2 - Finite State Methods

1. From Regular Expressions to Finite State Automata
2. Finite-State Autemata
3. Deterministic Finite State Automata
4. Non Deterministic Finite State Automata
5. Determinization of Finite State Automata
6. Minimization of Finite State Automata
7. Finite State Automata and Regular Languages
8. Finite State Transducers
9. Determinization of Finite State Transducers
10. Application of finite state methods to NLP

Bibliography

- D. Jurasfsky \& J. H. Martin - Speech and Language Processing - Prentice Hall, 2008.
- Emmanuel Roche \& Yves Schabes - Finite-State Language Processing - MIT Press, 1997.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman - Introduction to Automata Theory, Languages, and Computation - Addison Wesley, 2006.

2.1 - From Regular Expressions to
 Finite State Automata

- Some sets of strings (named entities, numerals, dates ...), which can be infinite, need to be characterized in a compact finite way.
- Regular expressions are used to characterize these sets of strings, which constitute regular languages.
- Finite State Automata (FSA) are abstract computing machines used to recognize regular languages.

2.2 - Finite State Automata

- Finite State Automata (FSA) are abstract computing machines, the goal of which is to recognize particular languages: regular languages.
- FSA can be normalized to get time and space efficiency (determinization and minimization).
- FSA combine in various manners to produce new FSA.

2.2 - Finite State Automata

A Finite State Automaton (FSA) is composed of two parts:

- An infinite tape where positions are numbered $0,1,2, \ldots$ until the infinite; a pointer marks the current position which can be read only; the pointer can only move forward.
- A control unit which controls the forward movements of the pointer as the actions of reading the tape.

2.3 - Deterministic Finite State Automata

Definition : a Deterministic Finite State Automaton is a 5 -tuple $\left(Q, \Sigma, q_{0}, F, \tau\right)$ such that :

- Q is a finite set of states of the control unit.
- Σ is a finite input tape alphabet of symbols.
- q_{0} is a particular element of Q, the start state of the automaton.
- F is a subset of Q, the accepting states of the automaton.
- $\quad \tau$ is a transition function which associates a source state q from Q and an input symbol a from Σ to a target state from Q denoted $\tau(q, a)$.

2.3 - Deterministic Finite State Automata

- Definition : a computation on an automaton is a (possibly empty) sequence of transitions in the form : $q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} q_{n}$ where q_{0} is the initial state. We denote : $q_{0} \xrightarrow{a_{1} a_{2} \cdots a_{n}} * * q_{n}$ and we say that q_{n} recognizes the word $a_{1} a_{2} \ldots a_{n}$
- A word is recognized by the automaton if it recognized by an accepting state.
- The language recognized by the automaton is the set of all words recognized by the automaton.
- The time complexity of the recognition problem with a deterministic automaton is linear with respect to the input size.

2.3 - Deterministic Finite State Automata

- Algorithm of recognition

```
function D-RECOGNIZE (tape, automaton)
index < beginning_of (tape)
current-state < initial_state_of (automaton)
loop
    If index = end_of_input (tape) then
            if current-state \in accept_states (automaton) then
                return accept
            else
                return reject
            endif
    elseif transition_table (automaton)[current-state, tape[index]]) = empty then
            return reject
    else
            current-state \leftarrow\leftarrow transition_table (automaton)[current-state, tape[index]])
            index }\leftarrow~\mathrm{ index + 1
        endif
endloop
```


2.3 - Deterministic Finite State Automata

1.

Describe the languages recognized by the following FSA:
a)

b)

2.3 - Deterministic Finite State Automata

2. Determine an automaton recognizing the following languages :
a) The set of natural numbers in base 10 .
b) $\quad\left\{0^{\mathrm{n}} 1^{\mathrm{m}} \mid \mathrm{n}, \mathrm{m} \in \mathrm{N}\right\}$.
c) The set of strings including 11 (the alphabet is $\{0,1\}$).
d) The set of dates in the format day/month, where day and month are natural numbers with two digits; month is between 01 and 12 and day must be compatible with month (for instance, if month $=02$ then $01 \leq$ day ≤ 29).
e) The set of floating numbers. A floating number is written as a mantissa followed by an exponent. The mantissa is composed of a facultative sign followed by a whole part and possibly a decimal which starts with a point. The exponent is composed of the letter E followed by a facultative sign and a natural number.
f) The language of comments in computer programs. A comment is a sequence of characters between /* and */. Such sequence cannot include /* and */ except if these are immediately preceded by the escape character $\%$.

