
3 - Context Free Grammars

1. Introduction

2. Definitions

3. Regular Grammars

4. Expressivity and the Chomsky Hierarchy

5. Parsing with tabulation

1

1Friday, December 26, 14

keynote:/Users/perrier/Desktop/M2_outilsTAL/cours2011-2012%20-%20keynote/parsing.key
keynote:/Users/perrier/Desktop/M2_outilsTAL/cours2011-2012%20-%20keynote/parsing.key

3.1 – Introduction

• The expressivity of regular languages is too limited for the representation of natural

languages (centre-embedded recursion).

• Moreover, regular expressions and automata are not well suited to the description of properties

of natural languages (constituency).

• A new paradigm was introduced by Chomsky (1956), Schützenberger, Backus (1959) and Naur

(1960) : whereas regular languages are built recursively from elementary languages by means

of three operations, a context-free language is derived from a set of rewriting rules

which constitute its grammar; these rules must respect some syntactic constraints to build a

Context-Free Grammar (CFG).

2Friday, December 26, 14

3.2 – Definitions

• A Context-Free Grammar is a 4-uple (N, T, S, R) such that :

ü N is a finite alphabet of non terminal symbols.

ü T is a finite alphabet of terminal symbols.

ü S is a particular element of N, the start symbol.

ü R is a finite set of production rules in the form A → α, where A is a non terminal and α is a

string from → (N ∪T)*

• The derivation relation ⇒ between words from (N ∪T)* is defined as follows : α1A α2 ⇒

α1 α α2 if A → α ∈ R. Its reflexive and transitive closure is written : ⇒ *

• The language generated by the grammar is the set of words α from T* such that : S ⇒ * α. It is

a context-free language.

3Friday, December 26, 14

3.2 – Definitions

• The grammar G is defined by the following rules and its start symbol is S:

 S → NP Vintr

 S → NP Vtr NP

 S → NP Vc Compl

S → S PP

NP → Det N

NP → NP PP

Compl → Conj S

PP → Prep NP

NP → jean

Det → le

N → bébé

N → berceau

Vintr → dort

Vtr → porte

Vc → pense

Prep → dans

Conj → que

4Friday, December 26, 14

3.2 – Definitions

• A derivation of a string α of the language is a sequence S ⇒ α1 ⇒ α2 ⇒ … ⇒ α. It is

represented in a compact way by a parse tree. A parse tree is an ordered tree labelled with

symbols from N ∪ T. The root is labelled with S and the leaves with terminal symbols. Every

node that is not a leaf is labelled with a non terminal symbol A and its ordered daughters are

labelled with symbols constituting a string α such that A → α is a production rule of the

grammar.

• Two grammars are equivalent if they generate the same language.

• A grammar is ambiguous if there exists a word from its language that corresponds to two

different parse trees at least. In natural languages, ambiguity has an important place whereas in

programming languages ambiguity is rejected.

5Friday, December 26, 14

3.2 – Definitions

1. From the grammar to the language
Determine the languages generated by the following grammars. The start symbol is S. If
the grammars are ambiguous, show it with an example.

a) S → ε | aaaS

b) S → ε | aA | Bb A → Sb B → aS

c) S → S 0 S 0 S | 1

d) S → ε | aiSai for any i such that 1 ≤ i ≤ n

2. From the language to the grammar
Determine CFGs generating the following languages.
Hints : for the three first cases, start from grammars generating the language {an bn}

a) L1 = { an bp | 0 < p < n }

b) L2 = { an bn cm dm | n, m ∈ Ν }

c) L3 = { an bm cp | n = m or p = m }

1. L4 = a(ab*)*

6Friday, December 26, 14

3.2 – Definitions

3. Ambiguous grammars
Show that the following grammars are ambiguous. Their start symbol is S.

• S → if B then S | if B then S else S | s
 B → b

• S → S PP | NP VP
 PP → with NP

 VP → V NP

 V → meets

 NP → NP PP | mary | john | peter

7Friday, December 26, 14

3.3 - Regular Grammars

• Definition: A (right linear) regular grammar is a CFG that has production rules

in the form : A → αB or A → α , where A and B are a non terminal symbols and α is a

(possibly empty) sequence of terminal symbols.

