
1. From Regular Expressions to Finite State Automata

2. Finite State Automata

3. Deterministic Finite State Automata

4. Non Deterministic Finite State Automata

5. Determinization of Finite State Automata

6. Minimization of Finite State Automata

7. Finite State Automata and Regular Languages

8. Finite State Transducers

9. Determinization of Finite State Transducers

10. Application of finite state methods to NLP

2 - Finite State Methods

1Friday, December 26, 14

Bibliography

• D. Jurasfsky & J. H. Martin - Speech and Language Processing - Prentice Hall, 2008.

• Emmanuel Roche & Yves Schabes - Finite-State Language Processing - MIT Press,

1997.

• John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman - Introduction to Automata

Theory, Languages, and Computation - Addison Wesley, 2006.

2Friday, December 26, 14

2.1 – From Regular Expressions to
Finite State Automata

• Some sets of strings (named entities, numerals, dates …), which can be infinite,
need to be characterized in a compact finite way.

• Regular expressions are used to characterize these sets of strings, which

constitute regular languages.

• Finite State Automata (FSA) are abstract computing machines used to

recognize regular languages.

3Friday, December 26, 14

2.2 - Finite State Automata

• Finite State Automata (FSA) are abstract computing machines, the goal of which is

to recognize particular languages: regular languages.

• FSA can be normalized to get time and space efficiency (determinization and

minimization).

• FSA combine in various manners to produce new FSA.

4Friday, December 26, 14

2.2 - Finite State Automata

A Finite State Automaton (FSA) is composed of two parts:

• An infinite tape where positions are numbered 0, 1, 2, … until the infinite; a pointer

marks the current position which can be read only; the pointer can only move
forward.

• A control unit which controls the forward movements of the pointer as the actions

of reading the tape.

5Friday, December 26, 14

2.3 - Deterministic Finite State Automata

Definition : a Deterministic Finite State Automaton is a 5-tuple (Q, ∑, q0, F, τ) such

that :

• Q is a finite set of states of the control unit.

• ∑ is a finite input tape alphabet of symbols.

• q0 is a particular element of Q, the start state of the automaton.

• F is a subset of Q, the accepting states of the automaton.

• τ is a transition function which associates a source state q from Q and an input

symbol a from ∑ to a target state from Q denoted τ(q,a).

6Friday, December 26, 14

2.3 - Deterministic Finite State Automata

• Definition : a computation on an automaton is a (possibly empty) sequence of

transitions in the form : where q0 is the initial state.

 We denote : and we say that qn recognizes the word a1 a2… an

• A word is recognized by the automaton if it recognized by an accepting state.

• The language recognized by the automaton is the set of all words recognized by the

automaton.

• The time complexity of the recognition problem with a deterministic automaton is

linear with respect to the input size.

7Friday, December 26, 14

2.3 - Deterministic Finite State Automata

• Algorithm of recognition
function D-RECOGNIZE (tape, automaton)

index ← beginning_of (tape)
current-state ← initial_state_of (automaton)

loop
 if index = end_of_input (tape) then
 if current-state ∈ accept_states (automaton) then
 return accept

 else
 return reject

 endif
 elseif transition_table (automaton)[current-state, tape[index]]) = empty then
 return reject

 else
 current-state ← transition_table (automaton)[current-state, tape[index]])

 index ← index + 1

 endif
endloop

8Friday, December 26, 14

2.3 - Deterministic Finite State Automata

1. Describe the languages recognized by the following FSA:

a)

b)

b

b
aa

b

b

a b

a

a

9Friday, December 26, 14

2.3 - Deterministic Finite State Automata

2. Determine an automaton recognizing the following languages :

a) The set of natural numbers in base 10.

b) {0n 1m | n, m ∈ Ν}.

c) The set of strings including 11 (the alphabet is {0, 1}).

d) The set of dates in the format day/month, where day and month are natural
numbers with two digits; month is between 01 and 12 and day must be compatible
with month (for instance, if month = 02 then 01 ≤ day ≤ 29).

e) The set of floating numbers. A floating number is written as a mantissa followed by
an exponent. The mantissa is composed of a facultative sign followed by a whole
part and possibly a decimal which starts with a point. The exponent is composed of
the letter E followed by a facultative sign and a natural number.

f) The language of comments in computer programs. A comment is a sequence of
characters between /* and */. Such sequence cannot include /* and */ except if
these are immediately preceded by the escape character %.

