
4 - Regular Tree Grammars

(RTG)

1. Introduction

2. Definitions

3. Interpreted Regular Tree Grammars (IRTG)

4. CFG and RTG

5. Synchronous Grammars

6. Parsing with RTG

1Friday, December 26, 14

4.1 Ð Introduction

¥ String languages are not sufficient to represent linguistic structures. When they are

generated by grammars, linguistic structures are represented in a subsidiary way by

derivation trees.

¥ Tree grammars aim at promoting trees as first class citizens.

¥ At the same time, the goal is to provide a unified framework for various formalisms

that use trees: context free grammars, synchronous grammars, tree automata, tree

transducers ...

¥ A unified framework allows the use of generic tools to deal with the different

formalisms embedded in this framework.

¥ The course is based on Koller and KuhlmannÕs work (IWPT 2011, ESSLLI 2013).

2Friday, December 26, 14

4.2 Ð Definitions

¥ A signature of a tree language is a set Σ of pairs in the form (s, n) where s is a function

symbol and n is an integer representing the rank (or the arity) of s.

¥ The set T(Σ) of trees over Σ is defined inductively as follows:

‣ All symbols of Σ with rank 0 are elements of T(Σ).

‣ If t1, t2, ..., tn are n elements of T(Σ) and if f is a symbol of with the rank n, then

f(t1, t2, ..., tn) is an element of T(Σ).

¥ A tree language over Σ is a subset of T(Σ).

3Friday, December 26, 14

4.2 Ð Definitions

¥ A Regular Tree Grammar (RTG) is a 4-uple G = (N, Σ, S, R) such that :

‣ N is a finite alphabet of non terminal symbols.

‣ Σ is a finite ranked alphabet of terminal symbols.

‣ S is a particular element of N, the start symbol.

‣ R is a finite set of production rules in the form A → t, where A is a non terminal and

t is a tree over N ∪ Σ, that is an element of T(N ∪ Σ).

4Friday, December 26, 14

4.2 Ð Definitions

¥ The derivation relation ⇒ between trees of T(N ∪ Σ) is defined as follows :

t ⇒ t’ if and only if t contains an occurrence of a non terminal A , there is a production

rule A → s ∈ R, t’ is obtained by replacing an occurrence of A in t with s. Its reflexive

and transitive closure is written : ⇒ *

¥ The language generated by the grammar is the set of trees t from T(Σ) such that:

 S ⇒ * t. It is a regular tree language , which is named L(G).

5Friday, December 26, 14

4.2 Ð Definitions

¥ A grammar G is defined by the following rules and its start symbol is T:

 T → or(T,T)

 T → or(T,F)

 T → or(F,T)

T → neg(F)

T → true

F → or(F,F)

F → neg(T)

F → false

6Friday, December 26, 14

4.2 Ð Definitions

¥ Two RTGs are equivalent if the generate the same language.

¥ A RTG is normalised if all its rules has the form A → f(A1, ..., An). Every RTG is

equivalent to a normalised RTG.

¥ The class of regular tree languages is closed under union , intersection and

complementation .

¥ Theorem: a string language is context-free if and only if it is the yield of a regular tree

language.

7Friday, December 26, 14

4.2 - Definitions
1. Regular Tree Languages

Let Σ = { f2, g1, h0} be an alphabet of ranked symbols. Prove that the following tree

languages are regular.

a) The set of trees from T(Σ) built from g and h, and whose height is even.

b) The set of trees from T(Σ) in the shape f(T,g(T’)), where T and T’ are any elements

from T(Σ).

2. Intersection of Tree Languages

Let G1 be an RTG with S as start symbol and defined by the following rules :

S → f(A) | g(S,c) A → h(a,A,b) | ε
Let G2 be an RTG with S as start symbol and defined by the following rules :

S → f(A) | g(a,S) A → h(b,A,c) | ε

Let LT1 and LT2 be the tree languages generated by G1 and G2 .

a) Determine two CFGs generating the string languages LS1 and LS2 that are the yields of
LT1 and LT2 .

b) Determine LS1 and LS2 and their intersection.

c) Determine a RTG generating the intersection of LT1 and LT2. What is this intersection ?

