
2 - Regular Languages and
Finite State Automata

1. Regular Expressions and Regular Languages

2. Deterministic Finite State Automata

3. Non Deterministic Finite State Automata

4. Determinization of Finite State Automata

5. Minimization of Finite State Automata

6. Finite State Automata and Regular Languages

1Friday, December 26, 14

2.1 - Regular Expressions and
Regular Languages

• Definition : The family of regular languages over an alphabet Σ is the least family of

languages over Σ with the following properties :

ü The empty set ø is a regular language.

ü The singleton {ε} is a regular language.

ü For every element a from Σ, the singleton {a} is a regular language.

ü If L is a regular language , its Kleene closure L* is a regular language.

ü If L1 and L2 are regular languages, their concatenation L1 . L2 and their union L1 ∪ L2 are

regular languages.

• A regular expression is the expression of a regular language from elementary languages with

the operations of Kleene closure, concatenation and disjunction.

• Theorem : the class of regular languages over an alphabet Σ is closed under intersection,

complementation and reverse operation.

2Friday, December 26, 14

2.1 - Regular expressions an Regular
languages

1. Determine regular expressions representing the following languages :

a) The car numbers in France (from one to four digits followed by two or three capital letters
and a departmental code from 01 to 98),

b) The decimal numbers in scientific notation (a positive or negative mantisse with one non
null digit before the point followed by the symbol E and a positive or negative exponent
(except 0),

c) All strings over the alphabet {a,b, c} that include one substring ab and one substring ac at
least,

d) All strings over the alphabet {a,b,c} that do not include the substring ac.

3Friday, December 26, 14

2.2 - Deterministic Finite State Automata

• A Finite State Automaton (FSA) is a MT with bounded transitions :

ü The movements of the pointer are only forward movements.

ü The tape can only be read.

To summarize, transitions have the form: (q1, a, a, R, q2)

ü Definition : a Deterministic Finite State Automaton is a 5-uple (Q, ∑, q0, F, τ) such that :

ü Q is a finite set of states of the control unit.

ü ∑ is a finite input tape alphabet of symbols.

ü q0 is a particular element of Q, the start state of the automaton.

ü F is a subset of Q, the accepting states of the automaton.

ü τ is a transition function which associates a source state q from Q and an input symbol a

from ∑ to a target state from Q denoted τ(q,a).

4Friday, December 26, 14

2.2 - Deterministic Finite State Automata

• The principle of a Finite State Automaton :

ü Initialisation: Initially, a string s from ∑* is written on the tape from its beginning. The other

positions are filled with the blank symbol ⊥, which does not belong to ∑. The pointer indicates

the beginning of the tape.

The control unit is initially in the state q0.

ü Transition step : a transition can occur if the control unit is in a state q1, if the pointer

indicates the symbol a on the tape, and if the transition function τ is defined for (q1,a). In this

case, the pointer moves to the next position. Finally, the control unit moves to the state τ(q1,a).

ü Termination :If in a configuration of the FSA, no transition is possible, the FSA stops. At this

moment, if the unit control is in accepting state and if the pointer indicates the end of s, the

input word s is said to be accepted by the FSA.

5Friday, December 26, 14

2.2 - Deterministic Finite State Automata

• Definition : a computation on an automaton is a (possibly empty) sequence of transitions in

the form : We denote :

• The string a1 a2… an is recognized by the automaton if qn is an accepting state.

• The language recognized by the automaton is the set of all strings recognized by the automaton.

6Friday, December 26, 14

2.2 - Deterministic Finite State Automata

• Algorithm of recognition

function D-RECOGNIZE (tape, automaton)

index ← beginning_of (tape)

current-state ← initial_state_of (automaton)

loop

 if index = end_of_input (tape) then

 if current-state ∈ accept_states (automaton) then

 return accept

 else

 return reject

 endif

 elseif transition_table (automaton)[current-state, tape[index]]) = empty then

 return reject

 else

 current-state ← transition_table (automaton)[current-state, tape[index]])

 index ← index + 1

 endif

endloop
7Friday, December 26, 14

2.2 - Deterministic Finite State Automata

b

b

aa

b

b

a b

a

a

b

b

a

b

a

a

a, b

1. Describe the languages recognized by the following FSA:

a)

b)

c)

8Friday, December 26, 14

2.2 - Deterministic Finite State Automata

2. Determine a regular expression and an automaton recognizing the following languages :

a) The set of natural numbers in base 10.

b) {0n 1m | n, m ∈ Ν}.

c) The set of strings of digits including 11. The alphabet is {0,1,…,9}.

d) The set of dates in the format day/month, where day and month are natural
numbers with two digits; month is between 01 and 12 and day must be compatible
with month (for instance, if month = 02 then 01 ≤ day ≤ 29).

e) The set of floating numbers. A floating number is written as a mantisse followed by
an exponent. The mantisse is composed of a facultative sign followed by a whole
part and possibly a decimal which starts with a point. The exponent is composed of
the letter E followed by a facultative sign and a natural number.

f) The language of comments in computer programs. A comment is a sequence of
characters between /* and */. Such sequence cannot include /* and */ except if
these are preceded by the escape character %.