10Friday, December 26, 14

2.3 - Deterministic Finite State Automata

3. We consider a reduced lexicon for a fragment of French which associates a POS set
to every word. The POS used in this lexicon are : Det (determiner), CN(Common

Noun), PN (Proper Noun), V (intransitive verb), Vcompl (verb with a sentential clause
complementized by “que” as direct object), Conj (subordinating conjunction “que”),

Adv (Adverb modifying any verb).
We consider French sentences and we assume that all sentences are tagged with

the previous POS from the lexicon and we want to build an automaton to recognize
the grammatical sentences.

The words (in the sense of automata) that have to be recognized by the automaton

are sequences of POS. For instance, for the sentence “JeanPN penseVcompl queConj

laDet femmeCN arriveV”, the input word for the automaton is “PN Vcompl Conj Det CN

V”.
 Build a DFSA for recognizing the largest fragment of French that can be defined

from the given set of POS.

11Friday, December 26, 14

2.4 - Non Deterministic Finite State
Automata

• Q is a finite set of states of the control unit.

• ∑ ∪ {ε} is a finite input alphabet of symbols. The special symbol ε is the empty

string, that is the unit for concatenation of strings from ∑ ∪ {ε} .

• q0 is a particular element of Q, the start state of the automaton.

• F is a subset of Q, the accepting states of the automaton.

• τ is a transition relation which associates a source state q1 and an input symbol

a with a target state q2.This is denoted: τ(q1, a, q2).

Definition : a Non Deterministic Finite State Automaton over an alphabet ∑, is a 5-
tuple (Q, ∑, q0, F, τ) such that :

12Friday, December 26, 14

2.4 - Non Deterministic Finite State
Automata

An algorithm of recognition :

function ND-RECOGNIZE (tape, automaton)

agenda ← { }

index ← beginning_of (tape)

current-state ← initial_state_of (automaton)

loop
	 if index = end_of_input (tape) and current-state ∈ accept_states (automaton) then
	 	 return accept

	 else
	 	 forall state ∈ transition_table (automaton)[current-state, tape[index]])

	 	 	 agenda ← agenda ∪ {(state, index + 1)}

	 	 endforall
	 	 forall state ∈ transition_table (automaton)[current-state, ε])

	 	 	 agenda ← agenda ∪ {(state, index)}

	 	 endforall
	 	 if there is no new element in agenda then
	 	 	 return reject

	 	 else
	 	 	 (current-state, index) ← choose_a_new_element(agenda)

	 	 endif

	 endif

endloop
13Friday, December 26, 14

2.5 - Determinization of Finite State
Automata

• The complexity of the recognition problem with a given DFSA is linear-time in the

length of the input word and it does not depend on the size of the automaton.

• Theorem : for any NFSA, there exists an equivalent DFSA, that is an automaton

recognizing the same language

14Friday, December 26, 14

2.5 - Determinization of Finite State
Automata

• The principle of transforming a NFSA into a DFSA is the following:

‣ any state of the DFSA is the set of all NFSA states recognizing the same word of ∑*;

‣ the initial state of the DFSA is the set of all NFSA states recognizing the empty word;

‣ the final states of the DFSA are all states containing a NFSA final state;

‣ if two DFSA states s1 and s2 are respectively associated with w and w.a words from ∑*, there

is a transition from s1 to s2.

• The DFSA is built state by state recursively from its initial state.

15Friday, December 26, 14

2.5 - Determinization of Finite State
Automata

Automat0 : an example of NFSA to recognized

0

8b

5

9 a

6

ε

b

7
b

 b

1
2 a

3

b

 ε

4

a

 a

 ε

b

16Friday, December 26, 14

2.5 - Determinization of Finite State
Automata

Automat1: a DFSA which results from determinizing Automat0.

0

b

2

8

b

5

a

b

11

b

1

4
b

6a

b

b

3

9
b a

 a

a

a

10
a

b

a

7

b

17Friday, December 26, 14

2.6 - Minimization of Finite State
Automata

• If we change the initial state of a FSA with any state q, the language recognized by the

new FSA is the language recognized from state q in the former FSA.

