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4.1 Ð Introduction 

¥ String languages are not sufficient to represent linguistic structures. When they are 

generated by grammars, linguistic structures are represented in a subsidiary way by 

derivation trees.

¥ Tree grammars aim at promoting trees as first class citizens.

¥ At the same time, the goal is to provide a unified framework for various formalisms 

that use trees: context free grammars, synchronous grammars, tree automata, tree 

transducers ...

¥ A unified framework allows the use of generic tools to deal with the different 

formalisms embedded in this framework.

¥ The course is based on Koller and KuhlmannÕs work (IWPT 2011, ESSLLI 2013).
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4.2 Ð Definitions 

¥ A signature of a tree language is a set  Σ of pairs in the form (s, n) where s is a function 

symbol and n is an integer representing the rank (or the arity) of s.

¥ The set T(Σ) of trees over Σ is defined inductively as follows:

‣ All symbols of Σ with rank 0 are elements of T(Σ).

‣ If t1, t2, ..., tn are n elements of T(Σ) and if f is a symbol of  with the rank n, then 

f(t1, t2, ..., tn ) is an element of T(Σ).

¥ A tree language over Σ is a subset of T(Σ).
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4.2 Ð Definitions 

¥ A Regular Tree Grammar (RTG) is a 4-uple G = (N, Σ, S, R) such that :

‣ N is a finite alphabet of non terminal symbols.

‣ Σ is a finite ranked alphabet of terminal symbols. 

‣  S is a particular element of N, the start symbol.

‣ R is a finite set of production rules in the form A → t, where A is a non terminal and  

t is a tree over  N ∪ Σ, that is an element of  T(N ∪ Σ).
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4.2 Ð Definitions 

¥ The derivation relation  ⇒ between trees of  T(N ∪ Σ)  is defined as follows : 

t ⇒ t’  if and only if t contains an occurrence of a non terminal A , there is a production 

rule  A → s ∈ R,  t’ is obtained by replacing an occurrence of A in t with s. Its reflexive 

and transitive closure is written : ⇒ *

¥ The language generated by the grammar is the set of trees t from T(Σ) such that:

 S ⇒ * t. It is a regular tree language , which is named L(G).
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4.2 Ð Definitions 

¥ A grammar G is defined by the following rules and its start symbol is T:

 T → or(T,T)

 T → or(T,F)

 T → or(F,T)

T → neg(F)

T → true

F → or(F,F)

F → neg(T)

F → false
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4.2 Ð Definitions 

¥ Two RTGs are equivalent  if the generate the same language.

¥ A RTG is normalised  if all its rules has the form A → f(A1, ..., An). Every RTG is 

equivalent to a normalised RTG.

¥ The class of regular tree languages is closed under union , intersection and 

complementation .

¥ Theorem: a string language is context-free  if and only if it is the yield of a regular tree 

language.
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4.2 - Definitions 
1.  Regular Tree Languages

Let  Σ = { f2, g1, h0} be an alphabet of ranked symbols. Prove that the following tree 

languages are regular. 

a) The  set of trees from T(Σ) built from g  and h, and  whose height is even.

b) The  set of trees from T(Σ)  in the shape f(T,g(T’)), where T and T’ are any elements 

from T(Σ). 

2. Intersection of Tree Languages

Let  G1 be an RTG with S as start symbol and defined by the following rules :

S → f(A) | g(S,c)     A → h(a,A,b) | ε 
Let  G2 be an RTG with S as start symbol and defined by the following rules :

S → f(A) | g(a,S)     A → h(b,A,c) | ε 

Let LT1 and LT2 be the tree languages generated by G1 and G2 .

a) Determine two CFGs generating the string languages LS1 and LS2 that are the yields of 
LT1 and LT2 . 

b) Determine LS1 and LS2  and their intersection. 

c) Determine a RTG generating the intersection of LT1 and LT2.  What is this intersection ?
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4.3 Ð Interpreted RTG (IRTG)

¥ Let ! be a ranked alphabet of input symbols and " a ranked alphabet of output 

symbols. An homomorphism  h from T(!) to T(") is defined as a set of rules in the 

form f(x1, ..., xm) → t such that f is a symbol of rank m from !,  x1, ..., xm  are variables, 

and t is a tree of T(" ∪ {x1, ..., xm })

¥ if f(t1, ..., tm) is a term from T(!) and if f(x1, ..., xm) → t  is a rule defining the 

homomorphism h, then h(f(t1, ..., tm)) is defined as  t {h(t1)/x1, ..., h(tm)/xm} .