2.3 - Deterministic Finite State Automata

We consider a reduced lexicon for a fragment of French which associates a POS set to every word. The POS used in this lexicon are : Det (determiner), CN(Common Noun), PN (Proper Noun), V (intransitive verb), Vcompl (verb with a sentential clause complementized by "que" as direct object), Conj (subordinating conjunction "que"), Adv (Adverb modifying any verb).
We consider French sentences and we assume that all sentences are tagged with the previous POS from the lexicon and we want to build an automaton to recognize the grammatical sentences.
The words (in the sense of automata) that have to be recognized by the automaton are sequences of POS. For instance, for the sentence "Jean ${ }_{P N} p e n s e_{V c o m p l} q u e_{C o n j}$ $l a_{\text {Det }} f e m m e_{C N}$ arrive $_{V}$ ", the input word for the automaton is "PN Vcompl Conj Det CN V".
Build a DFSA for recognizing the largest fragment of French that can be defined from the given set of POS.

2.4 - Non Deterministic Finite State Automata

Definition : a Non Deterministic Finite State Automaton over an alphabet Σ, is a 5tuple $\left(Q, \Sigma, q_{0}, F, \tau\right)$ such that :

- Q is a finite set of states of the control unit.
- $\Sigma \cup\{\varepsilon\}$ is a finite input alphabet of symbols. The special symbol ε is the empty string, that is the unit for concatenation of strings from $\Sigma \cup\{\varepsilon\}$.
- q_{0} is a particular element of Q, the start state of the automaton.
- F is a subset of Q, the accepting states of the automaton.
- $\quad \tau$ is a transition relation which associates a source state q_{1} and an input symbol a with a target state q_{2}. This is denoted: $\tau\left(q_{1}, a, q_{2}\right)$.

2.4 - Non Deterministic Finite State Automata

An algorithm of recognition :

function ND-RECOGNIZE (tape, automaton)
agenda $\leftarrow\}$
index \leftarrow beginning_of (tape)
current-state \leftarrow initial_state_of (automaton)
loop
if index = end_of_input (tape) and current-state \in accept_states (automaton) then
return accept
else
forall state \in transition_table (automaton)[current-state, tape[index]])
agenda \leftarrow agenda $\cup\{($ state, index +1$)\}$
endforall
forall state \in transition_table (automaton)[current-state, e])
agenda \leftarrow agenda $\cup\{($ state, index $)\}$
endforall
if there is no new element in agenda then
return reject
else
(current-state, index) \leftarrow choose a new element(agenda)
endif
endif
endloop

2.5 - Determinization of Finite State Automata

- The complexity of the recognition problem with a given DFSA is linear-time in the length of the input word and it does not depend on the size of the automaton.
- Theorem : for any NFSA, there exists an equivalent DFSA, that is an automaton recognizing the same language

2.5 - Determinization of Finite State Automata

- The principle of transforming a NFSA into a DFSA is the following:
> any state of the DFSA is the set of all NFSA states recognizing the same word of \sum^{\star};
- the initial state of the DFSA is the set of all NFSA states recognizing the empty word;
- the final states of the DFSA are all states containing a NFSA final state;
> if two DFSA states s_{1} and s_{2} are respectively associated with w and $\mathrm{w} . \operatorname{a}$ words from Σ^{\star}, there is a transition from s_{1} to s_{2}.
- The DFSA is built state by state recursively from its initial state.

2.5 - Determinization of Finite State

Automata

2.5 - Determinization of Finite State

Automata

2.6 - Minimization of Finite State Automata

- If we change the initial state of a FSA with any state q, the language recognized by the new FSA is the language recognized from state q in the former FSA.
- Every DFSA can be minimized by identifying its interchangeable states, the states from which the same languages are recognized.