• Every DFSA can be minimized by identifying its interchangeable states, the

states from which the same languages are recognized.

18Friday, December 26, 14

2.6 - Minimization of Finite State
Automata

• For every DFSA A1, the minimal automaton A2 equivalent to A1 is defined as follows:

‣ The states of A2 are the equivalence classes of A1 interchangeable states;

‣ The initial state of A2 is the equivalence class of the A1 initial state;

‣ The final states of A2 are the equivalence classes of the A1 final states;

‣ For any transition in A1 on a symbol a from a state s1 to a state s2, there is a corresponding

transition on a in A2 from the equivalence class of s1 to the equivalence class of s2

19Friday, December 26, 14

2.6 - Minimization of Finite State
Automata

• The minimal automaton is built recursively by approximating the interchangeability

classes step by step, according to Moore’s algorithm (1956):

‣ The partition between equivalence classes is initialized with two classes : the

class of final states and the class of non final states plus the garbage state.

‣ Then, the partition is refined step by step. At each step, each class is partitioned

according to the input transitions from other classes.

‣ The process stops when a fix point is reached.

• The complexity of the algorithm is quadratic in time in the size of the automaton.

• There is an exponential algorithm which consists in determinizing the reverse

automaton.

20Friday, December 26, 14

2.6 - Minimization of Finite State
Automata

Automat2: resulting from the minimization of Automat1.

0

b

2

5-10

a

b1

4
b

a

 b

b

3-8

9

7

b

 a

b

 a

b

6

21Friday, December 26, 14

2.6 - Minimization of Finite State
Automata

1. Consider the following transition table defining a DFSA with the initial state q0 and the
unique accepting state q2. Minimize this automaton.

2. Consider the following transition table defining a NFSA with the initial state q0 and the
unique accepting state q9. Determinize and minimize this automaton.

q0 q1 q2 q3 q4 q5 q6 q7

0 q1 q6 q0 q2 q7 q2 q6 q6

1 q5 q2 q2 q6 q5 q6 q4 q2

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

ε q2 q0 q9 q6

0 q1 q3 q4 q6 q7 q9

1 q2 q5 q2 q6 q8 q9

22Friday, December 26, 14

2.7 - Finite State Automata and
Regular Languages

Definition : The family of regular languages over an alphabet Σ is the least

family of languages over Σ with the following properties :

• The empty set ø is a regular language.

• The singleton {ε} is a regular language.

• For every element a from Σ, the singleton {a} is a regular language.

• If L is a regular language , its Kleene closure L* is a regular language.

• If L1 and L2 are regular languages, their concatenation L1 L2 and their

disjunction L1 | L2 are regular languages.

 A regular expression is the expression of a regular language from

elementary languages with the operations of Kleene closure, concatenation and

disjunction.

23Friday, December 26, 14

2.7 - Finite State Automata and
Regular Languages

• Theorem : If A1 and A2 are two NFSA, there exists a NFSA that recognizes the

intersection , the union and the concatenation of their languages L(A1) and

L(A2).

• Theorem : If A is a NFSA, there exists a NFSA that recognizes the Kleene closure,

the complement and the mirror image of its language L(A)

24Friday, December 26, 14

2.7 - Finite State Automata and
Regular Languages

• Theorem (Kleene): the class of regular languages identifies with the class of the

languages recognized by FSA.

• Proof :

‣ First direction : any regular language is recognized by a FSA.

Proof by induction on the structure of the regular expression defining the language; the

induction step uses the previous theorems for the operations of union, concatenation and

Kleene closure (Thompson method).

‣ Second direction : any language recognized by a FSA is regular.

Proof by addition of a new initial state and a new final state and by removing all intermediate

states step by step (Brzozowski and Mc Cluskey algorithm).

25Friday, December 26, 14

http://fr.wikipedia.org/w/index.php?title=Edward_J._McCluskey&action=edit&redlink=1
http://fr.wikipedia.org/w/index.php?title=Edward_J._McCluskey&action=edit&redlink=1

2.7 - Finite State Automata and
Regular Languages

• Corollary : the class of regular languages over an alphabet A is closed under

intersection, complementation and reverse operation.

• Pumping Lemma : let L be an infinite regular language. Then, there are

words x, y and z, such that y ≠ ε and xynz ∈ L for any n ≥ 0.

