
6 - External interfaces

1. Manipulation of files

2. Graphic interfaces
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6.1 - Manipulation of files

• It is important to dissociate data from programs that use them by storing data in files 
independent of programs.

• The os module contains functions that are used for locating files:

getcwd() Returns the path of the current directory. 

chdir(<path>) Changes the current directory with path <path>

path.isfile(<path
>)

Returns a boolean which indicates if the file 
located at  path <path> exists or not. 

path.isdir(<path>
)

Returns a boolean which indicates if the 
directory located at  path <path> exists or not.

2Friday, December 26, 14



6.1 - Manipulation of files

• A file identified by means of the path <path>, to be used in a Python program, must be 
opened through the function call open(<path>, [<mode>] ), which returns a object of 

type file. The optional parameter <mode> indicates the opening mode of the file: 

∗ ‘r’ : read mode (the file must exist first);

∗ ‘w’ : write mode (if the file exists, its data are overwritten, otherwise the file is 

created);

∗ ‘a’ : addition mode (if the file exists, new data will be written after stored data, 
otherwise the file is created).

If the mode is omitted, the default mode is ‘r’.
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6.1 - Manipulation of files

• As every Python object, an object of type file is associated with attributes and methods. 
Here are some methods associated with files:

read([<n>]) Returns the string of the last <n> characters 
from the file.

write(<s>) Writes string <s>.

close() Closes the file.

seek(<n>) Put the pointer of the file at position <n>.
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6.1 - Manipulation of files

>>> from os import chdir
>>> chdir(‘Users/perrier/Desktop’)
>>> getcwd()
‘Users/perrier/Desktop’
>>> from os import path
>>> path.isfile(‘./test’)
True
>>> f = open(‘./test’, ‘r’)
>>> f.read(3)
‘bon’
>>> f.read()
‘jour’
>>> f.seek(0)
>>> f.read()
‘bonjour’
>>> f.close()

>>> f2 = open(‘./test’, ‘a’)
>>> f2.write(‘ cher ami’)
>>> f2.close()
>>> f2 = open(‘test’, ‘r’)
>>> f2.read()
‘bonjour cher ami’
>>> f2.close()
>>>
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6.2 - Graphic interfaces

• Python has a module, Tkinter, which is an interface between Python and Tk of Tcl 
used to create and to manage graphic interfaces. 

• Documentation : http://www.pythonware.com/library/tkinter/introduction/.

• The Tkinter module provides the Tk object class, the instances of which are graphic 

windows.

• It also provides widgets which can be placed in these windows. Tkinter offers 15 

classes of widgets. A widget is a graphic object that enables a user to interact with a 
program in a specific form: with the keyboard or the mouse, the user can create events 

triggering Python programs. This mechanism is called event programming.

6Friday, December 26, 14



6.2 - Graphic interfaces

• A widget stored in a variable x can be integrated in another widget or a window y in the 
following way: y is passed as argument in the instruction of the widget creation 

                                    x = <widget class>(y, …) 

• The positioning of a widget in its window is performed by means of the pack method 

or more precisely with the grid method, which is based on the division of the window 

according to a two dimension grid.

• The linking of a widget stored in a variable x with an event e and an event procedure f 

is performed through the  bind  method according to the following syntax:  x.bind(e,f). 

The procedure f is defined as any Python function with e as parameter and it returns no 

value. 
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6.2 - Graphic interfaces

from Tkinter import *

# definition of the widget and their relations

fen1 = Tk()
fr1 = Frame(fen1, bg='grey')

list1= Listbox(fr1, width=4, height=4)

ent1 = Entry(fr1, width=50)
lab1= Label(fr1, text= "Entrez une phrase !", bg ='green')

lab3= Label(fr1, text="choisissez une voyelle !", bg='green')
v=StringVar()

lab4 = Label(fr1, textvariable=v, bg='blue')

list1.insert(END, 'a')
list1.insert(END, 'e')

list1.insert(END, 'i')
list1.insert(END, 'o')

list1.insert(END, 'u')

but1= Button(fr1, text="Validez")
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6.2 - Graphic interfaces
# positioning of the widgets

fr1.pack()

lab1.grid(row=0, column=0)

ent1.grid(row=0, column=1)

list1.grid(row=1, column=1)

lab3.grid(row=1, column=1)

but1.grid(row=2, column=0)

lab4.grid(row=2, column=1)

#definition of the event procedures

def compter(event):

    texte = ent1.get()

    lettre_selectionnee = list1.selection_get()

    n=0

    for c in texte:

        if c == lettre_selectionnee:

            n +=1

    v.set('nombre de voyelles ' + lettre_selectionnee + ' : ' +str(n))   

# linking of the event procedures with the events and widgets

but1.bind('<Button-1>', compter)

#activation of the graphic interface

fen1.mainloop()

9Friday, December 26, 14



6.3 - Exercises

1. Write Python programs that realize the following specifications: 

a) In a text stored in the file ./corpus/text1.txt , replace a word entered at the 
keyboard with another word entered at the keyboard. The new text must be 
stored in the same file. 

b) From a text stored in the file ./corpus/text1.txt , create a dictionary of its inflected 
words with the number of occurrences in the text for each word and store the 
dictionary in the file ./lexiques/lexique1.txt (with one entry per line).

2. Write a Python program that realizes a word translator between French and English 
in the form of a graphic interface. In the interface, there must be two text entries and 
two buttons for the two directions of translation. A unique French-English dictionary 
is available in a file for the two directions of translation.
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