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Abstract

This article deals with trajectory planning for non-holonomic mobile robots. We call trajectory the
association of a path, which is the geometrical restriction of the motion, and of a time schedule given
by a time table, a velocity or an acceleration profile. The robots considered are non-holonomic,
as their motion’s direction is limited by the robot’s position. However, two types of robot are
considered: car-like vehicles have a lower bounded turning radius, while manoeuvrable robots do
not. This article shows that optimal paths for car-like vehicles correspond to optimal trajectories
for manoeuvrable robots, and presents how these paths can thus be followed by manoeuvrable
robots faster than paths made of line segments, along which these robots have to stop at each
direction’s discontinuity. Experimental results obtained using such paths for manoeuvrable robots
are then provided.
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Abstract

This article deals with trajectory planning for mnon-
holonomic mobile robots. We call trajectory the associa-
tion of a path, which is the geometrical restriction of the
motion, and of a time schedule given by a time table, a
velocity or an acceleration profile. The robots considered
are non-holonomic, as their motion’s direction is limited
by the robot’s position. However, two types of robot are
considered: car-like vehicles have a lower bounded turn-
ing radius, while manoeuvrable robots do not. This article
shows that optimal paths for car-like vehicles correspond to
optimal trajectories for manoeuvrable robots, and presents
how these paths can thus be followed by manoeuvrable robots
faster than paths made of line segments, along which these
robots have to stop at each direction’s discontinuity. Ezper-
imental results obtained using such paths for manoeuvrable
robots are then provided.

1 Introduction

The first motion planning problem considered in mobile
robotics was the “piano mover” problem: a two dimen-
sional robot moving without constraints (it translates and
rotates freely) among obstacles. Once this purely geomet-
rical problem has been solved, new problems have been
considered, adding kinematic (i.e. purely geometrical) then
dynamic (i.e. related to time) constraints to the motion of
the robot. The addition of these constraints reflects the
complexity of the robot’s model, increases the complex-
ity of the planning but generally reduces the mechanical
complexity of the robot.

Nowadays robot models are mainly of two kinds: the
car-like vehicle model, which has a bounded turning ra-
dius, and the manoeuvrable mobile robot model, without
bounded turning radius. Both kind of mobile robots can
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only move in a direction fixed by their position (they can-
not translate freely), but the manoeuvrable ones can turn
without moving (it rotates freely). The main contribu-
tion of this paper is to prove that trajectory planning for
manoeuvrable mobile robots can use, when high velocities
are required (7.e. when dynamic aspects must be taken into
account), optimal paths for car-like vehicles: the same al-
gorithms can then be used to find a solution.

Overview of this article

A short bibliographic section recalls the main researches
considering path and trajectory planning for mobile robot
(§ 2). While the existence of constraints similar to those for
car-like vehicles has already been proved for a first model
of manoeuvrable mobile robot, a robot corresponding to a
second model is presented and the related planning prob-
lem is stated (§ 3). Once this problem is characterized in
terms of existence and optimality of solutions, a method to
compute optimal trajectories is described (§ 4) and exper-
imental results are given (§ 5). At last, a conclusion and
future works are sketched (§ 6).

2 Related Works

Let us define three kinds of mobile robots’ model:

1. Unconstrained robots can rotate and translate freely
(the planning problem is then called the “piano
mover” problem);

2. Manoeuvrable robots can rotate freely (unbounded
turning radius) but can only translate in a direction
fixed by its position;

3. Car-like robots cannot rotate nor translate freely, its
turning radius is lower bounded and its translation’s
direction is fixed by its position.

These models are presented in increasing order of the plan-
ning complexity, which is also the chronological order in
which they have been considered.



Indeed, paths planned for unconstrained or manoeu-
vrable robots are usually only made of line segments while
for car-like robots these segments are tangentially con-
nected by circular arcs of minimum radius [7]. These paths
have optimal length: this is an evidence in the case of un-
constrained or manoeuvrable robots, and has been proved
by Dubins for car-like robots going only forward [2] and
by Reeds and Shepp for car-like robots going both forward
and backward [12]. Unfortunately, in any case, these paths
cannot be followed precisely without stopping at each dis-
continuity (of the direction in the first case, of the turn-
ing radius in the second) to reorient the robot’s directing
wheels.

