
3 - Context Free Languages and
Push Down Automata

1. Context Free Grammars: introduction

2. Context Free Grammars: definitions

3. Context Free Grammars: normalisation

4. Regular Grammars

5. Push Down Automata

1Friday, December 26, 14

3.1 – Introduction

• The expressivity of regular languages is too limited for the representation of

programming languages. Moreover, regular expressions and automata are not well

suited to a readable description of languages.

• A new paradigm was introduced by Chomsky (1956), Schützenberger, Backus (1959)

and Naur (1960) : whereas regular languages are built recursively from elementary

languages by means of three operations, a context-free language is derived from

a set of rewriting rules which constitute its grammar; these rules must respect

some syntactic constraints to be a Context-Free Grammar (CFG).

2Friday, December 26, 14

3.2 – Definitions
• A Context-Free Grammar is a 4-uple (N, T, S, R) such that :

ü N is a finite alphabet of non terminal symbols.

ü T is a finite alphabet of terminal symbols.

ü S is a particular element of N, the start symbol.

ü R is a finite set of production rules in the form A → α, where A is a non terminal and α

is a word from → (N ∪T)*

• The derivation relation ⇒ between words from (N ∪T)* is defined as follows : α1A

α2 ⇒ α1 α α2 if A → α ∈ R. Its reflexive and transitive closure is written : ⇒ *

• The language generated by the grammar is the set of words α from T* such that :

S ⇒ * α. It is a context-free language.

3Friday, December 26, 14

3.2 – Definitions

• The grammar G is defined by the following rules and its start symbol is P:

 P → P ; P

 P → V = E

NP → NP PP

E→ E + E

E → V

E → C

 V → x

V → y

V → z

C → 0

C→ 1

4Friday, December 26, 14

3.2 – Definitions

• A derivation of a word α of the language is a sequence S ⇒ α1 ⇒ α2 ⇒ … ⇒ α.

It is represented in a compact way by a parse tree. A parse tree is an ordered tree

labelled with symbols from N ∪ T. The root is labelled with S and the leaves with

terminal symbols. Every node that is not a leaf is labelled with a non terminal symbol

A and its ordered daughters are labelled with symbols constituting a word α such that

A → α is a production rule of the grammar.

• Two grammars are equivalent if they generate the same language.

• A grammar is ambiguous if there exists a word from its language that corresponds

to two different parse trees at least. In natural languages, ambiguity has an important

place whereas in programming languages ambiguity is rejected.

5Friday, December 26, 14

3.2 – Definitions

1. From the grammar to the language
Determine the languages generated by the following grammars (S is the start symbol). Are
theses grammars ambiguous ? If yes, define a non ambiguous grammar which is equivalent to
that one of the question.

a) S → ε | aaaS

b) S → ab | aSb

c) S → SS | ε | (S)

d) S → ε | aiSai for any i such that 1 ≤ i ≤ n

2. From the language to the grammar
Determine CFGs generating the following languages.

a) L1 = { an bp | 0 < p < n }

b) L2 = { an bn cm dm | n, m ∈ Ν }

c) L3 = { an bm cp | n = m or p = m }

d) L4 = a(ab*)*

6Friday, December 26, 14

3.2 – Definitions

3. Let G be the grammar : E → E + E | E - E | (E) | id
E is the start symbol. Give all parse trees of the word id - id - id. Determine an
equivalent non ambiguous grammar, by introducing a new non terminal
respresenting expressions resulting from only substractions.

4. If-then-else grammars
Show that the following grammar is ambiguous (S is the start symbol) :
	 	 S → if B then S | if B then S else S | s
	 	 B → b

7Friday, December 26, 14

3.3 – Normalisation

• Theorem (elimination of empty production rules): every CFG is equivalent to a
CFG in which the only possible empty production rule is S → ε, where S is the start

symbol of the grammar, and the other production rules do not include S in their right
hand side.

• Theorem (elimination of unary rules): every CFG is equivalent to a CFG without

unary rules (a unary rule is in the form A → B).

• Theorem (elimination of useless non terminal symbols): every CFG is equivalent

to a CFG in which all non terminal symbols derive a string from T* and all non terminal

symbols are in a derivation coming from the start symbol.

8Friday, December 26, 14

3.3 – Normalisation

• A CFG is recursive if it admits derivation relation in the form A ⇒+ αAβ. It is left-recursive if

α= ε and it is right-recursive if β= ε.

• A CFG is immediately recursive if it admits a production rule in the form A → αAβ. It is

immediately left-recursive if α= ε and it is immediately right-recursive if β= ε.

• Elimination of the immediate left-recursivity :

Replace the rules in the form A → A α1 | …| A αm | β1 | … | βp where A is not the first symbol of

β1 … βp with

 A → β1 A’ | … | βp A’ | β 1 | …| βp

 A’ → α1 A’ | … | αm A’ | α1 | … | αm

where A’ is a new non terminal

9Friday, December 26, 14

3.3 – Normalisation

• Algorithm for the elimination of left-recursivity:

• Order all non terminals of the grammar according a total order A1 < A2 < … < An

• While there is a non examined non terminal

‣ Consider the first non examined non terminal Ai according to the total order

‣ While there is a rule from the grammar in the form Ai → Aj α where j <i

 Remove the rule Ai → Aj α from the grammar

 For every rule in the form Aj → β

 Add the rule Ai → β α to the grammar

‣ If there is a rule from the grammar in the form Ai → Ai α

 Eliminate the immediate left recursivity corresponding to Ai

 Add the new non terminal A’i to the end of the ordered list of non terminals

10Friday, December 26, 14

3.3 – Normalisation

• Theorem (elimination of left-recursivity): every CFG without empty production rule
is equivalent to a CFG which is not left-recursive (right-recursive).