¥ An homomorphism is simple  if for all its rules verify the property that every variable 

present in the left hand side occurs once in the right hand side. 
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4.3 - Interpreted RTG (IRTG) 

An example of simple homomorphism:

¥ Σ = { impl2, or2, neg1, true0, false0} 

¥ Δ  = {or2, neg1, true0, false0} 

¥ An homomorphism h from T(Σ) to T(Δ) is defined by the following rules:

 impl(x,y) → or(neg(x),y)

 or(x,y) → or(x,y)

 neg(x) → neg(x)

true → true

false → false
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4.3 Ð Interpreted RTG (IRTG)

¥ Let Σ be a ranked alphabet. A Σ-algebra  A is a non-empty set |A| called the domain 

and for each symbol f with rank m a total function fA : |A|m →  |A|.  

An evaluation  of a term t from T(Σ)  is an element ⟦t⟧A of  |A| defined recursively 

with the following rule:  ⟦f(t1,...,tm)⟧A = fA(⟦t1⟧A,..., ⟦tm⟧A)
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4.3 Ð Interpreted RTG (IRTG)

¥ Let Σ be a ranked alphabet. A Σ-interpretation is a pair I = (h, A) where A is a Σ 

algebra  and h an homomorphism from T(Σ) to T(Δ). If t is a tree from the RTG 

grammar G source of the interpretation I, the interpretation of t according to I is:  ⟦t⟧I 

= ⟦h(t)⟧A

¥ An interpreted regular tree grammar (IRTG) is a n-uple (G, I1,..., In) where G is 

regular tree grammar over an alphabet of terminal symbols Σ and the Ik  are Σ-

interpretations.

¥ The langage generated by (G, I1,..., In) is the set of n-uples (⟦t⟧I1,..., ⟦t⟧In) such that t 

∈ L(G). 
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4.3 - Interpreted RTG (IRTG) 

An example of Σ-interpretation:

• Σ = { impl2, or2, neg1, true0, false0}

•  G is a RTG over Σ with T as start symbol and with the following rules:

T → impl(T,T) | impl(F,T) | impl(F,F)

T → or(T,T) | or(T,F) | or(F,T)

T → neg(F)

T → true

F → impl(T,F)

F → or(F,F)

F → neg(T)

F → false
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4.3 - Interpreted RTG (IRTG) 

• Δ  = {or2, neg1, true0, false0}

•  An homomorphism h from T(Σ) to T(Δ) is defined 

by the following rules:

• A is a !-algebra defined by

 impl(x,y)  → or( neg(x),y)

 or(x,y) →  or(x,y)

 neg(x) → neg(x)

true → true

false →  false

|A| = {0,1}, 

⟦true⟧A = 1, 

⟦false⟧A = 0,  

⟦neg⟧A = {0 ↦ 1, 1 ↦ 0}

⟦or⟧A = {0,0 ↦ 0,   0,1 ↦ 1,  1,0 ↦ 1,   1,1 ↦ 1}
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4.3 - Interpreted RTG (IRTG) 

1. IRTG for the arithmetic expressions
Define an IRTG (G, (h1, A), (h2,A))  for the arithmetic expressions over binary natural 

numbers with the following constraints: 

a) The  signature of G is:  Σ = { +2, -2, x2, 00, 10}.

b) A product may only contain other products or constants.

c) A  is the string algebra over the signature Σ. It means that |A| is the set of strings 

over Σ and the RTG defining A is the RTG generating the terms of strings with the 

concatenation operator " and the constant # representing the empty string.

d) The first interpretation (h1, A)  generates strings of arithmetic expressions  in infixed 

notation and the second interpretation (h2,A) in prefixed (polish) notation. For 

instance, the same expression is interpreted as  1 + 0 x 1 with (h1, A) and + 1 x 0 1 

with (h2,A).
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4.3 - Interpreted RTG (IRTG) 

3. Substitution grammars

A substitution grammar is a phrase structure grammar such that its elementary units are 
phrase structure trees and the unique operation of syntactic composition is substitution. 
Specific leaves labeled with grammatical categories are marked as substitution nodes. 
They expect to merge with the root of another elementary tree.