To avoid these stops, the use of continuous-curvature
paths has been recommended for more than ten years. Var-
ious kinds of continuous-curvature paths have been used, as
e.g. clothoids® [5], cubic spirals® [4], B-splines [6] or Carte-
sian and polar polynomials [10, 16]. However, if some of
these paths correspond to optimality criteria [4, 16], these
criteria are not based on a robot’s model and their interest
are not compared: it is thus difficult to select which type
of paths is the more interesting. Moreover, we only found
one of these works generating continuous-curvature paths
for car-like vehicles [9].

To the best of our knowledge, only two works consid-
ered continuity of the curvature as a constraint added to
the motion planning problem, and searched optimal paths
for the new planning problem. The first one [8] is designed
for a manoeuvrable robot called Hilare 2, while the sec-
ond [14] focussed on car-like vehicles. The paths generated
are made of pieces of clothoid and anti-clothoid® in the
first case, and made of pieces of clothoid (including line
segments) and of circular arcs of minimum radius in the
second case.

In this paper, we show why the path used in the second
case are interesting for manoeuvrable robot when high ve-
locities are expected. In the Hilare 2 case, a dynamic non-
sliding constraint on each wheel induces a lower-bound on
the turning radius, and thus add circular arcs to the parts
of optimal paths. We will show that similar paths (cf.
§ 3.3) are needed for another type of manoeuvrable robot:
the Nomad 200™.

3 Planning Problem

Before stating the planning problem (§ 3.2), we will shortly
present the Nomad 200™ and the model we used for it
(§ 3.1). We will then characterize the problem w.r.t. exis-
tence and nature of optimal trajectories (§ 3.3).

1A clothoid is a curve whose curvature is a linear function of
the arc length.

2A “cubic spiral” is a curve whose curvature is a quadratic
function of the arc length.

3 Anti-clothoids, or involutes of circles, as defined by Fleury
et al. in [3], are curves whose radius is a linear function of time,
while its steering velocity is constant.

3.1 Model of the Robot

Built by Nomadic Inc., the Nomad 200™ is a roughly
cylindrical mobile robot (c¢f. Fig. 1), mounted on three
wheels. The lower part of the robot keeps a fixed direction
while the three wheels it contains can turn in any direction,
but remain parallel. Thus, the turning radius of this robot
is not lower bounded: the robot is highly maneuverable.
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Figure 1: the Nomad 200™.

As the Nomad 200™ will only move on a planar horizon-
tal ground, the workspace W is represented by a bounded
closed subset of the plane IR®.. In this workspace, we
model a position of the Nomad 200™ by an oriented circle,
noted A, of fixed radius R4 (cf. Fig. 2). It is represented
by a three dimensional vector (a geometric configuration)
(z,9,0) € R?* x 8', the two first coordinates giving the
position of the circle’s center and the third being the ori-
entation of the oriented circle (i.e. the angle between the
z-axis and the wheels’ direction).

T

Figure 2: Geometric Configuration of the Nomad 200™™.

As we want the robot’s wheels to roll without sliding,
its motion has to respect a non-holonomic constraint: at a
given geometric configuration, its instantaneous velocity is
always parallel to its wheels’ direction. Using the notations
previously defined, this constraint can be written in the
workspace W as:

Zsinf —ycosd =0 (1)

We are also interested in the robot’s dynamics, and
thus we have to add the translation and steering veloc-
ity to the configuration’s parameters. Let us call dynamic
configuration the combination of the geometric configura-
tion’s parameters and of its derivatives (w.r.t. time). A



dynamic configuration of A is thus a 5 dimensional vec-
tor (z,y,6,v,w) € R? x 8! x IR?, where z and y are the
coordinates of the robot’s vertical symmetry axis, 6 is the
orientation of its wheels, v is its translation velocity and w
is its steering velocity.