• The Pumping Lemma is used to prove that a language is not regular.

26Friday, December 26, 14

2.7 - Finite State Automata and
Regular Languages

1. Build the minimal automaton recognizing the language defined by the regular
expression (a(ca* | b*c)*bcd*)*

2. Build a regular expression defining the language recognized by the automaton
with the following transition table (the initial state is q0 and the final states are q2

and q4):

q0 q1 q2 q3 q4 q5

a q1 q1 q2 q4

b q2 q3 q3 q3

c q4 q5

27Friday, December 26, 14

2.7 - Finite State Automata and
Regular Languages

3. Define the operations of intersection and complementation of FSA.
Hints : for the intersection, consider new states which are pairs of states
from each initial automaton; for the complementation, introduce a garbage state
to complete the automaton.

4. Determine if the following languages are regular :

a. The set of the words defined in the 2001 edition of the dictionary Larousse over the usual
French alphabet plus hyphen.

b. {(ab)n(ba)n | n ∈ Ν}

c. {(ab)na(ba)n | n ∈ Ν}

d. The arithmetic expressions on natural numbers in infixed notation (the usual notation).

e. The arithmetic expressions on natural numbers in polish notation (for instance,
(2-3)x4+10x5 is written + x - 2 3 4 x 10 5).

28Friday, December 26, 14

2.7 - Finite State Automata and Regular
Languages

5. Three missionaries and three cannibals want to cross a river. There is only one
boat which can carry two persons at most. A missionary cannot use the boat
alone. A soon as there are more cannibals than missionaries at some place, the
cannibals will eat the missionaries. Is there a way for the six persons to cross
the river without being eaten.
Hints : use an automaton where states represent the possible
distributions of missionaries and cannibals between the two sides of
the river and transitions represent the crossings of the river.

29Friday, December 26, 14

2.7 - Finite State Automata and Regular
Languages

6. The blind barman with boxing gloves

A barman and a client play at the following game :
The barman blindfolds himself and gets boxing gloves. Then, he cannot see and
determine if a glass is up or down. In front of the barman, there is a salver with four
glasses put in square. These glasses can be up or down. Their direction is chosen
initially by the client and unknown by the barman.
The barman can repeat the following operation ten times at most : he indicates the
glasses that he wants to turn over; the client turns the salver and then, the barman
turns the glasses over as he has indicated. If the glasses are all in the same
direction, the barman wins.

30Friday, December 26, 14

2.7 - Finite State Automata and Regular
Languages

a) Give an automaton the states of which are the different configurations of the
salver and the transitions are the possible changes of configuration, their input
symbols representing the indications of the barman.

b) From this automaton, deduce another automaton in which the accepting states
are the configurations that are winning for the client.

c) Give an automaton that guarantees the victory to the barman whichever the
choice of the client is.

d) Solve the problem again with three glasses in triangle and then with five glasses
in pentagon.

31Friday, December 26, 14

2.8 - Finite State Transducers

• The aim of FSA is language recognition.

• Sometimes, it is necessary not only to recognize words of a certain language but

also to map them to new words (for instance, the command query/replace in text

processing). For this, we use Finite State Transducers (FST).

• A FST defines a relation between the words of two languages : an input

language and an output language. Its aim is language translation.

32

32Friday, December 26, 14

2.8 - Finite State Transducers

Definition : a FST over an input alphabet Σi and an output alphabet Σo is a 6-uple (Q, Σi,
Σo, q0, F, τ) such that :

• Q is a finite set of states.

• Σi is a finite input alphabet of symbols augmented with the empty string ε.

• Σo is a finite output alphabet of symbols augmented with the empty string ε.

• q0 is a particular element of Q, the start state of the FST.

• F is a subset of Q, the accepting states of the FST.

• τ is a transition relation which associates a source state q1 from Q and an input

symbol ai from Σi ∪ {ε} with a target state q2 from Q and an output symbol bo
from Σo ∪ {ε} . This is denoted: τ(q1, ai, q2, bo). 33

33Friday, December 26, 14

2.8 - Finite State Transducers

• Definition : a computation on a transducer is a (possibly empty) sequence of

transitions in the form : where q0 is the

initial state.