8Friday, December 26, 14

4.3 Ð Interpreted RTG (IRTG)

¥ Let ! be a ranked alphabet of input symbols and " a ranked alphabet of output

symbols. An homomorphism h from T(!) to T(") is defined as a set of rules in the

form f(x1, ..., xm) → t such that f is a symbol of rank m from !, x1, ..., xm are variables,

and t is a tree of T(" ∪ {x1, ..., xm })

¥ if f(t1, ..., tm) is a term from T(!) and if f(x1, ..., xm) → t is a rule defining the

homomorphism h, then h(f(t1, ..., tm)) is defined as t {h(t1)/x1, ..., h(tm)/xm} .

¥ An homomorphism is simple if for all its rules verify the property that every variable

present in the left hand side occurs once in the right hand side.

9Friday, December 26, 14

4.3 - Interpreted RTG (IRTG)

An example of simple homomorphism:

¥ Σ = { impl2, or2, neg1, true0, false0}

¥ Δ = {or2, neg1, true0, false0}

¥ An homomorphism h from T(Σ) to T(Δ) is defined by the following rules:

 impl(x,y) → or(neg(x),y)

 or(x,y) → or(x,y)

 neg(x) → neg(x)

true → true

false → false

10Friday, December 26, 14

4.3 Ð Interpreted RTG (IRTG)

¥ Let Σ be a ranked alphabet. A Σ-algebra A is a non-empty set |A| called the domain

and for each symbol f with rank m a total function fA : |A|m → |A|.

An evaluation of a term t from T(Σ) is an element ⟦t⟧A of |A| defined recursively

with the following rule: ⟦f(t1,...,tm)⟧A = fA(⟦t1⟧A,..., ⟦tm⟧A)

11Friday, December 26, 14

4.3 Ð Interpreted RTG (IRTG)

¥ Let Σ be a ranked alphabet. A Σ-interpretation is a pair I = (h, A) where A is a Σ

algebra and h an homomorphism from T(Σ) to T(Δ). If t is a tree from the RTG

grammar G source of the interpretation I, the interpretation of t according to I is: ⟦t⟧I

= ⟦h(t)⟧A

¥ An interpreted regular tree grammar (IRTG) is a n-uple (G, I1,..., In) where G is

regular tree grammar over an alphabet of terminal symbols Σ and the Ik are Σ-

interpretations.

¥ The langage generated by (G, I1,..., In) is the set of n-uples (⟦t⟧I1,..., ⟦t⟧In) such that t

∈ L(G).

12Friday, December 26, 14

4.3 - Interpreted RTG (IRTG)

An example of Σ-interpretation:

• Σ = { impl2, or2, neg1, true0, false0}

• G is a RTG over Σ with T as start symbol and with the following rules:

T → impl(T,T) | impl(F,T) | impl(F,F)

T → or(T,T) | or(T,F) | or(F,T)

T → neg(F)

T → true

F → impl(T,F)

F → or(F,F)

F → neg(T)

F → false

13Friday, December 26, 14

4.3 - Interpreted RTG (IRTG)

• Δ = {or2, neg1, true0, false0}

• An homomorphism h from T(Σ) to T(Δ) is defined

by the following rules:

• A is a !-algebra defined by

 impl(x,y) → or(neg(x),y)

 or(x,y) → or(x,y)

 neg(x) → neg(x)

true → true

false → false

|A| = {0,1},

⟦true⟧A = 1,

⟦false⟧A = 0,

⟦neg⟧A = {0 ↦ 1, 1 ↦ 0}

⟦or⟧A = {0,0 ↦ 0, 0,1 ↦ 1, 1,0 ↦ 1, 1,1 ↦ 1}

14Friday, December 26, 14

4.3 - Interpreted RTG (IRTG)

1. IRTG for the arithmetic expressions
Define an IRTG (G, (h1, A), (h2,A)) for the arithmetic expressions over binary natural

numbers with the following constraints:

a) The signature of G is: Σ = { +2, -2, x2, 00, 10}.

b) A product may only contain other products or constants.

c) A is the string algebra over the signature Σ. It means that |A| is the set of strings

over Σ and the RTG defining A is the RTG generating the terms of strings with the

concatenation operator " and the constant # representing the empty string.

d) The first interpretation (h1, A) generates strings of arithmetic expressions in infixed

notation and the second interpretation (h2,A) in prefixed (polish) notation. For

instance, the same expression is interpreted as 1 + 0 x 1 with (h1, A) and + 1 x 0 1

with (h2,A).