• Theorem (Greibach’s normal form): every CFG without empty production rule is
equivalent to a CFG in which the production rules have the following form : A → aα ,

where A is a non terminal symbol, a is a terminal symbol and α is a (possibly empty)

sequence of non terminal symbols.

• Theorem (Chomsky’s normal form): every CFG without empty production rule is
equivalent to a CFG in which the production rules have one of the following forms :

A → B C, A → a , where A, B, C are non terminal symbols and a is a terminal

symbol

11Friday, December 26, 14

3.3 – Normalization

1. Clean the following grammar from the empty productions :
S → S (S) | ε

2. Clean the following grammar from the unary rules, the useless non terminal symbols
and the empty productions (S is the start symbol):
S → X | f X | Y
X → a b c Y | Y | ε
Y → a T | d Z
Z → e S | W | T K | e f
K → c V
W → U | a Y | b
U → b d X | Z
T → a T
V → a f

3. Eliminate left recursivity from the following grammar :
E → E + T | T
T → T × F | F
F → (F) | i

12Friday, December 26, 14

3.3 – Normalization

4. Eliminate empty production rules and left recursivity from the following
grammar (S is the start symbol) :
S → S a | T S c | d
T → T b T | ε

5. Put the following grammar in Chomsky’s normal form :
S → a B | b A
A → a | a S | b A A
 B → b | b S | a B B

6. Put the following grammar in Greibach’s normal form :
A → B C
B → C A | b
C → A B | a

13Friday, December 26, 14

3.4 - Regular Grammars

• Definition: A right linear regular grammar is a CFG that has production rules

in the form : A → αB or A → α , where A and B are a non terminal symbols and α is

a (possibly empty) sequence of terminal symbols.

• Theorem: A language is regular iff it is generated by a regular grammar.

• The proof of this equivalence is based on the identification between non terminal

symbols, terminal symbols, production rules of a CFG on the one hand and states,
input symbols, transitions of an automaton on the other hand.

14Friday, December 26, 14

3.5 - Push Down Automata

• A Push Down Automaton is a FSA which is associated with a stack and the transitions of which

depend on the symbol at the top of the stack, which can be modified at the same time.

• Definition : a Push Down Automaton is a 7-uple (Q, ∑,i, ∑s, ⊥, q0, F, τ) such that :

ü Q is a finite set of states.

ü ∑i is a finite input tape alphabet of symbols.

ü ∑s is a finite stack alphabet of symbols.

ü ⊥ is a particular element of ∑s, marking the bottom of the stack.

ü q0 is a particular element of Q, the start state of the automaton.

ü F is a subset of Q, the accepting states of the automaton.

ü τ is a transition relation which associates a source state q1 from Q, an input tape symbol a

from ∑i ∪ {ε}, a stack top symbol b from ∑s, with a target state q2 from Q and a push word α of

15Friday, December 26, 14

3.5 - Push Down Automata
• The principle of a Push Down Automaton :

ü Initialization: Initially, a word s from ∑i* is written on the tape. The other positions are filled

with the blank symbol ⊥i. A pointer indicates the beginning of the tape.

The control unit is in the state q0 and the stack is empty (it includes only the bottom symbol

⊥).

ü Transition step: A transition can occur if the control unit is in a state q1, if the pointer

indicates the symbol a on the tape, if there is the symbol b at the top of the stack and if the

PDA has a transition (q1, a, b, q2, α) in its transition relation. In this case, the pointer of the

tape moves to the next position. The symbol b at the top of the stack is replaced by the string

α. Finally, the control unit moves to state q2.

Instead of a, if the transition includes the empty word ε, the symbol of the tape indicated by

the pointer does not matter and the pointer does not move.

ü Termination: If in a configuration of the PDA, no transition is possible, the PDA stops. At

this moment, if the unit control is in an accepting state, if the stack is empty and the input

word totally read, this one is said to be accepted by the PDA.

16Friday, December 26, 14

3.5 - Push Down Automata

• A Deterministic Push Down Automaton (DPDA) is a PDA with the following

property : from any state q1, any input tape symbol a and any stack top symbol b, there

is one possible transition at most in the transition relation of the automaton.

A PDA that is not a DPDA is a Non Deterministic Push Down Automaton

(NPDA).

• There are languages that are recognized by NPDA and not by DPDA.

• Theorem : a language is context-free iff it is recognized by a PDA.

17Friday, December 26, 14

3.5 - Push Down Automata

1. Let A = ({q0, q1}, { 0, 1}, {⊥, X}, ⊥, q0, {q0, q1}, τ) be an automaton such that
 τ = { (q0, 1, ⊥, q0, ⊥ X), (q0, 1, X, q0, X X), (q0, 0, X, q1, X), (q1, 1, X , q1, ε) , (q1, 0, ⊥,
q0, ⊥,) }

a) Perform the computations on the following input words: 11011 and 10101101

b) Describe the language recognized by this PDA and give a grammar that
generates this language.

2. Build PDA recognizing the following languages (DPDA if it is possible)

a) {anbn | n ≥ 1}

b) {anbn | n ≥ 0}

c) {apbp+qcq | p ≥ 0, q ≥ 1}

d) The language over the alphabet {a, b} that contains as many a as b.

e) The language of palindromes.

18Friday, December 26, 14