We summarize the computation as follows:

• The computation is successful if qn is an accepting state. In this case, the word v1 v2…

vn is transduced into the word w1 w2… wn.

• There is an equivalent definition of transducer where transitions are labelled with pairs
of words instead of pairs of symbols.

34

34Friday, December 26, 14

2.8 - Finite State Transducers

• The relation realized by the transducer is the set of all pairs of words (wi, wo) such that

wi is transduced into wo. This relation is called a regular (rational) relation.

• We denote |T| the function that maps every input word wi to the set |T|(wi) of all output

words that result from the transduction of wi by T.

• If any input word wi is transduced into one output word wo at most, the transducer

realizes a rational function.

35

35Friday, December 26, 14

2.8 - Finite State Transducers
• An example of FST modelling some spelling rules of French

4

0

le : l’

à : au

Word-le-à: Word-le-à

1

Vword : Vword

3

2

le : ε

Cword : Cword

le : le

à : à

le : l’

Word-le: Word-le

36

36Friday, December 26, 14

2.8 - Finite State Transducers

• A FST over an input alphabet Σi and an output alphabet Σo can be viewed as a

FSA over an alphabet Σi x Σo with some adaptations, so that some results can be

transposed from FSA to FST.

• A FST is associated with two FSA : its first projection, which recognizes its input

language, and its second projection, which recognizes its output language.

• The following usual operations on FSAs are transposed to FSTs : union,

concatenation, Kleene closure. Intersection is transposable only for ε-free FSTs.

37

37Friday, December 26, 14

2.8 - Finite State Transducers

• We define two additional operations on FSTs :

ü Inversion : the inverse T-1 of a FST T results from a simple switching

between the input and the output alphabets.

ü Composition : if T1 is a FST from Σ1 to Σ2 and T2 is a FST from Σ2 to Σ3, then

T1 o T2 maps from Σ1 to Σ3 .

Computation principle for T1 o T2 transitions: If (q1, a, q2, b) is a T1

transition and if (q’1, b, q’2, c) is a T2 transition, then ((q1,q’1) a, (q2, q’2), c) is a

T1 o T2 transition (if b = ε, one of the composed transitions can be an implicit

silent transition)

38

38Friday, December 26, 14

2.8 - Finite State Transducers
1.

a) Determine a FST T1 that implements the following spelling rule of contraction in French: if “de
le” is immediately followed by a word starting with a consonant, it is contracted into “du”. For
instance, “de le grand homme” becomes “du grand homme” but “de le arbre” remains
unchanged.

b) Modify the transducer presented in the lecture for implementing the following rules :
 “à le” ⟶ “au” “la” or “le”+ word starting with a vowel ⟶ “l’” + the word
The resulting transducer is named T2

c) Combine T1 with the transducer T2 in a good order to get a transducer T3.

d) The transducer T3 is used to analyse the sentence “L’individu au chapeau arrive à l’entrée du
bois” . The input of the analysis is an automaton A1, which realizes the segmentation of the
sentence into 10 words and the output is an automaton A2 labelled with word forms coming
from a French lexicon.
Describe the operations on automata and transducers that can be used to realize this task.
Then, compute A2 with these operations.
Hints: an automaton can be viewed as a transducer realizing the identity function
for some domain. 39

39Friday, December 26, 14

2.8 - Finite State Transducers

2. We continue with the example of the previous exercise. We consider the output automaton A2,
which can be presented as follows:
“le|la individu à le chapeau arrive à le|la entrée du|(de le) bois”
We propose to tag the words with POS labels. For this, we use the following lexicon: le →
{DET,PRO}, la → {DET,PRO}, individu → {N}, à → {PREP}, chapeau → {N}, arrive → {V}, entrée
→ {N, PASTPART}, du → {DET}, de → {PREP}, bois → {N,V}.
A tag is composed of a word followed by an hyphen and a POS label, la-DET for instance.

a) Define the transducer Tlex from the lexicon that replaces every sentence built from the words
included in the lexicon with all possible tagged sentences.

2. Compose A2 with Tlex to produce the automaton expressing the tagging of the initial
sentence.

3. In French, the tag patterns DET V and DET PASTPART are not possible. Build two minimal
DFA that recognize tagged sentences including these respective patterns. Build their
complements and then the intersection A3 of these complements.