9Friday, December 26, 14

2.3 - Non Deterministic Finite State
Automata

• Definition : a Non Deterministic Finite State Automaton over an alphabet ∑, is a 5-uple

(Q, ∑, q0, F, τ) such that :

ü Q is a finite set of states of the control unit.

ü ∑ ∪ {ε} is a finite input alphabet of symbols. The special symbol ε is the empty word,

that is the unit for concatenation of words from ∑* .

ü q0 is a particular element of Q, the start state of the automaton.

ü F is a subset of Q, the accepting states of the automaton.

ü τ is a transition relation which associates a source state q1 and an input symbol a with

a target state q2.This is denoted: τ(q1,a, q2).

10Friday, December 26, 14

2.4 - Determinization of Finite State
Automata

Automat0 : an example of NFSA to recognized

0

8b

5

9 a

6

ε

b

7
b

 b

1
2 a

3

b

 ε

4

a

 a

 ε

b

11Friday, December 26, 14

2.3 - Non Deterministic Finite State
Automata

An algorithm of recognition :

function ND-RECOGNIZE (tape, automaton)

agenda ← { }

index ← beginning_of (tape)

current-state ← initial_state_of (automaton)

loop
	
 if index = end_of_input (tape) and current-state ∈ accept_states (automaton) then
	
 	
 return accept

	
 else
	
 	
 forall state ∈ transition_table (automaton)[current-state, tape[index]])

	
 	
 	
 agenda ← agenda ∪ {(state, index + 1)}

	
 	
 endforall
	
 	
 forall state ∈ transition_table (automaton)[current-state, ε])

	
 	
 	
 agenda ← agenda ∪ {(state, index)}

	
 	
 endforall
	
 	
 if agenda = { } then
	
 	
 	
 return reject

	
 	
 else
	
 	
 	
 (current-state, index) ← choose_a_new_element(agenda)

	
 	
 endif

	
 endif

endloop
12Friday, December 26, 14

2.4 - Determinization of Finite State
Automata

• The complexity of the recognition problem with a given DFSA is linear-time in the

length of the input word and it does not depend on the size of the automaton.

• Theorem : for any NFSA, there exists an equivalent DFSA, that is an automaton

recognizing the same language

13Friday, December 26, 14

2.4 - Determinization of Finite State
Automata

• The principle of transforming a NFSA into a DFSA is the following:

‣ any state of the DFSA is the set of all NFSA states recognizing the same word of ∑*;

‣ the initial state of the DFSA is the set of all NFSA states recognizing the empty word;

‣ the final states of the DFSA are all states containing a NFSA final state;

‣ if two DFSA states s1 and s2 are respectively associated with w and w.a words from ∑*, there

is a transition from s1 to s2.

• The DFSA is built state by state recursively from its initial state.

14Friday, December 26, 14

2.4 - Determinization of Finite State
Automata

Automat0 : an example of NFSA to recognized

0

8b

5

9 a

6

ε

b

7
b

 b

1
2 a

3

b

 ε

4

a

 a

 ε

b

15Friday, December 26, 14

2.4 - Determinization of Finite State
Automata

Automat1: a DFSA which results from determinizing Automat0.

0

b

2

8

b

5

a

b

11

b

1

4
b

6a

b

b

3

9
b a

 a

a

a

10
a

b

a

7

b

16Friday, December 26, 14

2.5 - Minimization of Finite State
Automata

• If we change the initial state of a FSA with any state q, the language recognized by the

new FSA is the language recognized from state q in the former FSA.

• Every DFSA can be minimized by identifying its interchangeable states, the

states from which the same languages are recognized.

17Friday, December 26, 14

2.5 - Minimization of Finite State
Automata

• For every DFSA A1, the minimal automaton A2 equivalent to A1 is defined as follows:

‣ The states of A2 are the equivalence classes of A1 interchangeable states;

‣ The initial state of A2 is the equivalence class of the A1 initial state;

‣ The final states of A2 are the equivalence classes of the A1 final states;

‣ For any transition in A1 on a symbol a from a state s1 to a state s2, there is a corresponding

transition on a in A2 from the equivalence class of s1 to the equivalence class of s2

18Friday, December 26, 14

2.5 - Minimization of Finite State
Automata

• The minimal automaton is built recursively by approximating the interchangeability

classes step by step, according to Moore’s algorithm (1956):

‣ The partition between equivalence classes is initialized with two classes : the

class of final states and the class of non final states plus the garbage state.

‣ Then, the partition is refined step by step. At each step, each class is partitioned

according to the input transitions from other classes.

‣ The process stops when a fix point is reached.

• The complexity of the algorithm is quadratic in time in the size of the automaton.

• There is an exponential algorithm which consists in determinizing the reverse

automaton.