15Friday, December 26, 14

4.3 - Interpreted RTG (IRTG)

3. Substitution grammars

A substitution grammar is a phrase structure grammar such that its elementary units are
phrase structure trees and the unique operation of syntactic composition is substitution.
Specific leaves labeled with grammatical categories are marked as substitution nodes.
They expect to merge with the root of another elementary tree.

A substitution grammar G consists of the elementary trees below.

Define an IRTG representing this grammar with two interpretations : one producing the
syntactic trees and another one producing the grammatical sentences.

16Friday, December 26, 14

4.4 Ð CFG as IRTG

• Let G = (N, Σ, S, R) be a CFG. We can associate a RTG G’ = (N, Σ’, S, R’) to G such that:

! For every rule from R, we create a new symbol r of Σ’ and its arity n is the number of

nonterminals in the right hand side of the rule and we create a new rule of R’ in the form A

→ r(B1,..., Bn) where B1,..., Bn are the nonterminals of the rule r.

• From G and G’, it is possible to create an IRTG G” = (G’, (h, A)) such that :

! A is the string algebra over Σ

! h is the homorphism from T(Σ’) to T(Σ”) such that:

- Σ” consists of the symbols of Σ with the arity 0, the empty string ε with the arity 0 and

the binary concatenation operator ¥.

- h maps every symbol r of Σ’ with the arity n with the rule that associates to r(x1,, xn)

to the right-branching tree obtained from rewriting the right hand side of the rule r into a

sequence of concatenations.

17Friday, December 26, 14

4.4 Ð CFG as IRTG

• The langage L(G) identifies with L(G”).

• If G is used to generate a natural language, then L(G’) is the set of syntactic trees generated by

the grammar and their yields are the acceptable sentences of the natural languge.

• We can add another homomorphism hÕ from T(Σ’) to T(S), where S is an alphabet of symbols

used to build semantic terms, and we obtain an new IRTG, which provides both a phonological

form and a semantic representation of a sentence from its syntactic tree.

18Friday, December 26, 14

4.5 Ð Synchronous Grammars

• A synchronous grammar G is an IRTG with two interpretations IL and IR: G = (G0, IL,IR) and IL =

(hL, AL), IR = (hR, AR)

• Synchronous grammars are used to represent binary relations between objects.

• Parsing with a synchronous grammar means, for a given pair (aL, aR) from |AL| x |AR| to

compute all trees t from G0 such that ⟦hL(t)⟧AL = aL and ⟦hR(t)⟧AR = aR . We denote the set of

theses trees parses(aL, aR)

• Decoding with a synchronous grammar means, for a given left interpretation aL from |AL| to

compute all right interpretations ⟦hR(t)⟧AR such that t is a tree from G0 and ⟦hL(t)⟧AL = aL

19Friday, December 26, 14

4.5 Ð Synchronous Grammars

An application of synchronous grammars to the representation of FST

• Let T = (Q, ΣI, ΣO, Q0, TR) be a FST. We can associate a RTG G = (Q, Σ, Q0, R) to T such that:

‣ For every transition Q Ð a:b ! QÕ from TR, we create a new symbol t of Σ with arity 1 and a new

rule of R in the form Q → t(QÕ)

‣ For every final state Q from F, we create a new symbol f of Σ with arity 0 and a new rule of R in the

form Q → f()

• From T and G, it is possible to create an IRTG G’ = (G, (hI, AI), (hO, AO)) such that :

‣ AI and AO are the string algebras over ΣI and ΣO,

‣ hI (hO) is the homorphism from T(Σ) to T(ΣI) (T(ΣO)) such that:

- hI (hO) maps every symbol t of Σ representing the transition Q Ð a:b ! QÕ to the rule t(x) ! !

"(a, x) (t(x) ! "(b, x)).

- hI (hO) maps every symbol f of Σ representing a final state to the rule f() ! #

20Friday, December 26, 14

4.5 Ð Synchronous Grammars

1. Synchronous Context Free Grammars
A synchronous Context Free Grammar (SynCFG) is a tuple G = (N, T, S, R) such

that:

• N is a finite set of non terminals,

• T is a finite set of terminals,

• S is a particular non terminal, the start symbol of the grammar,

• R is a finite set of production rules in the form <A $ % , B $& > where A and
B are non terminals and % and & are synchronous strings of terminals and
non terminals, which means that the non terminals of % are in one-to-one
correspondence with the non terminals of & by means of indices.

