it did not take into ac-
count the maximum curvature derivative constraint. Be-
sides, because the path generated contained only clothoid
arcs, they were sometimes much longer than needed. In-
troducing line segments and circular arcs, that are locally
optimal, is a step toward sub-optimal paths.

3 Statement of the Problem

First the model of the car-like vehicle and its workspace are
presented. Then the feasible paths for such a vehicle are
described. Finally the path planning problem considered
is stated and our approach to solve it is sketched.

3.1 A Car-like Vehicle

The model of our robot A represents a car-like vehicle in
a planar environment (Fig. 1). It is a rigid body moving
on a plane, supported by four wheels making point contact
with the ground. The two front wheels are directional, and
the rear wheels axle is fixed with respect to A’s body. Let
R denote the reference point of A4; it is the midpoint of
the rear wheels axle. A configuration of A is defined by
the 4-tuple (x,9,0, k), where z and y are the coordinates
of R, 0 is the orientation of A (i.e. the angle between the
z axis and the main axle of A) and k the inverse of the
turning radius of A (it is defined by the orientation of its
front wheels). As we will see further down, x allows a
very simple definition of what continuous curvature paths
are. It was therefore selected as a configuration parameter
rather than the front wheels’ orientation.

Figure 1: a car-like vehicle.

A moves on a planar workspace W C IR?, which is clut-
tered with a set of stationary obstacles B;, j € {1,...,b}.
These obstacles are represented by polygonal regions of W.

The motion of A is limited by two classical constraints.
First, as the rear wheels axle is fixed and as the wheels
should roll without sliding, the center of rotation G of the
body of A must be located on the rear wheels axle (possi-
bly at an infinite distance). Thus the following constraint
holds:

—&sinf +gycosf =0 (1)

Second, since the orientation of the front wheels is me-
chanically limited, the distance p between R and G, i.e.
the turning radius of A, is lower bounded by a given value
Pmin. Accordingly the curvature k, is upper bounded by
Kmaz = 1/pmzn

%] < Kmas (2)

In addition the curvature derivative is upper bounded
so as to reflect the fact that .4 can only reorient its front
wheels with a finite velocity:

|K/| < Omasz (3)

3.2 Feasible Paths

Let C be A’s configuration space: C C W x S! x
[—Kmaz;s Kmaz]- A path is a continuous oriented curve of C.
Using constraint (1), such a path can be represented by its
projection in W. In the following, a path of A will be rep-
resented also by the continuous oriented curve followed by
R in W. A configuration contains the instantaneous cur-
vature of the path followed by .A. Therefore, as a path is a
continuous sequence of configurations, it has a continuous-
curvature profile.

A path is feasible if and only if a) it is an oriented curve
of W which is continuous, whose derivative is continu-
ous almost everywhere with opposite semi-tangents at the
cusp points, and whose second derivative is continuous be-
tween two successive cusp points, and b) its curvature and
the derivative of its curvature w.r.t. the arc length remain
bounded respectively by Kmaz and omez- We suppose that
the curvature can change at the cusp points. The bound
Omaz Of the derivative of the curvature w.r.t. the arc length
is related to the maximum turning velocity of the steering
wheel of the vehicle, when this vehicle moves at constant
speed.

In addition, such a path is said to be smooth (or without
manoeuvre, that is without any change of the motion di-
rection) if and only if it has no cusp points, i.e. if it is C2.
A smooth path II of finite length can be represented by its
starting configuration ¢(0), its length ! and its curvature
profile & : [0,1] — [—Kmaz, Kmaz] (With |k] < Omaz)-

3.3 The Path Planning Problem

A path II is a mapping from IR to C: II : s — II(s),Vs €
[0,1], where [ is the length of II. Given a start configuration
as = (Ts,Ys,0s,K5) and a goal one qg = (24, Yy, 0y, kg),
such a path is a solution to our problem if and only if it
links g, to g4 and is feasible, smooth and collision-free, i.e.:

1. End conditions: II(0) = gs; and II(l) = qg;



2. II is feasible and smooth, and therefore its curva-
ture profile is a continuous function x : [0,l] —
[—Kmaz, Kmaz], Such that || < omas;

3. II is collision-free:
Vie {1,...,b},Vs € [0,1], A(TI(s)) N B; =@

where A(II(s)) denotes the region of W occupied by
A when in the configuration II(s).