The non-sliding constraint (1) can then be rewritten in
the dynamic configuration space as:

T v cosf
d Y v sin 6

v a

w Y

where a and v are respectively the translation and steering
accelerations, and are the control parameters. The robot
has to respect an other constraint, giving its dynamic lim-
itations (4.e. its maximum velocities and accelerations):

[v] < Umax
lw| £ Wmax
ol < Gmex ®)
Y| < Ymax

3.2 Statement of the Problem

We just saw that the motions of our robot A are limited by
non-holonomic (i.e. non-integrable) constraints. Thus, to
move from a configuration to an other one while avoiding
obstacles, A can only follow a restricted set of trajectories.
It will then need a planner to find among these trajectories
the optimal one.

To define formally the planning problem we need to solve,
let us denote C the configuration space, i.e. the subset of
R? x S' x IR? containing all the dynamic configurations
for which A is in the workspace W. If ¢ is a configuration
in C, let A(q) be the (circular) region occupied in W by
A when it is in configuration ¢g. Then, if B is an obstacle
in W, we say that q is in collision with B if, and only if,
Alg)NB # 0.

If the workspace W is clustered with a set of obstacles
Bj, j € {1,...,np}, let us denote Cconision the set of all the
configurations of C that are in collision with an obstacle
Bj, j € {1,...,n8}, and let Cqee be its complement:

feec/3je{l,..,ns}, Al NB; # 0}

Cfree = C \ Ccollision
= {qeC/Vje{l, .. ns} Alg)NB; =0}

CCOllision

Moreover, if € is a positive real value, Cg.. is the set of all
the configurations ¢ of C such that the distance in W be-
tween .A(q) and any obstacle B;, j € {1,...,n5}, is greater
than (or equal to) e.

A trajectory is then a continuous curve in C, and a
collision-free trajectory is a continuous curve in Ceree. Such
a trajectory is said feasible for A if, and only if, it respects
the motion’s constraints of this robot, i.e. if, and only if,
it respects Equations (2) and (3).

A formal statement of the planning problem we consider
is then the following:

Being given a starting configuration gs, a goal
configuration ¢4, the set of obstacles Bj, 7 €
{1,...,m5}, and a real ¢ > 0, we search a tra-
jectory I' which:

e connects ¢s to gy (I' is a curve in C);

e is feasible for A, i.e. respects Equations (2)
and (3);

e is a curve in Cfee, 4.e. such that the dis-
tance between A and any obstacle remains
greater than e.

Remarks:

e ¢ can be interpreted as a “security distance” to the
obstacles; the fact that the search is limited t0 Cf.ee
(instead of only Cgee) will also ensure of the existence
of a time-optimal solution (whenever a solution exists,
see § 3.3); indeed, due to equation (3), C is now a
subset of W x 8' X [~Umax, Vmax] X [~Wmax, Wmax] and
is a compact set, as well as Cg,, for all € > 0, while
Ciree 1S an open set;

e the search for a solution trajectory is done in C instead
of in Cfe (the projection of the obstacles B;, j €
{1, ...,n5}, in the configuration space C is too complex
to be computed), the collision avoidance being verified

in W.
3.3 Controllability and Optimality

Now that the planning problem we consider is formally
stated, let us study some of its properties.

First of all, the robot A we modeled can move as a holo-
nomic robot: 4 can turn without moving, and it can follow
straight lines. It means that a solution trajectory exists if,
and only if, ¢, and g4 are in the same connected part of
Cf.ce- However, the simplest trajectories (made of pure ro-
tations and of straight line motions) are not optimal (i.e.
the shortest in time).