2.6 - Minimization of Finite State Automata

- For every DFSA A_{1}, the minimal automaton A_{2} equivalent to A_{1} is defined as follows:
- The states of A_{2} are the equivalence classes of A_{1} interchangeable states;
, The initial state of A_{2} is the equivalence class of the A_{1} initial state;
, The final states of A_{2} are the equivalence classes of the A_{1} final states;
- For any transition in A_{1} on a symbol a from a state s_{1} to a state s_{2}, there is a corresponding transition on a in A_{2} from the equivalence class of s_{1} to the equivalence class of s_{2}

2.6 - Minimization of Finite State Automata

- The minimal automaton is built recursively by approximating the interchangeability classes step by step, according to Moore's algorithm (1956):
, The partition between equivalence classes is initialized with two classes : the class of final states and the class of non final states plus the garbage state.
- Then, the partition is refined step by step. At each step, each class is partitioned according to the input transitions from other classes.
, The process stops when a fix point is reached.
- The complexity of the algorithm is quadratic in time in the size of the automaton.
- There is an exponential algorithm which consists in determinizing the reverse automaton.

2.6 - Minimization of Finite State Automata

2.6 - Minimization of Finite State

Automata

1.

Consider the following transition table defining a DFSA with the initial state q_{0} and the unique accepting state q_{2}. Minimize this automaton.

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}
0	q_{1}	q_{6}	q_{0}	q_{2}	q_{7}	q_{2}	q_{6}	q_{6}
1	q_{5}	q_{2}	q_{2}	q_{6}	q_{5}	q_{6}	q_{4}	q_{2}

2. Consider the following transition table defining a NFSA with the initial state q_{0} and the unique accepting state q_{9}. Determinize and minimize this automaton.

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	q_{8}	q_{9}
ε	q_{2}		q_{0}				q_{9}			q_{6}
0	q_{1}	q_{3}	q_{4}			q_{6}	q_{7}	q_{9}		
1		q_{2}	q_{5}	q_{2}	q_{6}		q_{8}		q_{9}	

2.7 - Finite State Automata and Regular Languages

Definition : The family of regular languages over an alphabet Σ is the least family of languages over Σ with the following properties :

- The empty set \varnothing is a regular language.
- The singleton $\{\varepsilon\}$ is a regular language.
- For every element a from Σ, the singleton $\{a\}$ is a regular language.
- If L is a regular language , its Kleene closure L^{*} is a regular language.
- If L_{1} and L_{2} are regular languages, their concatenation $L_{1} L_{2}$ and their disjunction $L_{1} \mid L_{2}$ are regular languages.

A regular expression is the expression of a regular language from elementary languages with the operations of Kleene closure, concatenation and disjunction.

2.7 - Finite State Automata and Regular Languages

- Theorem : If A_{1} and A_{2} are two NFSA, there exists a NFSA that recognizes the intersection , the union and the concatenation of their languages $L\left(A_{1}\right)$ and $L\left(A_{2}\right)$.
- Theorem : If A is a NFSA, there exists a NFSA that recognizes the Kleene closure, the complement and the mirror image of its language $L(A)$

2.7 - Finite State Automata and Regular Languages

- Theorem (Kleene): the class of regular languages identifies with the class of the languages recognized by FSA.
- Proof :
- First direction : any regular language is recognized by a FSA.

Proof by induction on the structure of the regular expression defining the language; the induction step uses the previous theorems for the operations of union, concatenation and Kleene closure (Thompson method).
, Second direction : any language recognized by a FSA is regular.
Proof by addition of a new initial state and a new final state and by removing all intermediate states step by step (Brzozowski and Mc Cluskey algorithm).

2.7 - Finite State Automata and Regular Languages

- Corollary : the class of regular languages over an alphabet \mathbf{A} is closed under intersection, complementation and reverse operation.
- Pumping Lemma : let L be an infinite regular language. Then, there are words x, y and z , such that $\mathrm{y} \neq \varepsilon$ and $\mathrm{xy}^{\mathrm{n}} \mathrm{z} \in \mathrm{L}$ for any $\mathrm{n} \geq 0$.
- The Pumping Lemma is used to prove that a language is not regular.

2.7 - Finite State Automata and

Regular Languages

1. Build the minimal automaton recognizing the language defined by the regular expression $\left(a\left(c a^{*} \mid b^{*} c\right)^{*} b c d^{*}\right)^{*}$
2. Build a regular expression defining the language recognized by the automaton with the following transition table (the initial state is q_{0} and the final states are q_{2} and q_{4}):

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}
a	q_{1}	q_{1}	q_{2}	q_{4}		
b	q_{2}	q_{3}	q_{3}	q_{3}		
c		q_{4}	q_{5}			

2.7 - Finite State Automata and

Regular Languages

3. Define the operations of intersection and complementation of FSA.

Hints : for the intersection, consider new states which are pairs of states from each initial automaton; for the complementation, introduce a garbage state to complete the automaton.
4. Determine if the following languages are regular :
a. The set of the words defined in the 2001 edition of the dictionary Larousse over the usual French alphabet plus hyphen.
b. $\quad\left\{(a b)^{n}(b a)^{n} \mid n \in N\right\}$
c. $\left\{(a b)^{n} a(b a)^{n} \mid n \in N\right\}$
d. The arithmetic expressions on natural numbers in infixed notation (the usual notation).
e. The arithmetic expressions on natural numbers in polish notation (for instance, $(2-3) \times 4+10 \times 5$ is written $+x-234 \times 105)$.