3.4 The Solution

Because of the expected complexity of finding the opti-
mal solution to the problem at hand (cf. §1), we have de-
cided to restrict our search for a solution path to a finite
and discrete set of paths. They are derived from Dubins’
curves [5] and have continuous curvature and maximum
curvature derivative. These paths contain at most eight
pieces, each piece being either a line segment, a circular arc
of maximum curvature, or a clothoid arc. They are called
SCC-paths (for Simple Continuous Curvature paths). They
are used to design a local path planner, i.e. a non-complete
collision-free path planner (see §4). The local path plan-
ner is then embedded in a global path planning scheme,
namely the Probabilistic Path Planner [21], so as to obtain
the first path planner for a car-like vehicle that generates
collision-free paths with continuous curvature and maxi-
mum curvature derivative (see §5).

4 The Local Path Planner
4.1 Outline

Given two configurations g, and g, the local planner:

1. computes the set of simple continuous-curvature
(SCC-) paths linking gq to gs;

2. determines, in this set, the subset of collision-free
SCC-paths;

3. selects, in the resulting subset, the shortest path and
returns it as the simple continuous-curvature path
linking g, to gp.

If the subset of collision-free SCC-paths is empty, the local
planner fails to link g, to gp.

In the general case, Dubins’ curves are made of three
pieces, connected so as to keep a continuous tangent di-
rection. The two extreme pieces are circular arcs and the
middle one is either a line segment or a circular arc. In the
continuous-curvature case, we want to avoid the disconti-
nuity of the curvature occurring in Dubins’ curves at each
connection between two pieces.

In SCC-paths, the circular arcs of Dubins’ curves are re-
placed by turns whose curvature continuously varies from
zero to a given value, then back to zero. These turns start
with a null curvature because they may follow a line seg-
ment, and they end also with a null curvature because they
may be followed by a line segment. The continuous cur-
vature turns are described in §4.2. Let s denote a line
segment and let [ or r denote a continuous-curvature turn
depending on its direction (left or right). Similarly to Du-
bins’ curves, they are at most most six simple continuous-
curvature (SCC-) paths between two configurations, de-
fined respectively as lsl, lsr, rsl, rsr, lrl and rir.

Continuous curvature turns are presented in §4.2. Then
SCC-paths are defined in §4.3. Finally §4.4 gives more
details on collision checking.

4.2 Continuous Curvature Turns

As mentioned earlier, continuous curvature turns are made
of three pieces:

1. a first clothoid arc of sharpness (i.e. constant deriva-
tive of the curvature w.r.t. the arc length) o = o max
and of length | = Kmaz/Omaz,

2. an optional circular arc of radius 1/Kmaee, and
3. a second clothoid arc of sharpness - and of length [.

Along such a turn, the absolute value of the deflection
of A (its change of orientation) is greater than 6;;m =
Kmam/omam'

Figure 2 shows the curvature profile of a Isr SCC-path,
i.e. a SCC-path made of a left turn, a line segment and
a right turn. This curvature profile is a piecewise linear
function of the arc length, each linear part corresponding
to a different arc: the segment is the null part (#4), the
circular arcs are the non-null constant parts (#2 and #6)
and the clothoid arcs are the other linear parts (#1, #3,
#5 and #7).

K(S)

Kmaz [--

2

Kmaz

Omaz

‘Hmaz

Figure 2: the curvature profile of a SCC-path.

We are searching the set of the final configuration of the
continuous-curvature turns starting at a given configura-
tion with null curvature. As this configuration has a null
curvature, it can be made equal to the null configuration
(by translation and rotation). In the following, we will con-
sider a left turn but a similar reasoning can be done for a
right turn.

We call T;(3) the left turn of deflection g starting at the
null configuration, for 8 € [f1im, 27| (turns of deflection
smaller than 6;;,,, do not exist). The first arc of T;(8) is a
clothoid arc of sharpness omqez and length Kmaz/Omaz. Its

final configuration g:1(g) is:
7/ maz FrC (y / 9’%)

1 =

aB)=a=| yn = \/7/omaFTS (\/ 6‘;’;")
01 = bim/2
K1 = Kmaz

with FrC and FrS, the Fresnel integrals, defined respec-
tively as:

FrC(ac):/ coszuzdu, FrS(:c):/ sinEquu,
0 2 0 2



The second piece of T3(3) is a circular arc of radius
1/Kmaz starting at qi, of length (8 — 6iim)/Kmae. This
circular arc lies on the circle C; of center Q; = (z1 —
S$in 61 /Kmaz, Y1 + €0861/Kmaz) (see fig. 3), and ends at
the configuration g2(83). The last piece of T;(8) is the
clothoid of sharpness - omaz starting at g2(3) and of length
Kmaz/Tmaz. This clothoid, and the turn, finishes at the
configuration g3(3).