In our case, when a solution trajectory exists, we look for
the trajectory whose execution time is the smallest. This
can be considered as a Lagrange optimization problem [1,
Chap. 5], for which the conditions of the Filippov Theorem
adapted to this class of problems [1, Th. 5.1.ii or 9.3.i] are
respected (for more details, refer to Appendix A). As a
consequence, whenever a solution trajectory exists, a solu-
tion trajectory with minimum execution time can be found.
This is the case as the search is limited to Cf.e, Which is a
compact set, instead of Cgree, which is open: indeed, would
the search have been limited to Cgree, it would always have
been possible to find a trajectory faster than any given one
(simply by taking a trajectory closer to the obstacles).

To characterize the optimal solution trajectory, we used
the Pontryagin Maximum Principle [11], which gives nec-
essary conditions respected by the portions of the optimal
trajectories included in the inner part of the search space
(here the configuration space), i.e. in our case when nei-
ther the translation nor the steering velocity (v and w) are
maximum (in absolute value). In our case, this principle



proves that both the translation and the steering acceler-
ation (i.e. a and %) are bang-bang (i.e. zero or maximum
in absolute value) along optimal trajectories, except when
an obstacle’s border is followed; details are given in Ap-
pendix B.

Pure Rotation Piece of Anti-Clothoid Circular Arc
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Figure 3: Optimal Control Curves.

Fig. 3 indicates the curves followed in the plane by the
projection of the vertical symmetry axis of the robot A,
when control is optimal (as defined previously). In this fig-
ure, rounded boxes correspond to motions for which both
(translation and steering) accelerations are zero (transla-
tion and steering velocities are constant), while ellipses cor-
respond to motions with (at least) one maximum acceler-
ation (in absolute value).

The nature of the optimal curves is computed in the
following way:

e it is trivial when the translation velocity v is zero;

e it is easily found considering that the curvature
along the curves is (if s is the arc length):
Lodo_dodt_w
ds dt'ds v
The line segments correspond to a zero curvature, the cir-
cular arcs to a constant (non zero) curvature, the clothoid
pieces to a linear curvature (w.r.t. the time) with constant
translation velocity and the anti-clothoid pieces to a linear
radius of curvature (the inverse of the curvature) with a
constant steering velocity (see Fig. 3).

The name of one of the optimal curves for the Nomad
200™ has not yet been identified: when the translation ve-
locity v decreases (resp. increases) with maximum transla-
tion acceleration amax (in absolute value) while the steering
velocity w increases (resp. decreases) with maximum steer-
ing acceleration ymax (in absolute value), the coordinates
of the curve followed by the robot A is a combination of the
coordinates of a circle and of those of a clothoid. However,
in the planning, we will only use the curves of the lower
right half of Fig. 3, i.e. linear segments, circular arcs and
pieces of clothoids, as we want the translation velocity v to
remain maximum as long as possible.

Remark: Optimal paths for the Nomad 200™ include,
but are not restricted to, optimal paths for the Hilare 2.
The difference comes from the control parameters: the No-
mad 200™ is controlled by its translation and turning ac-
celerations (resp. a and <), while the Hilare 2 is controlled
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Figure 4: Control Regions (a- Hilare 2, b- Nomad 200™).

by the accelerations of its left and right wheels (resp. a;
and a,). If these controls are equivalent (a bijection ex-
ists between them), standart bounds define different con-
trol regions (cf. Fig. 4). Indeed, a rectangular region in
the (a;,a,) space (used for the Hilare 2) is transformed
in a diamond-shaped region in the (a,<) space (used for
the Nomad 200™). This difference between the allowed
control regions explains the difference between the optimal
paths.

4 Planning Method

We search for fast trajectories, 4.e. optimal trajectories for
which the translation velocity remains maximum as long as
possible. In that case, paths (i.e. the geometric restrictions
of the motion) will only be made of line segments, pieces of
clothoids and circular arcs. A planner returning this kind
of paths has already been defined for car-like vehicles [14].
‘We extended this planner to compute paths in our case.

As for the dynamic aspects of the motion, the velocity
profile of the trajectory can be divided in at most three
phases: an acceleration phase during which the translation
velocity is maximally increased from its original value to
the maximum value, a phase with maximum translation
velocity and a deceleration phase during which the trans-
lation velocity is maximally decreased from its maximum
value to its final value.