2.7 - Finite State Automata and Regular

Languages

5. Three missionaries and three cannibals want to cross a river. There is only one boat which can carry two persons at most. A missionary cannot use the boat alone. A soon as there are more cannibals than missionaries at some place, the cannibals will eat the missionaries. Is there a way for the six persons to cross the river without being eaten.
Hints : use an automaton where states represent the possible distributions of missionaries and cannibals between the two sides of the river and transitions represent the crossings of the river.

2.7 - Finite State Automata and Regular

Languages

6. The blind barman with boxing gloves

A barman and a client play at the following game :
The barman blindfolds himself and gets boxing gloves. Then, he cannot see and determine if a glass is up or down. In front of the barman, there is a salver with four glasses put in square. These glasses can be up or down. Their direction is chosen initially by the client and unknown by the barman.
The barman can repeat the following operation ten times at most : he indicates the glasses that he wants to turn over; the client turns the salver and then, the barman turns the glasses over as he has indicated. If the glasses are all in the same direction, the barman wins.

2.7 - Finite State Automata and Regular

Languages

a) Give an automaton the states of which are the different configurations of the salver and the transitions are the possible changes of configuration, their input symbols representing the indications of the barman.
b) From this automaton, deduce another automaton in which the accepting states are the configurations that are winning for the client.
c) Give an automaton that guarantees the victory to the barman whichever the choice of the client is.
d) Solve the problem again with three glasses in triangle and then with five glasses in pentagon.

2.8 - Finite State Transducers

- The aim of FSA is language recognition.
- Sometimes, it is necessary not only to recognize words of a certain language but also to map them to new words (for instance, the command query/replace in text processing). For this, we use Finite State Transducers (FST).
- A FST defines a relation between the words of two languages : an input language and an output language. Its aim is language translation.

2.8 - Finite State Transducers

Definition : a FST over an input alphabet Σ_{i} and an output alphabet Σ_{o} is a 6-uple (Q, Σ_{i}, $\left.\Sigma_{0}, q_{0}, F, \tau\right)$ such that :

- Q is a finite set of states.
- Σ_{i} is a finite input alphabet of symbols augmented with the empty string ε.
- Σ_{0} is a finite output alphabet of symbols augmented with the empty string ε.
- q_{0} is a particular element of Q, the start state of the FST.
- F is a subset of Q, the accepting states of the FST.
- τ is a transition relation which associates a source state q_{1} from Q and an input symbol a_{i} from $\Sigma_{i} \cup\{\varepsilon\}$ with a target state q_{2} from Q and an output symbol b_{o} from $\Sigma_{0} \cup\{\varepsilon\}$. This is denoted: $\tau\left(q_{1}, a_{i j}, a_{2}, b_{0}\right)$.

2.8 - Finite State Transducers

- Definition : a computation on a transducer is a (possibly empty) sequence of transitions in the form : $q_{0} \xrightarrow{v_{1}: w_{1}} q_{1} \xrightarrow{v_{2}: w_{2}} \ldots \xrightarrow{v_{n}: w_{n}} q_{n} \quad$ where q_{0} is the initial state.

We summarize the computation as follows:

- The computation is successful if q_{n} is an accepting state. In this case, the word $v_{1} v_{2} \ldots$ v_{n} is transduced into the word $w_{1} w_{2} \ldots w_{n}$.
- There is an equivalent definition of transducer where transitions are labelled with pairs of words instead of pairs of symbols.

2.8 - Finite State Transducers

- The relation realized by the transducer is the set of all pairs of words $\left(w_{i}, w_{0}\right)$ such that w_{i} is transduced into w_{0}. This relation is called a regular (rational) relation.
- We denote $|T|$ the function that maps every input word w_{i} to the set $|T|\left(w_{i}\right)$ of all output words that result from the transduction of w_{i} by T .
- If any input word w_{i} is transduced into one output word w_{o} at most, the transducer realizes a rational function.