Figure 3: a continuous-curvature left turn.

As the curvature profile k of this turn is a symmet-
ric function (k(s) = k(I — s),Vs € [0,{], where | =
(B + 6iim)/Kmas is the length of T3(8)), so is the curve
of T;(B) in W: this curve is symmetric w.r.t. the line A(3)
of direction (8 + 7)/2 and containing ;. Thus, the dis-
tance between the position of ¢s3(3) and ; remains equal
to Rr = /%, + 3, the distance between the position of
the starting configuration of the turn and 2;: the position
of g3(B) remains on the circle le of center ; and radius
Rr when S belongs to [6iim, 27|

Moreover, this symmetry also implies that the angle -y
between the tangent to this circle le at the position of
@3 and the line containing this position and of orientation
03 is the opposite of the angle between the tangent to the
circle le at the null position and the z-axis (see fig. 3):
v = —arctan(zq,/yq,;). As a conclusion, the coordinates
of the final configuration g3(8) of the left turn T3(3) are,
for B € [Biim, 27[:

xggg; = RT{sin(ﬁ —7) (—ﬂsin 'y)]]
_ Y3 = Rr|cosy —cos(B—vy
q3(/3) = 93(5) = B

K3 = 0

Using a left turn as defined before, the deflection of A
(its change of orientation) is at least ;. If A needs to
turn of an angle 8 included in ]0, 6;;,m, it will use an ele-
mentary path [17, 18] made of:

1. a first clothoid arc of sharpness o €]0, 0maz] and of
length [ € [0, Kmaz /o], and

2. a second clothoid arc of sharpness -o and of length .

The elementary paths of sharpness ez cannot be con-
sidered: their final configuration are located on a para-
metric curve, whose equation includes the Fresnel integrals
FrC and FrS. This curve is too complex to be used.
Thus, we choose the sharpness of the elementary path so
that the final configuration of this turn is located on C’lf ,
the same circle as the final configuration of the left turns

of deflection greater than 6;;,. To finish at the configura-
tion (Rr[sin(8—+) —sin~], Rr[cosy —cos(8—7)], 3,0), for
B €]0, 6i;n,[, the elementary path must have for sharpness
(using the formulas of [17, 18]):

= W<COS§F’"C (\@) +sin Frs (ﬁ))z

R2. sin*(8/2 —v)

and for length | = /3/0.

‘We must verify if this elementary path exists and is fea-
sible, i.e. if 0 < 0 < Omazr and ol < Kmaz. As long
as lim = KZas/Omax is smaller than 677%% = 1.46267
(Br/4 < 6% < 27/3), o is defined for 8 €]0,61im]
(as 61im/2 — v < w) and is in ]0,0maez]- The maximum
curvature along this turn is /o8, which is smaller than
VOmazOlim = Kmaz. In our experiments, omaez and Kmaz
are fixed w.r.t. real values of car-like vehicles, and 6;;,, is
always less than 7/3 < 0];,2°.

To conclude, we have defined for each 8 €]0,2x[ a left
continuous-curvature turn of deflection 3 starting at the
null configuration. The final configuration of these left
continuous-curvature turns are located on a circle le de-
pending only of omaz and Kmaz. The same work can be
achieved for the right continuous-curvature turns (the re-
sulting sharpness are opposite, the lengths are the same,
the circle Cf is the symmetric of C/ w.r.t. the z-axis).
Moreover, these turns can be translated and rotated in or-
der to start from any given null-curvature configuration.
At last, the set of turns finishing at a given configuration
g can be deduced from the set of turns starting at the con-
figuration opposed to g: they have the same curve in W,
with opposite direction.

4.3 Computing SCC-Paths

In this section, we will describe how the at most six SCC-
paths linking g, to g», two null-curvature configurations,
are defined.

First, let us consider the paths made of three turns, e.g.
the path Irl (the path rlr can be defined similarly).