The states of a derivation are pairs of synchronous strings of terminals and non
terminals. A step of a derivation consists of replacing two synchronous non terminals
by means of a rule of the grammar.

21Friday, December 26, 14

4.5 Ð Synchronous Grammars

Here is an example of a SynCFG G used for the translation between French and German. S

is the start symbol of the grammar and its rules are the following ones:

• [S $ PROSUJ 1 GV2 , S $ PROSUBJ 1 VP2]

• [PROSUJ $ il, PROSUBJ $ er]

• [GV $ PROOBJ 1 AUX2 V3 GN4, VP $ HV 2 PROOBJ1 NP4 V3]

• [PROOBJ $ nous, PROOBJ $ uns]

• [AUX $ a, HV $ hat]

• [V $ donnŽ, V $ gegeben]

• [GN $ DET1 N2, NP $ DET1 N2]

• [DET $ un, DET $ ein]

• [N $ livre, N $ buch]

Represent G with a synchronous IRTG G’ and determine the language L(G’).

22Friday, December 26, 14

4.6 Ð Parsing with IRTG

¥ Let G’ = (G, (h1,A1),..., (hn, An)) be an IRTG. Parsing a n-uple (a1,...,an) from |A1|

x ... x |An| is defined as determining the set of trees t from L(G) that have (a1,...,an)

for interpretation. This set is denoted parsesG’(a1,...,an)

¥ The class of IRTGs being closed under intersection:

parsesG’(a1,...,an) = parses(G,(h1,A1))(a1) # ... # parses(G,(hn,An))(an)

¥ If we consider an IRTG G’ = (G, (h,A)), parsing a from |A| amounts to three

successive computations:

‣ the set H(a) of all trees interpreted as a,

‣ the inverse image h-1(H(a)) by the homomorphism h,

‣ the intersection h-1(H(a)) # L(G)

23Friday, December 26, 14

4.6 Ð Parsing with IRTG

¥ The computation of H(a) is made easier if the Σ-algebra A is regularly

decomposable: for every element a from |A|, there is a RTG D(a) such that the

language L(D(a)) is the set of all trees interpreted as a with A.

¥ Since regular tree languages are closed under inverse homomorphism, h-1(H(a)) is a

regular tree language generated by a RTG Dh-1(a).

¥ There is an algorithm, which is similar to the CKY algorithm, to compute Dh-1(a)

24Friday, December 26, 14

4.6 Ð Parsing with IRTG

¥ The algorithm derives items in the form [f, π, N, σ] stating that the RTG D(a) can
generate the subtree of h(f)σ at node π if it uses N as the start symbol.

¥ The derivation rules:
h(f)(π) = xi N is a non terminal of D(a)

—————————————————————— (var)
[f, π, N, σ]

N → g(N1,...,Np) is a rule of D(a) h(f)(π) = g
[f, π1, N1, σ1] ... [f, πp, Np, σp]

σ = merge(σ1 ,..., σp)
—————————————————————— (up)

[f, π, N, σ]

¥ For all derived items in the form [f, ε, N, σ], a rule of Dh-1(a) N → f(σ(x1),..., σ(xp)) is

generated.

¥ If m is the number of variables in h(f), the parsing complexity is O(nm+1).

25Friday, December 26, 14

4.6 Ð Parsing with IRTG

1. Let Σ = {introduce, he, her, to1, colleagues} be an alphabet. We consider the RTG G over Σ
with S as its start symbol and with the following rules:

S → introduce(SUBJ, OBJ, IOBJ)

SUBJ → he

OBJ → her

IOBJ → to(NP)

NP → colleagues

Let Δ = {●, introduces0, he, her, to0, colleagues} be an alphabet and we consider the

homomorphism h from T(Σ) to T(Δ) defined with the following rules:

introduce(x,y,z) → x ● ((introduces ● y) ● z)

he → he

her → her

to1(x) → to0 ● x

colleagues → colleagues

A is the string algebra over the alphabet Δ.

Parse the sentence “he introduces her to colleagues” with the IRTG (G,(h,A)).

26Friday, December 26, 14