19Friday, December 26, 14

2.5 - Minimization of Finite State
Automata

Automat2: resulting from the minimization of Automat1.

0

b

2

5-10

a

b1

4
b

a

 a

b

3-8

9

7

b

 a

b

 a

b

6

20Friday, December 26, 14

2.5 - Minimization of Finite State
Automata

1. Consider the following transition table defining a DFSA with the initial state q0 and the
unique accepting state q2. Minimize this automaton.

2. Consider the following transition table defining a NFSA with the initial state q0 and the
unique accepting state q9. Determinize and minimize this automaton.

q0 q1 q2 q3 q4 q5 q6 q7

0 q1 q6 q0 q2 q7 q2 q6 q6

1 q5 q2 q2 q6 q5 q6 q4 q2

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

ε q2 q0 q9 q6

0 q1 q3 q4 q6 q7 q9

1 q2 q5 q2 q6 q8 q9

21Friday, December 26, 14

2.6 - Finite State Automata and
Regular Languages

• FSA can be combined to recognize the languages resulting from the following operations on their

associated languages: union, concatenation, Kleene closure, intersection ,

complementation.

• Theorem (Kleene): the class of the regular languages identifies with the class of the languages

recognized by FSA.

‣ First direction : any regular language is recognized by a FSA.

Proof by induction on the structure of the regular expression defining the language; the

induction step uses the previous theorems for the operations of union, concatenation

and Kleene closure (Thompson method).

‣ Second direction : any language recognized by a FSA is regular.

Proof by addition of a new initial state and a new final state and by removing all

intermediate states step by step (Brzozowski and Mc Cluskey algorithm).

22Friday, December 26, 14

http://fr.wikipedia.org/w/index.php?title=Edward_J._McCluskey&action=edit&redlink=1
http://fr.wikipedia.org/w/index.php?title=Edward_J._McCluskey&action=edit&redlink=1

2.6 - Finite State Automata and
Regular Languages

• Pumping Lemma : let L be an infinite regular language. Then, there are strings x, y and

z, such that y ≠ ε and xynz ∈ L for any n ≥ 0.

• The Pumping Lemma is used to prove that a language is not regular.

23Friday, December 26, 14

2.6 - Finite State Automata and
Regular Languages

1. Build the minimal automaton recognizing the language defined by the regular expression
(a(ca* | b*c)*bc*)*

2. Build a regular expression defining the language recognized by the automaton with
the following transition table (the initial state is q0 and the final states are q2 and q4):

3. Determine a regular expression and an automaton recognizing the following languages
(determinize and minimize the automaton) :

a) The set of strings including 001 and 11 (the alphabet is {0,1}).

b) Date expressions in French like “13 novembre 2005”

c) Sentences in French that do not include the word “moto”. (a sentence is sequence of
words separated with one space)

q0 q1 q2 q3 q4 q5

a q1 q1 q2 q4

b q2 q3 q3 q3

c q4 q5

24Friday, December 26, 14

2.6 - Finite State Automata and
Regular Languages

4. Determine if the following languages are regular :

a) The set of the words defined in the 2001 edition of the dictionary Larousse over the
usual French alphabet plus hyphen.

b) {(ab)n(ba)n | n ∈ Ν}

c) {(ab)na(ba)n | n ∈ Ν}

d) The arithmetic expressions on natural numbers in infixed notation (the usual notation).

e) The arithmetic expressions on natural numbers in polish notation (for instance,
(2-3)x4+10x5 is written + x - 2 3 4 x 10 5).

5. Three missionaries and three cannibals want to cross a river. There is only one boat which
can carry two persons at most. A missionary cannot use the boat alone. A soon as there are
more cannibals than missionaries at some place, the cannibals will eat the missionaries. Is
there a way for the six persons to cross the river without being eaten.
Hints : use an automaton where states represent the possible
distributions of missionaries and cannibals between the two sides of
the river and transitions represent the crossings of the river.

25Friday, December 26, 14

2.6 - Finite State Automata and Regular
Automata

6. The blind barman with boxing gloves

A barman and a client play at the following game :
The barman blindfolds himself and gets boxing gloves. Then, he cannot see and determine if a
glass is up or down. In front of the barman, there is a salver with four glasses put in square.
These glasses can be up or down. Their direction is chosen initially by the client and unknown by
the barman.
The barman can repeat the following operation ten times at most : he indicates the glasses that
he wants to turn over; the client turns the salver and then, the barman turns the glasses over as
he has indicated. If the glasses are all in the same direction, the barman wins.

a) Give an automaton the states of which are the different configurations of the salver and the
transitions are the possible changes of configuration, their input symbols representing the
indications of the barman.

b) From this automaton, deduce another automaton in which the accepting states are the
configurations that are winning for the client.

c) Give an automaton that guarantees the victory to the barman whichever the choice of the
client is.

d) Solve the problem again with three glasses in triangle and then with five glasses in
pentagon.

26Friday, December 26, 14

