
6 - External interfaces

1. Manipulation of files

2. Graphic interfaces

1Friday, December 26, 14

6.1 - Manipulation of files

• It is important to dissociate data from programs that use them by storing data in files
independent of programs.

• The os module contains functions that are used for locating files:

getcwd() Returns the path of the current directory.

chdir(<path>) Changes the current directory with path <path>

path.isfile(<path
>)

Returns a boolean which indicates if the file
located at path <path> exists or not.

path.isdir(<path>
)

Returns a boolean which indicates if the
directory located at path <path> exists or not.

2Friday, December 26, 14

6.1 - Manipulation of files

• A file identified by means of the path <path>, to be used in a Python program, must be
opened through the function call open(<path>, [<mode>]), which returns a object of

type file. The optional parameter <mode> indicates the opening mode of the file:

∗ ‘r’ : read mode (the file must exist first);

∗ ‘w’ : write mode (if the file exists, its data are overwritten, otherwise the file is

created);

∗ ‘a’ : addition mode (if the file exists, new data will be written after stored data,
otherwise the file is created).

If the mode is omitted, the default mode is ‘r’.

3Friday, December 26, 14

6.1 - Manipulation of files

• As every Python object, an object of type file is associated with attributes and methods.
Here are some methods associated with files:

read([<n>]) Returns the string of the last <n> characters
from the file.

write(<s>) Writes string <s>.

close() Closes the file.

seek(<n>) Put the pointer of the file at position <n>.

4Friday, December 26, 14

6.1 - Manipulation of files

>>> from os import chdir
>>> chdir(‘Users/perrier/Desktop’)
>>> getcwd()
‘Users/perrier/Desktop’
>>> from os import path
>>> path.isfile(‘./test’)
True
>>> f = open(‘./test’, ‘r’)
>>> f.read(3)
‘bon’
>>> f.read()
‘jour’
>>> f.seek(0)
>>> f.read()
‘bonjour’
>>> f.close()

>>> f2 = open(‘./test’, ‘a’)
>>> f2.write(‘ cher ami’)
>>> f2.close()
>>> f2 = open(‘test’, ‘r’)
>>> f2.read()
‘bonjour cher ami’
>>> f2.close()
>>>

5Friday, December 26, 14

6.2 - Graphic interfaces

• Python has a module, Tkinter, which is an interface between Python and Tk of Tcl
used to create and to manage graphic interfaces.

• Documentation : http://www.pythonware.com/library/tkinter/introduction/.

• The Tkinter module provides the Tk object class, the instances of which are graphic

windows.

• It also provides widgets which can be placed in these windows. Tkinter offers 15

classes of widgets. A widget is a graphic object that enables a user to interact with a
program in a specific form: with the keyboard or the mouse, the user can create events

triggering Python programs. This mechanism is called event programming.

6Friday, December 26, 14

6.2 - Graphic interfaces

• A widget stored in a variable x can be integrated in another widget or a window y in the
following way: y is passed as argument in the instruction of the widget creation

 x = <widget class>(y, …)

• The positioning of a widget in its window is performed by means of the pack method

or more precisely with the grid method, which is based on the division of the window

according to a two dimension grid.

• The linking of a widget stored in a variable x with an event e and an event procedure f

is performed through the bind method according to the following syntax: x.bind(e,f).

The procedure f is defined as any Python function with e as parameter and it returns no

value.

7Friday, December 26, 14

6.2 - Graphic interfaces

from Tkinter import *

definition of the widget and their relations

fen1 = Tk()
fr1 = Frame(fen1, bg='grey')

list1= Listbox(fr1, width=4, height=4)

ent1 = Entry(fr1, width=50)
lab1= Label(fr1, text= "Entrez une phrase !", bg ='green')

lab3= Label(fr1, text="choisissez une voyelle !", bg='green')
v=StringVar()

lab4 = Label(fr1, textvariable=v, bg='blue')

list1.insert(END, 'a')
list1.insert(END, 'e')

list1.insert(END, 'i')
list1.insert(END, 'o')

list1.insert(END, 'u')

but1= Button(fr1, text="Validez")

8Friday, December 26, 14

6.2 - Graphic interfaces
positioning of the widgets

fr1.pack()

lab1.grid(row=0, column=0)

ent1.grid(row=0, column=1)

list1.grid(row=1, column=1)

lab3.grid(row=1, column=1)

but1.grid(row=2, column=0)

lab4.grid(row=2, column=1)

#definition of the event procedures

def compter(event):

 texte = ent1.get()

 lettre_selectionnee = list1.selection_get()

 n=0

 for c in texte:

 if c == lettre_selectionnee:

 n +=1

 v.set('nombre de voyelles ' + lettre_selectionnee + ' : ' +str(n))

linking of the event procedures with the events and widgets

but1.bind('<Button-1>', compter)

#activation of the graphic interface

fen1.mainloop()

9Friday, December 26, 14

6.3 - Exercises

1. Write Python programs that realize the following specifications:

a) In a text stored in the file ./corpus/text1.txt , replace a word entered at the
keyboard with another word entered at the keyboard. The new text must be
stored in the same file.

b) From a text stored in the file ./corpus/text1.txt , create a dictionary of its inflected
words with the number of occurrences in the text for each word and store the
dictionary in the file ./lexiques/lexique1.txt (with one entry per line).

2. Write a Python program that realizes a word translator between French and English
in the form of a graphic interface. In the interface, there must be two text entries and
two buttons for the two directions of translation. A unique French-English dictionary
is available in a file for the two directions of translation.

10Friday, December 26, 14