A substitution grammar G consists of the elementary trees below. 

Define an IRTG representing this grammar with two interpretations : one producing the 
syntactic trees and another one producing the grammatical sentences.
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4.4 Ð CFG as IRTG

• Let G = (N, Σ, S, R)  be a CFG. We can associate a RTG G’ = (N, Σ’, S, R’) to G such that:

! For every rule from R, we create a new symbol r of Σ’ and its arity n is the number of 

nonterminals in the right hand side of the rule and we create a new rule of R’  in the form  A 

→ r( B1,..., Bn)  where B1,..., Bn are the nonterminals of the rule r.

• From G and G’, it is possible to create an IRTG G” = (G’, (h, A)) such that :

! A is the string algebra over Σ 

! h is the homorphism from T(Σ’) to T(Σ”) such that:

-  Σ” consists of the symbols of Σ  with the arity 0, the empty string ε  with the arity 0 and 

the binary concatenation operator ¥. 

- h maps every symbol r of  Σ’ with the arity n with the rule that associates to r(x1, ...., xn) 

to the right-branching tree obtained from rewriting the right hand side of the rule r into a 

sequence of concatenations.
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4.4 Ð CFG as IRTG

• The langage L( G) identifies with L(G”). 

• If G  is used to generate a natural language, then L(G’) is the set of syntactic trees generated by 

the grammar and their yields are the acceptable sentences of the natural languge.

•  We can add another homomorphism hÕ from T(Σ’) to T(S), where S is an alphabet of symbols 

used to build semantic terms, and  we obtain an new IRTG, which provides both a phonological 

form and a semantic representation of a sentence from its syntactic tree.
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4.5 Ð Synchronous Grammars

• A synchronous grammar G is an IRTG with two interpretations IL and IR: G  = (G0, IL,IR)  and IL = 

(hL, AL), IR = (hR, AR)

• Synchronous grammars are used to represent binary relations between objects.

• Parsing with a synchronous grammar means, for a given pair (aL, aR) from |AL|  x  |AR|  to 

compute all trees t from G0  such that ⟦hL(t)⟧AL  = aL and ⟦hR(t)⟧AR = aR . We denote the set of 

theses trees parses(aL, aR)

• Decoding with a synchronous grammar means, for a given left interpretation aL from |AL|   to 

compute all right interpretations ⟦hR(t)⟧AR  such that  t is a tree from G0  and ⟦hL(t)⟧AL  = aL 
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4.5 Ð Synchronous Grammars

An application of synchronous grammars to the representation of FST

• Let T = (Q, ΣI, ΣO, Q0, TR)  be a FST. We can associate a RTG G = (Q, Σ, Q0, R) to  T such that:

‣ For every transition Q Ð a:b ! QÕ from TR, we create a new symbol t of Σ  with arity 1 and a new 

rule of R  in the form  Q → t( QÕ)

‣ For every final state Q from F, we create a new symbol f of Σ  with arity 0 and a new rule of R  in the 

form  Q → f()

• From T and G, it is possible to create an IRTG G’ = (G, (hI, AI), (hO, AO)) such that :

‣  AI  and AO  are the string algebras over ΣI and ΣO, 

‣ hI  (hO) is the homorphism from T(Σ) to T(ΣI) (T(ΣO) ) such that:

- hI (hO) maps every symbol t of  Σ representing the transition Q Ð a:b ! QÕ to the rule  t(x) ! !  

"(a, x) (t(x) ! "(b, x) ).

- hI (hO) maps every symbol f of  Σ representing a final state to the rule f() ! #
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4.5 Ð Synchronous Grammars 

1. Synchronous Context Free Grammars
A synchronous Context Free Grammar (SynCFG) is a tuple  G  =  (N, T, S, R) such 

that:

• N is a finite set of non terminals,

• T is a finite set of terminals,

• S is a particular non terminal, the start symbol of the grammar,

• R is a finite set of production rules in the form <A $ % , B $& > where A and 
B are non terminals and % and & are synchronous strings of terminals and 
non terminals, which means that the non terminals of % are in one-to-one 
correspondence with the non terminals of & by means of indices.