2.8 - Finite State Transducers

- An example of FST modelling some spelling rules of French

2.8 - Finite State Transducers

- A FST over an input alphabet Σ_{i} and an output alphabet Σ_{o} can be viewed as a FSA over an alphabet $\Sigma_{\mathrm{i}} \times \Sigma_{0}$ with some adaptations, so that some results can be transposed from FSA to FST.
- A FST is associated with two FSA : its first projection, which recognizes its input language, and its second projection, which recognizes its output language.
- The following usual operations on FSAs are transposed to FSTs : union, concatenation, Kleene closure. Intersection is transposable only for ε-free FSTs.

2.8 - Finite State Transducers

- We define two additional operations on FSTs :
\checkmark Inversion : the inverse T^{-1} of a FST T results from a simple switching between the input and the output alphabets.
\checkmark Composition : if T_{1} is a FST from Σ_{1} to Σ_{2} and T_{2} is a FST from Σ_{2} to Σ_{3}, then $\mathrm{T}_{1} \circ \mathrm{~T}_{2}$ maps from Σ_{1} to Σ_{3}.

Computation principle for $T_{1} \circ T_{2}$ transitions: If $\left(q_{1}, a, q_{2}, b\right)$ is a T_{1} transition and if $\left(q_{1}^{\prime}, b, q_{2}^{\prime}, c\right)$ is a T_{2} transition, then $\left(\left(q_{1}, q_{1}^{\prime}\right) a,\left(q_{2}, q_{2}^{\prime}\right), c\right)$ is a $T_{1} \circ T_{2}$ transition (if $b=\varepsilon$, one of the composed transitions can be an implicit silent transition)

2.8 - Finite State Transducers

a) Determine a FST T_{1} that implements the following spelling rule of contraction in French: if "de $l e$ " is immediately followed by a word starting with a consonant, it is contracted into "du". For instance, "de le grand homme" becomes "du grand homme" but "de le arbre" remains unchanged.
b) Modify the transducer presented in the lecture for implementing the following rules : "à le" \rightarrow "au" "la" or "le"+ word starting with a vowel \rightarrow "l" + the word The resulting transducer is named T_{2}
c) Combine T_{1} with the transducer T_{2} in a good order to get a transducer T_{3}.
d) The transducer T_{3} is used to analyse the sentence "L'individu au chapeau arrive à l'entrée du bois". The input of the analysis is an automaton A_{1}, which realizes the segmentation of the sentence into 10 words and the output is an automaton A_{2} labelled with word forms coming from a French lexicon.
Describe the operations on automata and transducers that can be used to realize this task. Then, compute A_{2} with these operations.
Hints: an automaton can be viewed as a transducer realizing the identity function for some domain.

2.8 - Finite State Transducers

We continue with the example of the previous exercise. We consider the output automaton A_{2}, which can be presented as follows:
"le|la individu à le chapeau arrive à le|la entrée du|(de le) bois"
We propose to tag the words with POS labels. For this, we use the following lexicon: le \rightarrow $\{D E T, P R O\}$, la $\rightarrow\{D E T, P R O\}$, individu $\rightarrow\{N\}$, à $\rightarrow\{P R E P\}$, chapeau $\rightarrow\{N\}$, arrive $\rightarrow\{V\}$, entrée $\rightarrow\{\mathrm{N}$, PASTPART $\}$, du $\rightarrow\{\mathrm{DET}\}$, de $\rightarrow\{$ PREP $\}$, bois $\rightarrow\{\mathrm{N}, \mathrm{V}\}$.
A tag is composed of a word followed by an hyphen and a POS label, la-DET for instance.
a) Define the transducer $\mathrm{T}_{\text {lex }}$ from the lexicon that replaces every sentence built from the words included in the lexicon with all possible tagged sentences.
2. Compose A_{2} with $\mathrm{T}_{\text {lex }}$ to produce the automaton expressing the tagging of the initial sentence.
3. In French, the tag patterns DET V and DET PASTPART are not possible. Build two minimal DFA that recognize tagged sentences including these respective patterns. Build their complements and then the intersection A_{3} of these complements.
4. By composing $\mathrm{T}_{\text {lex }}$ with A_{3}, build a transducer $\mathrm{T}_{\text {tag }}$ that tags sentences using the previous forbidden patterns and apply $\mathrm{T}_{\text {tag }}$ to A_{2}.