4. By composing Tlex with A3, build a transducer Ttag that tags sentences using the previous
forbidden patterns and apply Ttag to A2.

40

40Friday, December 26, 14

2.8 - Finite State Transducers

3. The Soundex algorithm is a method commonly used in libraries and older Census
records for representing people’s names. It has the advantage that versions that
are slightly misspelled or otherwise modified (common, for example, in handwritten
census records) will still have the same representation as correctly-spelled names.
(e.g., Jurafsky, Jarofsky, Jarovsky, and Jarovski all map J612).
By using transducers, realize the following ordered tasks:

a) Keep the first letter of the name, and drop all occurrences of non-initial a,e,h,i,
o,u,w,y.

b) Replace the remaining letters with the following numbers:

• b, f, p, v → 1

• c, g, j, k, q, s, x, z → 2

• d, t → 3`

• l → 4

• m, n → 5

• r → 6 41

41Friday, December 26, 14

2.8 - Finite State Transducers

c) Replace any sequences of identical numbers with a single number (i.e.
666 → 6)

d) Convert to the form Letter Digit Digit Digit by dropping digits past the third
(if necessary) or padding with trailing zeros (if necessary).

42

42Friday, December 26, 14

2.9 - Determinization of transducers

• The determinization of a transducer is different from its determinization as

automaton. The aim is to make it deterministic on its input.

• Epsilon removal for transducers : if a transducer T is such that |T|(ε) = Ø and

such that there is no loop labelled by ε as the input word and by a non empty word

as the output word, then there exists a transducer T’ that is equivalent to T and that

is not labelled by ε as input symbol.

43

43Friday, December 26, 14

2.9 - Determinization of transducers

• An unambiguous transducer is a transducer for which each input word is the

label of at most one successful path.

• An unambiguous transducer is functional but an ambiguous transducer can be

functional or not.

• Theorem (Eilenberg 74) : any rational function ρ can be represented by an

unambiguous transducer if ρ(ε) = Ø or ρ(ε) = ε.

44

44Friday, December 26, 14

2.9 - Determinization of transducers

• Non ambiguous transducers can be locally non deterministic on their input.

Transducers, which are locally deterministic on their input are sequential transducers.

• A sequential transducer is a transducer (Q, Σi, Σo, q0, F, τ) such that :

ü if τ(q1, ai, q2, wo) is any transition of the transducer, then ai ∈ Σi and wo ∈ Σo
*

ü if τ(q1, ai, q2, wo) and τ(q1, ai, q’2, w’o) are transitions of the transducer,

then q2 = q’2 and wo= w’o

45

45Friday, December 26, 14

2.9 - Determinization of transducers

• The transduction that is realized by a sequential transducer is functional : it is

called a sequential function.

• Sequential transducers can be generalized by introducing the possibility of

generating an additional output string at final states. Such transducers are

called subsequential transducers.

46

46Friday, December 26, 14

2.9 - Determinization of transducers

• Subsequential transducers are extended to p-subsequential transducers to express

ambiguity in a limited manner. At the final states, it is possible to generate one output

string chosen among p possibilities at most.

• There is an algorithm to determine if a transducer is equivalent to a p-subsequential

transducer. Its principle is to try to determinize the transducer by postponing the

transition choices on input until they become deterministic.

47

47Friday, December 26, 14

2.9 - Determinization of transducers

1. Sequentialize the following transducers, if it is possible. In all cases, the initial state is 0 and the
final states are marked with an asterisk.

Transducer T1Transducer T1Transducer T1Transducer T1

Source
state

Target
state

Input
word

Output
word

0* 0* b b

0* 0* c c

0* 1 a b

0* 2* a a

1 0* b b

2* 1 a b

2* 2* a a

Transducer T2Transducer T2Transducer T2Transducer T2

Source
state

Target
state

Input
word

Output
word

0 0 a bc

0 1* a bd

1* 1* a b

48

48Friday, December 26, 14

2.9 - Determinization of transducers

2. Sequentialize the following transducers, if it is possible. In all cases, the initial state is 0 and the
final states are marked with an asterisk.