The states of a derivation are pairs of synchronous strings of terminals and non 
terminals. A step of a derivation consists of replacing two synchronous non terminals 
by means of a rule of the grammar.
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4.5 Ð Synchronous Grammars 

Here is an example of a SynCFG G used for the translation between French and German. S 

is the start symbol of the grammar and its rules are the following ones:

• [S $ PROSUJ 1 GV2 , S $ PROSUBJ 1 VP2]

• [PROSUJ $ il, PROSUBJ $ er]

• [GV $ PROOBJ 1 AUX2 V3 GN4, VP $ HV 2 PROOBJ1 NP4 V3]

• [PROOBJ $ nous, PROOBJ $ uns]

• [AUX $ a, HV $ hat]

• [V $ donnŽ, V $ gegeben]

• [GN $ DET1 N2, NP $ DET1 N2]

• [DET $ un, DET $ ein]

• [N $ livre, N $ buch]

Represent G with a synchronous IRTG G’ and determine the language L(G’).
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4.6 Ð Parsing with IRTG 

¥ Let  G’ = (G, (h1,A1),..., (hn, An) ) be an IRTG. Parsing a n-uple (a1,...,an) from |A1|

x ... x |An|  is defined as determining the set of trees t from L(G) that have (a1,...,an) 

for interpretation. This set is denoted parsesG’(a1,...,an)

¥ The class of IRTGs being closed under intersection: 

parsesG’(a1,...,an) = parses(G,(h1,A1))(a1) # ... # parses(G,(hn,An))(an)

¥ If we consider an IRTG G’ = (G, (h,A)), parsing a from |A| amounts to three 

successive computations: 

‣ the set H(a) of all trees interpreted as a, 

‣ the inverse image h-1(H(a)) by the homomorphism h,

‣ the intersection   h-1(H(a)) # L(G)
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4.6 Ð Parsing with IRTG 

¥ The computation of H(a) is made easier if the Σ-algebra A is regularly 

decomposable:  for every element a from |A|, there is a RTG D(a) such that the 

language L(D(a)) is the set of all trees interpreted as a with A. 

¥ Since regular tree languages are closed under inverse homomorphism, h-1(H(a))  is a  

regular tree language generated by a RTG Dh-1(a).

¥ There is an algorithm, which is similar to the CKY algorithm, to compute Dh-1(a)
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4.6 Ð Parsing with IRTG 

¥ The algorithm derives items in the form [f, π, N, σ] stating that the RTG D(a) can 
generate the subtree of h(f)σ at node π if it uses N as the start symbol.

¥ The derivation rules: 
h(f)(π) = xi     N is a non terminal of D(a)

—————————————————————— (var)
[f, π, N, σ]

N → g(N1,...,Np) is a rule of D(a)       h(f)(π) = g
[f, π1, N1, σ1]  ... [f, πp, Np, σp]

σ = merge(σ1 ,..., σp)
—————————————————————— (up)

[f, π, N, σ]

¥ For all derived items in the form [f, ε, N, σ], a rule of Dh-1(a) N → f(σ(x1),..., σ(xp)) is 

generated.

¥ If m is the number of variables in h(f), the parsing complexity is O(nm+1).
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4.6 Ð Parsing with IRTG

1. Let  Σ = {introduce, he, her, to1, colleagues} be an alphabet. We consider the RTG G  over  Σ 
with S as its start symbol and with the following rules:

S → introduce(SUBJ, OBJ, IOBJ)

SUBJ → he

OBJ → her 

IOBJ → to(NP) 

NP → colleagues  

Let Δ = {●, introduces0, he, her, to0, colleagues} be an alphabet and we consider the

homomorphism h from T(Σ) to T(Δ) defined with the following rules:

introduce(x,y,z) → x ● ( (introduces ● y) ● z)

he → he

her → her

to1(x) → to0 ● x

colleagues → colleagues

A is the string algebra over the alphabet Δ.

Parse the sentence “he introduces her to colleagues” with the IRTG (G,(h,A)).
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