2.8 - Finite State Transducers

The Soundex algorithm is a method commonly used in libraries and older Census records for representing people's names. It has the advantage that versions that are slightly misspelled or otherwise modified (common, for example, in handwritten census records) will still have the same representation as correctly-spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and Jarovski all map J612).

By using transducers, realize the following ordered tasks:
a) Keep the first letter of the name, and drop all occurrences of non-initial a,e,h,i, o,u,w,y.
b) Replace the remaining letters with the following numbers:

- b, f, p, v $\rightarrow 1$
- c, g, j, k, q, s, x, z $\rightarrow 2$
- $\mathrm{d}, \mathrm{t} \rightarrow 3^{\prime}$
- \quad $\rightarrow 4$
- $m, n \rightarrow 5$
- $r \rightarrow 6$

2.8 - Finite State Transducers

c) Replace any sequences of identical numbers with a single number (i.e. $666 \rightarrow 6$)
d) Convert to the form Letter Digit Digit Digit by dropping digits past the third (if necessary) or padding with trailing zeros (if necessary).

2.9 - Determinization of transducers

- The determinization of a transducer is different from its determinization as automaton. The aim is to make it deterministic on its input.
- Epsilon removal for transducers : if a transducer T is such that $|T|(\varepsilon)=\varnothing$ and such that there is no loop labelled by ε as the input word and by a non empty word as the output word, then there exists a transducer T^{\prime} that is equivalent to T and that is not labelled by ε as input symbol.

2.9 - Determinization of transducers

- An unambiguous transducer is a transducer for which each input word is the label of at most one successful path.
- An unambiguous transducer is functional but an ambiguous transducer can be functional or not.
- Theorem (Eilenberg 74) : any rational function ρ can be represented by an unambiguous transducer if $\rho(\varepsilon)=\varnothing$ or $\rho(\varepsilon)=\varepsilon$.

2.9 - Determinization of transducers

- Non ambiguous transducers can be locally non deterministic on their input.

Transducers, which are locally deterministic on their input are sequential transducers.

- A sequential transducer is a transducer $\left(Q, \Sigma_{\mathrm{i}}, \Sigma_{0}, q_{0}, F, \tau\right)$ such that :
\checkmark if $\tau\left(q_{1}, a_{i j}, q_{2}, w_{0}\right)$ is any transition of the transducer, then $a_{i} \in \Sigma_{i}$ and $w_{0} \in \Sigma_{0}^{*}$
\checkmark if $\tau\left(q_{1}, a_{i j}, q_{2}, w_{0}\right)$ and $\tau\left(q_{1}, a_{j}, q_{2}^{\prime}, w_{d}^{\prime}\right)$ are transitions of the transducer, then $q_{2}=q_{2}^{\prime}$ and $w_{0}=w_{0}^{\prime}$

2.9 - Determinization of transducers

- The transduction that is realized by a sequential transducer is functional : it is called a sequential function.
- Sequential transducers can be generalized by introducing the possibility of generating an additional output string at final states. Such transducers are called subsequential transducers.

2.9 - Determinization of transducers

- Subsequential transducers are extended to p-subsequential transducers to express ambiguity in a limited manner. At the final states, it is possible to generate one output string chosen among p possibilities at most.
- There is an algorithm to determine if a transducer is equivalent to a p-subsequential transducer. Its principle is to try to determinize the transducer by postponing the transition choices on input until they become deterministic.

2.9 - Determinization of transducers

1. Sequentialize the following transducers, if it is possible. In all cases, the initial state is 0 and the final states are marked with an asterisk.

Transducer T1			
Source state	Target state	Input word	Output word
0^{*}	0^{*}	b	b
0^{*}	0^{*}	c	c
0^{*}	1	a	b
0^{*}	2^{*}	a	a
1	0^{*}	b	b
2^{*}	1	a	b
2^{*}	2^{*}	a	a

Transducer T2			
Source state	Target state	Input word	Output word
0	0	a	bc
0	1^{*}	a	bd
1^{*}	1^{*}	a	b

2.9 - Determinization of transducers

2. Sequentialize the following transducers, if it is possible. In all cases, the initial state is 0 and the final states are marked with an asterisk.