9
Figure 4: a Irl SCC-path.

1. Let C{ be the circle of the end configurations of the
left turns starting from q,, and 1 be its center.



2. Let CJ be the circle of the start configurations of the
left turns finishing at g3, and €22 be its center.

3. If Q195 is smaller than 4Ry, there exist at most two
circles of radius Rr tangent simultaneously to C{ and
CI. For each Cif of these at most two circles, let ¢
and ¢» be the configurations of CJ and CJ respec-
tively, which are located on Cif (see fig. 4). A Irl
SCC-path linking g, to ¢ is made of the left turn
linking ¢, to g1, the right turn linking g1 to g2 and
the left turn linking g2 to g». The shortest of the at
most two possible paths is selected.

On a second hand, let us consider the paths made of
a turn, a segment and a second turn, e.g. the path Ilsr
(the three other paths, Isl, rsl and rsr, can be defined
similarly).

1. Let C{ be the circle of the end configurations of the
left turns starting from g,, and §2; be its center.

2. Let CJ be the circle of the start configurations of the
right turns finishing at g, and Q2 be its center.

Figure 5: a lsr SCC-path.

3. We search the connecting line between CJ and CJ (see
fig. 5); this line is the segment connecting two config-
urations of same orientation, g; of C1 to g2 of C5, this
orientation being equal to the orientation of the seg-
ment. Let a1 be the angle between m and Q1q1,
and a2 the angle between Q1% and the connecting
line. For the turns lsl and rsr, a2 is trivially 0, but
for the turns lsr and rsl, the elementary properties of
the triangle implies that sinas = 2cos YRr/Q:1 Q. In
both case, a1 = a2 — v — 7/2, which determines the
connecting line.

As a1 must remain negative, in the case of the turns
lsr and rsl, sin @z must remain smaller than cos~y,
which implies that the distance £1Q2 between the two
circles must remain greater than 2Ry.

If this inequality holds, the Isr path is then made of
the left turn linking g, to g1, the segment ¢1 ¢» and
the right turn linking go to gp.

4.4 Collision Checking

The previous paths, once computed, must be checked for
collision avoidance. The surface swept by A while following
a segment or a circular arc can be explicitly calculated: it is
a generalized polygon, i.e. a polygon whose sides are either

linear segments or circular arcs. In this case, the collision
detection with a given obstacle B is a simple intersection
check between this surface and the polygonal region of B.
To have such a collision detection for clothoid arcs, we need
to evaluate the surface swept by A along such an arc.

But a clothoid arc can only be represented by a para-
metric equation using Fresnel integrals, and these integrals
can only be approximated. Therefore, the surface swept
by A while following such an arc also has to be an ap-
proximation. This approximation is based on the concept
of motion polygon. If there exists a clothoid arc linking a
configuration g, to a configuration g, and turning left, the
motion polygon from ¢, to g, noted MP(qa, ), is defined
by the following points in clockwise order (see fig. 6):

e the rear right point of A(q,);
e the rear left point of A(q,);
e the front left point of A(gs);
e the front right point of A(g);

e the intersection of the right side of A(gq) and the right
side of A(gp);

Figure 6: the motion polygon.

The motion polygon can be similarly defined for a
clothoid arc turning right (i.e. if g, is in the right half-
plane defined by ¢,). It can be proved (the proof is omitted
due to lack of space) that this polygon has the following
property: if A follows a clothoid arc from g, to gp, the
surface Uq.A(g) swept by A while in motion is included in
MP(qa, )

Therefore, if a clothoid arc linking two configurations g,
to gy is approximated by a set of configurations {g;,7 €
{0,...,k}}, with ¢, = qo and ¢ = gqi, the surface
swept by A along the clothoid arc is approximated by
Uie{a,....k3MP(gi—1,¢:). The more precise the discretiza-
tion of the clothoid arcs is, the more precise the approxi-
mation of the surface swept along a clothoid arc is.

5 The Global Path Planner

In 1995, Svestka and Overmars presented a general plan-
ning scheme called the Probabilistic Path Planning (PPP)
which allows to build a (probabilistically complete) global
planner using a local planner [21].

For a given robot and workspace, the PPP method con-
sists in two phases. During the first one, called the learning
phase, it builds a roadmap and stores this map in a graph
(the ezploration graph) whose nodes are collision-free con-
figurations and edges are (simple) feasible paths, or local
paths, computed by the local planner. In the second phase,
the query phase, given a start configuration ¢; and a goal



one qq, PPP tries to connect these configuration to the ex-
ploration graph using the local planner, and then performs
a graph search. Therefore, when PPP finds a path linking
gs to gg, the result path is a concatenation of local paths.