The resulting trajectory respects the robot’s kinematic
and dynamic constraints (as specified in § 3.1), avoids
the set of obstacles and keeps translation velocity as high
as possible. This does not prove that the resulting path
is time optimal: we also consider whether the trajectory
made of pure rotations (made with zero translation veloc-
ity) and pure translations is faster.

5 Experimental Results

Fig. 5 gives two example of planning for the Nomad 200™,
using the extension of the planner for car-like vehicles
[14]. In these examples, the continuous-curvature trajec-
tory with bounded curvature is much faster than a tra-
jectory made of pure translations and pure rotations, as
at least four stops would have been required in this case.
It can be noticed that the continuous-curvature trajecto-
ries begin and end with a circular arc, along which both
translation and turning accelerations (resp. a and <) are
maximum.

These continuous-curvature trajectories should be fol-
lowed very accurately, as they correspond to the con-
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Figure 5: planning for the Nomad 200T™.

troller’s robot model. Moreover, the tracking of the cor-
responding paths is ten times better than the tracking of
discontinuous-curvature paths, using a Kanayama law (cf.
[15]). However, only simulated results have been obtained,
as the controller developed by Nomadic Inc. for the Nomad
200" is dramatically inaccurate: translation and turning
accelerations are jerky and do not respect the fixed bounds.
Future works are planned to improve this controller in or-
der to be able to follow the planned trajectories.

6 Conclusion and Future Works

Usual mobile robots can only translate in a direction fixed
by their position. Some of these robots have also a lower
bounded turning radius. They are called car-like vehicles
while those without bounded turning radius are called ma-
noeuvrable robots.

This article shows how sub-optimal continuous-
curvature paths for car-like vehicles can be used to define
high velocity trajectories for manoeuvrable robots. A first
case, considered by Laumond et al. [8], is quickly recalled.
A second case is described more precisely: optimal tra-
jectories are proved to use paths similar to those optimal
for car-like vehicles, and thus a continuous-curvature path
planner for car-like vehicles is used to generate smooth tra-
jectories which can be followed with a high velocity. Ex-
perimental results, showing the tracking speed-up w.r.t.
trajectories made of pure rotations and translations, are
presented.
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Appendix

We proved that there exists a solution to the planning
problem stated in § 3.2 if, and only if, the configurations
to connect are in the same connected part of Cf.... In this
appendix, we will prove that, in that case, there also exists
a time-optimal solution and we will show a few properties
of this optimal solution.

First of all, let us recall the problem:

Being given a starting configuration gs, a goal
configuration g4, and the set of obstacles B;, j €
{1,...,mB}, we search a trajectory I' which:

e connects gs to gy (L' is a curve in C);

e is feasible for A, i.e. respects the equa-
tions (2) and (3);

e is a curve in Cf,., i.e. such that the dis-

tance between 4 and any obstacle remains
greater than e.

The trajectory I' can be considered as a mapping from
time to configurations, i.e. as a function ¢ — ¢(t) from
[0,T] t0 Cfree- To find the time optimal solution trajectory,
we want to optimize

110, u] = 9(0, ¢(0), T, o(T)) + / folt, a(t), u(t))dt,

where g = 0, fo = 1 and the functions ¢ (the trajectory)
and u (its associated control function) verify:

o the differential system

U = fta),ue)

(v(t) cos 8(t),v(t) sin O(t), w(t), uo(t), w1 (t))

e the limit conditions
(O,Q(O)’TaQ(T)) € B = {0} X {qs} X [OaTmaX] X {qg}

e and the constraints

{ (t’q(t)) € A= [OaTmaX] X Cree
U(t) e U= [_amax, a'max] X [_’Ymaxv’)/max]

A Existence of Optimal Paths

Before giving Filippov’s theorem, which proves the exis-
tence of time-optimal solutions to our problem, let us de-
fine, for all (¢,q) in A:

QAt,q) = {(z°%2)/Fuel,2° > folt,q,u), z = f(t,q,u)}
= {(%vcosf,vsinb,w,u), 2’ € [1,+oo[,u € U}

Theorem 1 (Filippov) Let us assume that A and U are
compact sets, B is a closed set, fo and f are continuous on
M = AxU, g is continuous on B and Q(t,q) is a convex
set for all (t,q) in A.

