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2.1 - Regular Expressions and
Regular Languages 

• Definition : The family of regular languages over an alphabet Σ is the least family of 

languages over  Σ with the following properties :

ü The empty set ø is a regular language.

ü The singleton {ε} is a regular language.

ü For every element a from Σ, the singleton {a} is a regular language.

ü If L is a regular language , its Kleene closure L* is a regular language.

ü If L1 and L2 are regular languages, their concatenation L1 . L2 and their union L1 ∪ L2 are 

regular languages.

• A regular expression is the expression of a regular language from elementary languages with 

the operations of Kleene closure, concatenation and disjunction.

• Theorem : the class of regular languages over an alphabet Σ is closed under intersection, 

complementation and reverse operation.
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2.1 - Regular expressions an Regular 
languages

1. Determine regular expressions representing the following languages :

a) The car numbers in France (from one to four digits followed by two or three capital letters 
and a departmental code from 01 to 98),

b) The decimal numbers in scientific notation (a positive or negative mantisse with one non 
null digit before the point followed by the symbol E and a positive or negative exponent 
(except 0),

c) All strings over the alphabet {a,b, c}  that include one substring ab and one substring ac at 
least,

d) All strings over the alphabet {a,b,c} that do not include the substring ac.
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2.2 - Deterministic Finite State Automata

• A   Finite State Automaton (FSA)  is a MT with bounded transitions :

ü The movements of the pointer are only forward movements. 

ü The tape can only be read. 

To summarize, transitions have the form: (q1, a, a, R, q2)

ü Definition : a Deterministic Finite State Automaton is a 5-uple (Q,  ∑, q0, F, τ) such that :

ü Q is a finite set of states of the control unit.

ü ∑ is a finite input tape alphabet of symbols. 

ü  q0 is a particular element of Q, the start state of the automaton.

ü F is a subset of Q, the accepting states of the automaton.

ü τ is a transition function which associates a source state q  from Q and an input symbol a 

from ∑ to a target state from Q denoted τ(q,a).
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2.2 - Deterministic Finite State Automata

• The principle of a Finite State Automaton :

ü Initialisation: Initially, a string s from ∑* is written on the tape from its beginning. The other 

positions are filled with the blank symbol ⊥, which does not belong to ∑.  The pointer indicates 

the beginning of the tape.

The control unit is initially in the state q0.

ü Transition step : a transition can occur if the control unit is in a state q1,  if the pointer 

indicates the symbol a on the tape, and if the transition function τ is defined for (q1,a). In this 

case, the pointer moves to the next position. Finally, the control unit moves to the state τ(q1,a).

ü Termination :If in a configuration of the FSA, no transition is possible, the FSA stops. At this 

moment, if the unit control is in accepting state and if the pointer indicates the end of s, the 

input word s is said to be accepted by the FSA.

5Friday, December 26, 14



2.2 - Deterministic Finite State Automata

• Definition : a computation on an automaton is a (possibly empty) sequence of transitions in 

the form :                                                                                               We denote :  

• The string a1 a2… an is recognized by the automaton if qn is an accepting state. 

• The language recognized by the automaton is the set of all strings recognized by the automaton.
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2.2 - Deterministic Finite State Automata

• Algorithm of recognition

function D-RECOGNIZE (tape, automaton)

index ← beginning_of (tape)

current-state ← initial_state_of (automaton)

loop

 if index = end_of_input (tape)  then

  if current-state ∈ accept_states (automaton)  then

   return accept

  else

   return reject

   endif

 elseif transition_table (automaton)[current-state, tape[index]]) = empty then

  return reject

 else 

  current-state ← transition_table (automaton)[current-state, tape[index]]) 

  index ← index + 1

 endif

endloop
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2.2 - Deterministic Finite State Automata
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2.2 - Deterministic Finite State Automata

2. Determine a regular expression and an automaton recognizing the following languages :

a) The set  of  natural numbers in base 10.

b) {0n 1m | n, m ∈ Ν}.

c) The set  of strings of digits including 11. The alphabet is {0,1,…,9}.

d) The set of dates in the format day/month, where day and month are  natural 
numbers with two digits; month is  between 01 and 12  and day must be compatible 
with  month (for instance, if  month = 02 then 01 ≤ day ≤ 29).

e) The set of floating numbers. A floating number is written as a mantisse followed by  
an exponent. The mantisse is composed of a facultative sign followed by a whole 
part and possibly a decimal which starts with a point. The exponent is composed of 
the letter E followed by a facultative sign and a natural number.

f) The language of comments in computer programs. A comment is a sequence of 
characters between /* and */. Such sequence cannot include /* and */ except if 
these are preceded by the escape character %. 
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2.3 - Non Deterministic Finite State 
Automata

• Definition : a Non Deterministic Finite State Automaton over an alphabet ∑, is a 5-uple 

(Q,  ∑, q0, F, τ) such that :

ü Q is a finite set of states of the control unit.