We are currently using this path planning scheme be-
cause the exploration graph can be reused for several new
planning problem, as long as the robot, the workspace and
the obstacles considered remain the same. Moreover, this
graph may be extended in order to plan multi-vehicles’ mo-
tion, or trajectories among moving obstacles (these pos-
sibilities are considered for future works). However, any
other path planning scheme which uses a local planner in-
dependently of the way this planner works (as e.g. the Ari-
adne’s Clew algorithm [13]) could be considered to obtain
a global continuous-curvature path planner.

6 Experimental Results

The local and global path planners have been implemented
in C++ using LEDA, a geometric and algorithmic library 2.

q1

Figure 7: Dubins’ curves vs. SCC-paths.

To begin with, the local path planner has been tested
in an obstacle-free workspace. The purpose here was to
compare the respective lengths of SCC-paths and Dubins’
curves. Figure 7 depicts the SCC-paths (thick lines) and
the Dubins’ curves (thin lines) linking a sequence of con-
figurations g1, ¢ . . . gs, while the paths’ lengths (in meter)
are listed in Table 1. In this experiment, the curves have
a maximum curvature of 0.2 m™"' (the minimum turning
radius is 5 m), and the SCC-paths have a maximum sharp-
ness of 0.05 m~2 (the minimum deflection to reach the
maximum curvature is 6;;,, = 0.8 radian ~ 45.84 degrees).

Path II; 11 II3 114 115 Ilg
Dubins | 71.67 | 89.47 | 76.19 | 86.06 | 87.70 | 58.90
SCC 78.35 | 91.37 | 78.24 | 90.01 | 90.86 | 63.01

Table 1: lengths of Dubins’ curves and SCC-paths.

The global path planner was then tested in two environ-
ments taken from Laumond et al. [12] respectively contain-
ing four and five obstacles. Both correspond to a 40 m sided

2LEDA has been developed by the Max-Planck-Institut fuer
Informatik Im Stadtwald (Saarbruecken, DE)

%] 7]
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Figure 8: experiments with 4 obstacles.

square workspace with a 2.5 m long and 1.5 m wide car-
like vehicle. Unlike Laumond et al., forward only paths
were generated. Various experimental results are depicted

in Figs. 8 and 9.
4TS 4 -
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|

Figure 9: experiments with 5 obstacles.

7 Conclusion and Discussion

In this paper, we have considered path planning for a car-
like vehicle. Previous solutions to this problem would com-
pute paths made up of circular arcs connected by tangential
line segments. Such paths have a non continuous curvature
profile. Accordingly a vehicle following such a path has to
stop at each curvature discontinuity in order to reorient
its front wheels. To remove this limitation, we added a
continuous-curvature constraint to the problem at hand.
In addition, we introduced a constraint on the curvature
derivative so as to reflect the fact that a car-like vehicle
can only reorient its front wheels with a finite velocity.
‘We proposed a solution to the problem at hand that
relies upon the definition of a set of paths with continu-



ous curvature and maximum curvature derivative. These
paths contain at most eight pieces, each piece being either
a line segment, a circular arc of maximum curvature, or a
clothoid arc. They are called SCC-paths (for Simple Con-
tinuous Curvature paths). They have been used to design
a local path planner, i.e. a non-complete collision-free path
planner, which in turn has been embedded in a global path
planning scheme. The result is the first path planner for
a car-like vehicle that generates collision-free paths with
continuous curvature and maximum curvature derivative.
Experimental results have been presented. Future works
will explore three main directions:

1. Demonstrate the sub-optimal nature of SCC-paths.
Optimal paths for the problem at hand are likely to
be made of an infinity of pieces (see [10, 11]. We would
do so by explicitly computing an upper bound of the
difference between the length of the SCC-path and
the Dubins’ curve linking two given configurations,
and proving that this bound tends towards zero when
Omaz — 00 for a given Kmaq.

2. Extend the path planner to the case of a car-like vehi-
cle that can move both forward and backward. This is
straightforward; Reeds and Shepp’s curves [16] would
be used rather than Dubinses.

3. Compute the partition of the configuration space with
respect to the type of the shortest SCC-path (like Bui
et al. [3] did for Dubins’ curves). In fact, the six possi-
ble paths linking two configurations should be ordered
(with increasing length) a priori, before their compu-
tation. Thus, the best collision-free path linking two
configurations could be found with a minimal cost.
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