Transducer T3			
Source state	Target state	Input word	Output word
0	0	a	b
0	1	a	d
0	2^{*}	a	bd
1	2^{*}	b	a

Transducer T4			
Source state	Target state	Input word	Output word
0	1	a	b
0	$2 *$	a	bcd
0	3	a	bc
1	2^{*}	b	cd
$2 *$	$2 *$	b	ε
3	$2 *$	b	d

2.10 - Application of Finite State methods to NLP

- Information retrieval and text indexation: regular expressions are used efficiently to retrieve specific words in texts (in editors for instance) (Ken Thompson 1968).

Regular expressions, automata and transducers are also used to index texts automatically (Mehryar Mohri 1995).

- Tokenization: regular expressions are used to segment texts into sentences and tokens automatically.

2.10 - Application of Finite State methods to NLP

- Phonology and morphology: phonological and morphological rules are represented separately by transducers (Johnson 1972, Ronald Kaplan \& Martin Kay 1981, Kimmo Koskenniemi 1983, Lauri Kartunnen 1983).

Then, these transducers are combined by different operations to represent the simultaneous action of all these rules.

- Speech processing: transducers implement text-to-speech systems in an efficient way.

2.10 - Application of Finite State methods to NLP

- Representation of large scale dictionaries: pronunciation or morphological dictionaries, taken as extensive lists of units, can be represented by automata and p-subsequential transducers, which can be minimized (Mehryar Mohri 1995).

2.10 - Application of Finite State methods

to NLP

- Morpho-syntactic tagging: it aims at labelling the words of text with morpho-syntactic information. The fineness of the tagset is decisive for the tagging quality.

Brill taggers start with labelling texts in a rough manner and then correct the labelling step by step by using rules. The list of correction rules is learned automatically from a training corpus.

A way of implementing Brill taggers is to use transducers (Emmanuel Roche \& Yves Schabes 1997). Every correction rule is represented by a specific transducer and then all transducers are composed together.

2.10 - Application of Finite State methods to NLP

We consider English sentences which are tagged with POS. A tag of a sentence appears as an automaton , the states of which are positions between words of the sentence, and the transitions are labelled with POS. For instance, here is the automaton A_{0} corresponding to the sentence:"He hopes that this works".

a) In English, a Det label cannot immediately follow another Det label. Define an automaton A_{1} that recognizes sentence tags including a sequence of two Det labels at least.
b) Build its complement $A_{1}{ }^{c}$, and then the intersection $A_{0} \cap A_{1}{ }^{c}$. What is the meaning of this intersection ?

1. In English, a V label cannot immediately follow a Det label. Define an automaton A_{2} that recognizes sentence tags including such sequences. Then, build its complement $\mathrm{A}_{2}{ }^{\mathrm{C}}$.
a) By using operations on automata, simplify the automaton A_{0} to drop the two kinds of forbidden POS sequences mentioned above.

2.10 - Application of Finite State methods to NLP

Brill Tagger

We want to implement a Brill tagger for English using transducers. We simplify the sequence of correction rules that are learned from a reference corpus and we assume that the sequence is composed of the two following rules:

1. $n p$ vbn $\rightarrow n p$ vbd
2. vbd by \rightarrow vbn by

In theses rules, "np" stands for proper noun, "vbn" for verb in past participle form, "vbd" for verb in past tense and "by" is the preposition "by".
The meaning of the rules is the following: in a tagged text, every sequence of tags that matches the left hand side of the rule is replaced with the right hand side. For instance, consider the sentence: "John $n_{n p}$ Lennon $_{n p}$ was $_{\text {bedz }}$ $s^{s h o t}{ }_{v b d}$ by $_{b y}$ Chapman $_{n p}$ ". After application of rule 1, the sentence remains unchanged. After application of rule 2, the sentence becomes: "John $n_{n p}$ Lennon $_{n p}$ was $_{b e d z}$ shot $_{v b n}$ by ${ }_{b y}$ Chapman $_{n p}$ ".

- Represent the actions of the two rules on tagged texts with two transducers T_{1} and T_{2}
- Compose $T_{1} \circ T_{2}$ to represent the action of rule 1 followed by rule 2 . We obtain a transducer T, which represents one pass of the Brill tagger.
- Represent the tagging of the initial sentence with an automaton A . We consider A as a tran ${ }^{6}$ ©ucer representing the function identity. Under this condition, compose A o T to compute the output tagging of the sentence.