ü ∑ ∪ {ε} is a finite input alphabet of symbols.  The special symbol ε is the empty word, 

that  is the unit for concatenation of words from ∑* .

ü  q0 is a particular element of Q, the start state of the automaton.

ü F is a subset of Q, the accepting states of the automaton.

ü τ is a transition relation which associates a source state q1 and an input symbol a with 

a target state  q2.This is denoted:  τ(q1,a, q2).
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2.4 - Determinization of Finite State 
Automata

Automat0 : an example of NFSA  to recognized

0

8b

5

9 a

6

ε

b

7
b

 b

1
2 a

3

b

 ε

4

a

 a

 ε

b

11Friday, December 26, 14



2.3 - Non Deterministic Finite State 
Automata

An algorithm of recognition :

function ND-RECOGNIZE (tape, automaton)

agenda ←  { }

index ← beginning_of (tape)

current-state ← initial_state_of (automaton)

loop
	
 if index = end_of_input (tape)  and current-state ∈ accept_states (automaton)  then
	
 	
 return accept

	
 else
	
 	
 forall state   ∈  transition_table (automaton)[current-state, tape[index]]) 

	
 	
 	
 agenda ← agenda ∪ {(state, index + 1)} 

	
 	
 endforall
	
 	
 forall state   ∈  transition_table (automaton)[current-state, ε]) 

	
 	
 	
 agenda ← agenda ∪ {(state, index )} 

	
 	
 endforall
	
 	
 if agenda = { } then
	
 	
 	
 return reject

	
 	
 else
	
 	
 	
 (current-state, index) ← choose_a_new_element(agenda)

	
 	
 endif

	
 endif

endloop
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2.4 - Determinization of Finite State 
Automata

• The complexity of the recognition problem with a given DFSA is linear-time  in  the 

length of the input word and it does not depend on the size of the automaton.

• Theorem : for any NFSA, there exists an equivalent  DFSA,  that is an automaton 

recognizing the same language
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2.4 - Determinization of Finite State 
Automata

• The principle of transforming a NFSA into a DFSA is the following:

‣ any state of the DFSA is the set of all NFSA states recognizing the same word of ∑*;

‣ the  initial state of the DFSA is the set of all NFSA states recognizing the empty word;

‣ the final states of the DFSA are all states containing a NFSA final state; 

‣ if two DFSA states s1 and s2 are respectively associated with w and w.a words from ∑*, there 

is a transition from s1 to s2. 

• The DFSA is built state by state recursively from its initial state. 
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2.4 - Determinization of Finite State 
Automata

Automat0 : an example of NFSA  to recognized
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2.4 - Determinization of Finite State 
Automata

Automat1: a DFSA which results from determinizing Automat0.
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2.5 - Minimization of Finite State 
Automata

• If we change the initial state of a FSA with any state q, the language recognized by the 

new FSA is the language recognized from state q in the former FSA.

• Every DFSA can be minimized by identifying its interchangeable states, the 

states from which the same languages are recognized.
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2.5 - Minimization of Finite State 
Automata

• For every DFSA  A1, the minimal automaton A2 equivalent to A1 is defined as follows:

‣ The states of A2 are the equivalence classes of A1 interchangeable states;

‣ The initial state of A2 is the equivalence class of the A1 initial state;

‣ The final states of A2 are  the equivalence classes of the A1 final states;

‣ For any transition in A1 on a symbol a from a state s1 to a state s2, there is a corresponding 

transition on a in A2  from the equivalence class of s1 to the equivalence class of s2
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2.5 - Minimization of Finite State 
Automata

• The minimal automaton is built recursively by approximating the interchangeability 

classes step by step, according to Moore’s algorithm (1956):

‣ The partition between equivalence classes is initialized with two classes : the 

class of final states and the class of non final states plus the garbage state. 

‣ Then, the partition is refined step by step. At each step, each class is partitioned 

according  to the input transitions from other classes.

‣ The process stops when a fix point is reached.

• The complexity of the algorithm is quadratic in time in the size of the automaton. 