Transducer T4Transducer T4Transducer T4Transducer T4

Source
state

Target
state

Input
word

Output
word

0 1 a b

0 2* a bcd

0 3 a bc

1 2* b cd

2* 2* b ε

3 2* b d

Transducer T3Transducer T3Transducer T3Transducer T3

Source
state

Target
state

Input
word

Output
word

0 0 a b

0 1 a d

0 2* a bd

1 2* b a

49

49Friday, December 26, 14

2.10 - Application of Finite State
methods to NLP

• Information retrieval and text indexation: regular expressions are used

efficiently to retrieve specific words in texts (in editors for instance) (Ken Thompson

1968).

Regular expressions, automata and transducers are also used to index texts

automatically (Mehryar Mohri 1995).

• Tokenization: regular expressions are used to segment texts into sentences and

tokens automatically.

50

50Friday, December 26, 14

2.10 - Application of Finite State
methods to NLP

• Phonology and morphology: phonological and morphological rules

are represented separately by transducers (Johnson 1972, Ronald Kaplan

& Martin Kay 1981, Kimmo Koskenniemi 1983, Lauri Kartunnen 1983).

Then, these transducers are combined by different operations to represent

the simultaneous action of all these rules.

• Speech processing: transducers implement text-to-speech systems in

an efficient way.

51

51Friday, December 26, 14

2.10 - Application of Finite State
methods to NLP

• Representation of large scale dictionaries: pronunciation or

morphological dictionaries, taken as extensive lists of units, can be

represented by automata and p-subsequential transducers, which can

be minimized (Mehryar Mohri 1995).

52

52Friday, December 26, 14

2.10 - Application of Finite State methods
to NLP

• Morpho-syntactic tagging: it aims at labelling the words of text with

morpho-syntactic information. The fineness of the tagset is decisive for the

tagging quality.

Brill taggers start with labelling texts in a rough manner and then correct the

labelling step by step by using rules. The list of correction rules is learned

automatically from a training corpus.

A way of implementing Brill taggers is to use transducers (Emmanuel Roche

& Yves Schabes 1997). Every correction rule is represented by a specific

transducer and then all transducers are composed together.

53

53Friday, December 26, 14

2.10 - Application of Finite State
methods to NLP

1. We consider English sentences which are tagged with POS. A tag of a sentence appears as an automaton , the
states of which are positions between words of the sentence, and the transitions are labelled with POS.
For instance, here is the automaton A0 corresponding to the sentence:”He hopes that this works”.

a) In English, a Det label cannot immediately follow another Det label. Define an automaton A1 that recognizes
sentence tags including a sequence of two Det labels at least.

b) Build its complement A1
C, and then the intersection A0 ∩ A1

C. What is the meaning of this intersection ?

1. In English, a V label cannot immediately follow a Det label. Define an automaton A2 that recognizes sentence

tags including such sequences. Then, build its complement A2
C.

a) By using operations on automata, simplify the automaton A0 to drop the two kinds of forbidden POS

sequences mentioned above.

N Pro Pro N

Pro

V

Conj

Det

Det V

54

54Friday, December 26, 14

2.10 - Application of Finite State
methods to NLP

2. Brill Tagger
We want to implement a Brill tagger for English using transducers. We simplify the sequence of correction rules
that are learned from a reference corpus and we assume that the sequence is composed of the two following
rules:

1. np vbn → np vbd

2. vbd by → vbn by

	 In theses rules, “np” stands for proper noun, “vbn” for verb in past participle form, “vbd” for verb in past tense and
“by” is the preposition “by”.
The meaning of the rules is the following: in a tagged text, every sequence of tags that matches the left hand side
of the rule is replaced with the right hand side. For instance, consider the sentence: “Johnnp Lennonnp wasbedz

shotvbd byby Chapmannp “. After application of rule 1, the sentence remains unchanged. After application of rule 2,
the sentence becomes: “Johnnp Lennonnp wasbedz shotvbn byby Chapmannp “.

• Represent the actions of the two rules on tagged texts with two transducers T1 and T2

• Compose T1 o T2 to represent the action of rule 1 followed by rule 2. We obtain a transducer T, which
represents one pass of the Brill tagger.

• Represent the tagging of the initial sentence with an automaton A. We consider A as a transducer
representing the function identity. Under this condition, compose A o T to compute the output tagging of the
sentence.

55

55Friday, December 26, 14

