
Formal languages and
computation models

Guy Perrier

1Friday, December 26, 14

Bibliography

• John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman - Introduction to Automata

Theory, Languages, and Computation - Addison Wesley, 2006.

2Friday, December 26, 14

1 - General ideas

1. Introduction

2. Formal languages

3. Computation models

3

3Friday, December 26, 14

1.1 - Introduction

• The course aims at giving the theoretical foundations to understand the notions of

programming language, interpretation and compilation of programming and data

languages, complexity of a computation.

• The general framework is the theory of formal languages. Linguistics greatly contributed to

its first developments (Chomsky 56) because of the proximity of formal languages with natural

languages.

• Natural languages are essentially ambiguous and evolutionary, whereas formal languages

are essentially non ambiguous and frozen.

4Friday, December 26, 14

1.1 - Introduction

• By analogy with linguistics, a computer program can be viewed as an utterance in a given

language. As for an utterance in a natural language, a program must be parsed to be

interpreted or to be translated into another language. Usually, the translation is

performed to a lower level language; in this case, it is called compilation.

• Parsing is related to the syntax of the program whereas interpretation and compilation are

related to its semantics.

5Friday, December 26, 14

1.1 - Introduction

• Parsing is performed by an abstract machine according to a computation model.

This model depends on the concerned language. Generally, the complexity of

parsing increases with the expressivity of the language.

• Parsing concerns not only programming languages but various kinds of formal

languages (HTML, XML, Postscript, Tex, Latex…).

6Friday, December 26, 14

1.2 - Formal languages

• A formal language L over a finite alphabet Σ of symbols is a part of the set Σ* of

words composed of symbols from Σ. The class of languages defined over Σ is

equipped with the following operations : intersection, union, concatenation, Kleene

closure, complementation.

• If L is infinite, it is important to have a computation procedure for recognizing L , that

is for deciding if any word from Σ* belongs to L. If such a procedure exists, L is said to

be recursive.

• If there exists only a computation procedure for enumerating L, L is said to be

recursively enumerable.

7Friday, December 26, 14

1.3 - Computation models

• The foundation of the computation theory is due to Turing , who has formalized the

concept of computation by designing general abstract machines (1936).

• A Turing Machine (TM) is composed of two parts:

ü an infinite tape in one-to-one correspondence with Ζ and a pointer at the current

position which can be read and written;

ü A control unit which controls the forward and backward movements of the

pointer as the actions of reading and writing on the tape.

8Friday, December 26, 14

1.3 - Computation models

• Formally, a TM is defined as a 5-uple (Q, ∑, q0, F, τ) such that :

ü Q is the finite set of states of the unit control.

ü ∑ is the finite tape alphabet of symbols plus a blank symbol ⊥ which is not in ∑.

ü q0 is a particular element of Q, the start state of the TM.

ü F is a subset of Q, the accepting states of the TM.

ü τ is a transition relation which associates a source state q1 from Q, a tape input symbol a from

∑ ∪ {⊥}, with an output symbol b from ∑ ∪ {⊥}, a direction d of movement, which can takes

the values L or R, and a target state q2 from Q. This is denoted : τ (q1, a, b, d, q2).

9Friday, December 26, 14

1.3 - Computation models

• The principle of a Turing Machine :

ü Initialisation: Initially, a word s from ∑* is written on the tape. The other positions are filled

with the blank symbol ⊥. A pointer indicates the position of the first symbol of s. (if s is empty,

the initial position of the pointer does not matter).

The control unit is initially in the state q0.

ü Transition step : a transition can occur if the control unit is in a state q1, if the pointer

indicates the symbol a on the tape, and if the TM has a transition (q1, a, b, d, q2) in its transition

relation τ. In this case, the symbol a is replaced by b on the tape, the pointer moves to the next

position on the left if d = L and on the right if d = R. Finally, the control unit moves to state q2.

ü Termination :If in a configuration of the TM, no transition is possible, the TM stops. At this

moment, if the unit control is in accepting state, the input word is said to be accepted by

the TM. The word on the tape at this moment constitutes the output word of the computation.

10Friday, December 26, 14

1.3 - Computation models
• The language recognized by a TM (Q, ∑, q0, F, d) is the set of words from ∑,* that are

recognized by this TM.

• A TM is deterministic (DTM) if its transition relation does not include two distinct transitions with

the same source state and the same input symbol.

• A language is recursively enumerable if it is recognized by a TM.

• A language is recursive or decidable if there exists a TM that stops whatever input is and that

recognizes this language.

• For a TM recognizing a recursive language, the function that associates any input of a DTM to

the word read on the tape when the DMT stops in an accepting state is said to be a recursive

(computable) function.

11Friday, December 26, 14

1.3 - Computation models : exercises

1. A TM is defined by the following transition table :

The initial state is s0 and there is one accepting state s5.

a) What are the computations and possibly the output words produced by the MT with the following

input words : 01 0101 0011 00011

b) What are the words built with 0 and 1 recognized by the MT ?

τ 0 1 X Y ⊥

s0 (s1, X, R)

s1 (s1, 0, R) (s2, Y, L) (s1, Y, R)

s2 (s4, 0, L) (s3, X, R) (s2, Y, L)

s3 (s3, Y, R) (s5, Y, R)

s4 (s4, 0, L) (s0, X, R)

12Friday, December 26, 14

1.3 - Computation models : exercises
2. Build a TM that recognizes the following languages :

a) The set of even binary numbers.

b) The set of sentences in French that contain the word “la” (we assume that
there is no hyphens and no dots in such sentences except one full stop).

c) The set of palindromes built with the letters “a” and “b”.

d) The set of strings composed of an equal number of symbols “a”, “b” and “c”.

e) The set of strings in the form w w such that w is any string composed of
symbols “a” or “b”.

3. Build a TM that realizes the following recursive functions :

a) A function that doubles any binary number.

b) A function that removes all zeros on the right of any binary number.

c) A function that removes all “b” from a string composed of symbols “a” or “b”
and that removes the spaces between the remaining “a”.

d) A function that reverses a string composed of symbols “a” or “b”

13Friday, December 26, 14