• There is an exponential algorithm which consists in determinizing the reverse 

automaton.
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2.5 - Minimization of Finite State 
Automata

Automat2: resulting from the minimization of Automat1.
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2.5 - Minimization of Finite State 
Automata

1. Consider the following transition table defining a DFSA with the initial state  q0 and the  
unique accepting state q2. Minimize this automaton.

2. Consider the following transition table defining a NFSA with the initial state  q0 and the  
unique accepting state q9. Determinize and minimize this automaton.

q0 q1 q2 q3 q4 q5 q6 q7

0 q1 q6 q0 q2 q7 q2 q6 q6

1 q5 q2 q2 q6 q5 q6 q4 q2

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

ε q2 q0 q9 q6

0 q1 q3 q4 q6 q7 q9

1 q2 q5 q2 q6 q8 q9
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2.6 - Finite State Automata and 
Regular Languages

• FSA can be combined to recognize the languages resulting from the following operations on their 

associated languages:  union, concatenation, Kleene closure, intersection , 

complementation. 

• Theorem (Kleene): the class of the regular languages identifies with the class of the languages 

recognized by FSA. 

‣ First direction : any regular language is recognized by a FSA.

Proof by induction on the structure of the regular expression defining the language; the 

induction step uses the previous theorems for the operations of union, concatenation 

and Kleene closure (Thompson method). 

‣ Second direction : any language recognized by a FSA is regular.

Proof by addition of a new initial state and a new final state and by removing all 

intermediate states step by step (Brzozowski and Mc Cluskey algorithm).
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2.6 - Finite State Automata and 
Regular Languages

• Pumping Lemma : let L be an infinite regular language. Then, there are strings x, y and 

z, such that y ≠ ε and xynz ∈ L for any n ≥ 0.

• The Pumping Lemma is used to prove that a language is not regular.
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2.6 - Finite State Automata and 
Regular Languages

1. Build the minimal automaton recognizing the language defined by the regular expression 
(a(ca* | b*c)*bc*)*

2. Build a regular expression defining the language recognized by the automaton with 
the following transition table (the initial state is q0 and the final states are q2 and q4):

3. Determine a regular expression and an automaton recognizing the following languages 
(determinize and minimize the automaton) :

a) The set of strings including 001 and 11 (the alphabet is {0,1}).

b) Date expressions in French like “13 novembre 2005” 

c) Sentences in French that do not include the word “moto”. (a sentence is sequence of 
words separated with one space) 

q0 q1 q2 q3 q4 q5

a q1 q1 q2 q4

b q2 q3 q3 q3

c q4 q5
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2.6 - Finite State Automata and 
Regular Languages

4. Determine if the following languages are regular :

a) The set of the words defined in the 2001 edition of the dictionary Larousse over the 
usual French alphabet plus hyphen.

b) {(ab)n(ba)n | n ∈ Ν}

c) {(ab)na(ba)n | n ∈ Ν}

d) The arithmetic expressions on natural numbers in infixed notation (the usual notation).

e) The arithmetic expressions on natural numbers in polish notation ( for instance, 
(2-3)x4+10x5 is written + x - 2 3 4 x 10 5).

5. Three missionaries and three cannibals want to cross a river. There is only one boat which 
can carry two persons at most. A missionary cannot use the boat alone. A soon as there are 
more cannibals than missionaries at some place, the cannibals will eat  the missionaries. Is 
there a way for the six persons to cross the river without being eaten.
Hints : use an automaton where states represent the possible 
distributions of missionaries and cannibals between the two sides of 
the river and transitions represent the crossings of the river.
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2.6 - Finite State Automata and Regular 
Automata

6. The blind barman with boxing gloves

A barman and a client play at the following game :
The barman blindfolds himself and gets boxing gloves. Then, he cannot see and determine if a 
glass is up or down. In front of the barman, there is a salver with four glasses put in square. 
These glasses can be up or down. Their direction is chosen initially by the client and unknown by 
the barman.
The barman can repeat the following operation ten times at most : he indicates the glasses that 
he wants to turn over;  the client turns the salver and  then, the barman turns the glasses over as 
he has indicated. If the glasses are all in the same direction, the barman wins.

a) Give an automaton the states of which are the different configurations of the salver and the 
transitions are the possible changes of configuration, their input symbols representing the 
indications of the barman.

b) From this automaton, deduce another automaton in which the accepting states are the 
configurations that are winning for the client.

c) Give an automaton  that guarantees the victory to the barman whichever the choice of the 
client is.

d) Solve the problem again with three glasses in triangle and then with five glasses in 
pentagon.
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