• Theorem: A language is regular iff it is generated by a regular grammar.

• The proof of this equivalence is based on the identification between non terminal

symbols, terminal symbols, production rules of a CFG on the one hand and states,
input symbols, transitions of an automaton on the other hand.

8Friday, December 26, 14

3.4 - Expressivity and the Chomsky
hierarchy

• By relaxing the form of the rules in a CFG, we obtain more expressive classes of
grammars.

• It is possible to construct a hierarchy of four classes, numbered from 0 to 3: the

Chomsky Hierarchy.

• Every class of the hierarchy strictly includes the classes with a greater number : the
expressivity decreases with the numbering.

• At the same time, the complexity of the machines dedicated to language recognition
for every class decreases too with the numbering.

9Friday, December 26, 14

3.4 - Expressivity and the Chomsky
hierarchy

Type Name Rule Skeleton Recognition complexity

0 Turing equivalent α → γ such that : α ≠ ε
= Languages recursively
enumerable by Turing
machines

1 Context Sensitive α A β → α γ β such that : γ ≠ ε ⊂ Recursive languages
recognized by Turing machines

2 Context Free A → γ = Languages recognized by
Push Down Automata

3 Regular A → γ B or A → γ with γ ∈T* = Languages recognized by
Finite State Automata

10Friday, December 26, 14

3.4 - Expressivity and the Chomsky
hierarchy

• The class of Regular Languages is not expressive enough for representing some

natural languages.

• The class of Context Free Languages is not expressive enough for representing

some natural languages (the syntax of Swiss-German, the morphology of Bambara).

• The adequacy of linguistic formalisms should not be only evaluated by considering
the generated languages but also by examining their ability to express linguistic

generalities, especially linguistic structures.

11Friday, December 26, 14

3.5 – Parsing with tabulation:
introduction

• Parsing a sentence with a CFG consists in building all its derivations trees for this CFG.

• There are two fundamental methods of parsing corresponding to two directions of construction for

the derivation tree: from the root to the leaves (top-down) or from the leaves to the root

(bottom-up).

• The weakness of the top-down method: a lot of derivation trees are generated before examining

the agreement with the input sentence; most of them do not agree.

• The weakness of the bottom-up method: even if the number of generated derivation trees is more

restricted, because guided by the input sentence, some partial trees are useless because they

cannot enter a tree rooted at the sentence category.

12Friday, December 26, 14

3.5 – Parsing with tabulation:
introduction

• Since natural languages are highly ambiguous, sentences generally have several

derivation trees.

• To deal with ambiguity, parsing algorithms resort to a specific form of dynamic

programming called tabulation: intermediate results are stored in a table so that

they can be re-used if necessary.

13Friday, December 26, 14

3.5 – Parsing with tabulation:
 the CKY algorithm

• The CKY algorithm is a bottom-up algorithm : it builds partial derivation trees from their leaves.

• The CKY algorithm uses tabulation. Intermediate parsing states are stored in a chart

composed of items.

If the sentence to parse is w1 w2 … wn , any item has the form <w, i, i+1> or < A , i , j> with the

following meaning:

‣ in the first case, the word w is the word wi+1 of the sentence;

‣ in the second case, there is a derivation tree with A labelling the root and the words wi+1 … wj

is of the sentence labelling its leaves.

14Friday, December 26, 14

3.5 – Parsing with tabulation:
 the CKY algorithm

• The CKY algorithm consists in filling the chart with items by application of the following derivation

rules :

 ---------------------------- Init
 < wi+1 , i, i+1 >

 < α1, i1, i2 > < α2, i2, i3 > ... < αp, ip, ip+1 >
 --- Complete with A ⟶ α1 ... αp ∊ G
 < A, i1, ip+1 >

• The process of parsing ends when no new item can be produced and it succeeds if the item < S,

0, n > is present in the chart.

• Different orders of rule application define different strategies of parsing. Relevant strategies are

those which are complete: any derivable item is produced by application of the strategy.

15Friday, December 26, 14

3.5 – Parsing with tabulation:
the CKY algorithm

• The CKY algorithm in the previous form is a recognition algorithm. To transform it into a

parsing algorithm, every item must be augmented with a list of pointers to items that have

contributed to its completion.