Then, if there exists solutions to the considered problem,
IT, u] reaches an absolute minimum on the set of solutions.

Corollary 1 If q; and q4 are in the same connected part
0f Cfree, there exists a time optimal solution to the planning
problem we consider.

Proof: 1t is easy to verify that A and U are compact sets
(let us recall that Cg.. is a compact set), that B is a closed
set, and that the functions fo, f and g are continuous.
Moreover, Q(t,q) is a convex, as it is isomorphic to
[_amax,amax] X [_'Ymax,')’max] X [1,+OO[C IR3 for all (t,q)
in A. O



B Nature of Optimal Paths

To show some properties of the optimal trajectories solu-
tion of our problem, we will use the Pontryagin Maximum
Principle as stated by Cesari [1, Chap. 4]. This principle
can only be applied to the trajectories contained in the in-
ner part of Cf,... However, if the workspace W is chosen
wide enough, the pieces of the optimal trajectories which
are on the boundaries of Cf,., either follow the borders of
an obstacle (at a distance €) or correspond to a maximum
(in absolute value) translation or steering velocity. Noth-
ing can be said in the first case (the nature of the trajectory
depends on the geometric shape of the obstacle). The two
other cases will be considered at the end of this appendix,
once the Pontryagin Maximum Principle has been applied
to the trajectories contained in the inner part of Cf,.-

Let us now consider the pieces of the optimal trajectories
that are in the inner part of Cg... For those pieces, the
necessary conditions of the Pontryagin Maximum Principle
[1, Chap. 4, cond. (a)-(d)] are verified:

(a) the existence of an optimal trajectory has been proved
using Filippov’s theorem (cf. Appendix A);
(b) the curve (t,q(t)) corresponding to the concerned

piece of optimal trajectory remains in the inner part
of A;

(¢) U is a bounded and closed set of IR?;

(d) B has a linear tangent variety B’ whose vectors are
h = (0,0,7,0),7 € IR (the elements of B have con-
stant coordinates, except for the third which remains
in a interval).

Application of the Pontryagin Maximum Principle then
imply that either a or v is maximum (in absolute value)
on any interval (the detailed demonstration can be found
in the appendix of [13]). Using once again the Pontryagin
Maximum Principle on both reduced problems (with ¢, =
(z,9,0,w) for a(t) = tamax, and ¢y = (z,y,v) for y(t) =
+7Ymax) leads to the following conclusion : both a and - are
maximum (in absolute value) or the trajectory followed is
a line segment.

Thus, we proved that the optimal trajectories contained
in the inner part of Cf,.. are bang-bang, i.e. that they cor-
respond to maximum or zero translation and steering ac-
celerations. We still have to prove that it is also the case
for the optimal trajectories contained on the boundary of
Cfee- As we already noticed, nothing can be said about
the optimal trajectories which follow the borders of obsta-
cles. However, the other ones correspond to a maximum
(in absolute value) translation or steering velocity. In that
case, we can prove that the accelerations are bang-bang
(4.e. zero or maximum in absolute value): once again, it is
done using the Pontryagin Maximum Principle on the re-
duced problems, with ¢, = (z,¥,0,w) for v = £Umax, and
qw = (z,y,v) for w = *wmax. The only possible exception
is, when v = Fvmax, a line segment which correspond to
w=7vy=0.

As a conclusion, optimal trajectories for our robot are
achieved with bang-bang control, i.e. a(t) = *amax except

if v(t) = LUmax (then a(t) = 0) and y(t) = tymax except
if w(t) € {—wmax, 0, wmax} (then v(t) = 0), when they do
not follow an obstacle’s boundary.
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