• The worst case running time of CKY is O(n3.|G|) , where n is the length of the parsed string and |G|

is the size of the grammar G. For this, G must be rendered into Chomsky normal form : all

production rules have the form A ⟶ B C or A ⟶ a.

16Friday, December 26, 14

3.5 – Parsing with tabulation:
 the Earley algorithm

• The Earley algorithm is a mixed algorithm : it makes predictions top-down; the predictions are

confirmed by scanning the input sentence and then completions are performed bottom-up.

• The Earley algorithm uses tabulation. Intermediate parsing states are stored in a chart

composed of items.

If the sentence to parse is w1 w2 … wn , any item has the form < A ⟶ α • β , i , j> with the

following meaning: wi+1 … wj is a segment of the sentence that has already been recognized as

the sequence α; a consecutive segment is expected to be recognized as the sequence β, so that

the concatenation of the two segments will be recognized with the category A by means of the

rule A ⟶ α • β of the grammar.

The dotted rule A ⟶ α • β expresses the progress in the use of the grammar rule.

17Friday, December 26, 14

3.5 – Parsing with tabulation:
 the Earley algorithm

• The Earley algorithm consists in filling the chart with items by application of the following

derivation rules :

 ---------------------------- Init with S ⟶ α ∊ G
 < S ⟶ • α , 0, 0 >

 < A ⟶ α • B β , i, j >
 ------------------------------ Predict with B ⟶ ɣ ∊ G
 < B ⟶ • ɣ , j, j>

 < A ⟶ α • wj β , i, j >
 --------------------------------- Scan
 < A ⟶ α wj • β , i, j+1 >

 < A ⟶ α • B β , i, j > < B ⟶ ɣ • , j, k >
 --- Complete
 < A ⟶ α B • β , i, k >

18Friday, December 26, 14

3.5 – Parsing with tabulation:
the Earley algorithm

• The process of parsing ends when no new item can be produced and it succeeds if the item < S

⟶ α • , 0, n > is present in the chart.

• Different orders of rule application define different strategies of parsing. Relevant strategies are

those which are complete: any derivable item is produced by application of the strategy.

• The Earley algorithm in the previous form is a recognition algorithm. To transform it into a

parsing algorithm, every item must be augmented with a list of pointers to items that have

contributed to its completion.

• The worst case running time of Earley is O(n3.|G|2) , where n is the length of the parsed string

and |G| is the size of the grammar G.

19Friday, December 26, 14

3.5 – Parsing with tabulation:
 the Earley algorithm

• Example of a complete Earley strategy:

 function EARLEY-PARSE (sentence, grammar)

 for each rule S ⟶ α ∊ grammar
 ENQUEUE (S ⟶ • α , chart [0])
 for i from 0 to LENGTH (sentence)
 for each item ∊ chart[i]
 if INCOMPLETE (item)
 if NEXT-SYMBOL (item) is a non terminal
 PREDICT(item, grammar, chart)
 else
 SCAN (item, sentence, chart)
 else
 COMPLETE(item, grammar, chart)
 return chart

20Friday, December 26, 14

3.5 – Parsing with tabulation:
 the Earley algorithm

1. Consider the following CFG :
S ⟶ NP VP

NP ⟶ Det N | NP that VP

VP ⟶ V NP

Det ⟶ the | that | no

N ⟶ agencies | book | flight | chance

V ⟶ book | flight | have

For the sentence “the agencies that book that flight have no chance.”, determine if the

following items are derivable from the Earley algorithm.

a) < S → NP • VP, 0, 2 >

b) < NP → Det N •, 2, 4 >

c) < VP → V • NP, 3, 4 >

d) < NP → NP that VP • , 0, 6 >

21Friday, December 26, 14

3.5 – Parsing with tabulation:
 the Earley algorithm

2. Consider the following CFG :
S ⟶ NP VP

NP ⟶ NP VP | fish

VP ⟶ V NP

V ⟶ fish

Parse the following sentences with this grammar using the CKY and Earley algorithms.

a) fish fish fish

b) fish fish fish fish

c) fish fish fish fish fish

22Friday, December 26, 14

