
5 - Classes and objects

1. Features of object-oriented programming

2. Syntax of the class and instance creation and use

3. Parameterized creation of instances

4. Recursive definitions

5. Class inheritance

1Friday, December 26, 14

5.1 - Features of object-oriented
programming

• New Python objects can be created as instances of classes which are

defined by the attributes and methods applying to these objects.

• The attributes of a class are properties used to describe its instances.

• The methods of a class are functions that can be applied to its instances.

2Friday, December 26, 14

5.1 - Features of object-oriented
programming

• Classes allow typing to be customized, a class being viewed as a customized

type and an instance of it as a typed object.

• The inheritance mechanism allows new classes to be defined from old ones

by specifying them.

3Friday, December 26, 14

5.2 - Syntax of the creation and use of
classes and instances

• The syntax of a class creation is the following :
	
 	
 class < name of the class > :
	
 	
 	
 < description comment>

	
 	
 	
 < instruction block >
The < description comment > part is a string describing the class. The < instruction

block > in particular includes attribute initializations and method definitions.

4Friday, December 26, 14

5.2 - Syntax of the creation and use of
classes and instances

• The syntax of a method definition is that of a function definition with a first obligatory
parameter self representing the instance of the class concerned with the method call.

• The use of an attribute attr for an object obj is performed with the expression obj.attr.

• The use of a method m, which has m(self, arg1, arg2, …, argn) as a definition head,

associated with an object obj is performed with the function call obj.m(arg1, arg2, …,

argn).

5Friday, December 26, 14

5.2 - Syntax of the creation and use of
classes and instances

>>> class Rectangle :
 u"Geometric rectangles"
 #attributes
 length = None
 width = None
 #methods
 def perimeter(self) :
 return (self.length +self.width)*2
 def area(self):
 return self.length *self.width

>>> r1 = Rectangle()
>>> r1.length= 5
>>> r1.width = 3
>>> print u"area : ", r1.area(), u" perimeter : " , r1.perimeter()
area :15 perimeter : 16

6Friday, December 26, 14

5.3 - Parameterized creation of instances

• The parameterization of instance creation is used to initialize the values of the attributes at the time

of the instance creation.

• In the class definition, a special method __init__ must be defined. This method is executed at the

moment that an instance is created.

• The syntax of the __init__ definition is the following :

	
 	
 def __init__(self, arg1, arg2, …, argn) :

	
 	
 	
 < statement block >

In this definition, the first parameter self represents the instance of the class being created.

• The instruction of creation for the instance obj of a class C has the form : obj = C(arg1, arg2, …, argn)

7Friday, December 26, 14

5.3 -Parameterized creation of instances

>>> class Rectangle :
 u"Geométric rectangles"
 def __init__(self, lo, la)
	
 self.length = lo
 	
 self.width = la
 def perimeter(self) :
 return (self.length +self.width)*2
 def area(self):
 return self.length *self.width

>>> r1 = Rectangle(5,3)
>>> print u"area: ", r1.area(), u" perimeter: " , r1.perimeter()
area: 15 perimeter: 16
>>> r1.length = 10
>>> print u"area: ", r1.area(), u" perimeter: " , r1.perimeter()
area: 30 perimeter: 26

8Friday, December 26, 14

5.4 - Recursive definitions

Recursivity can be introduced in the value of attributes or in the definition of methods:

• Values of attributes can refer to instances of the same class.

• The definition of a method can include calls to the same method.

9Friday, December 26, 14

5.4 - Recursive definitions

>>> class Liste :
 def __init__(self, h = "", t = None):
 self. head = h
 self.tail = t
 def length(self):
 if self.tail == None :
 return 1
 else:
 return self.tail.length() +1
 def display(self):
 if self.tail == None :
 return [self.head]
 else :
 return [self.head] +self.tail.display()

>>> l1 = Liste("Marie")
>>> l2 = Liste("aime", l1)
>>>l3 = Liste("Jean",l2)
>>> print l3.length()
3
>>> print l3.display()
[‘Jean’, ‘aime’, ‘Marie’]

10Friday, December 26, 14

5.5 - Class inheritance

• A class can be defined by inheritance from another class. It takes its attributes and
methods but it can add new ones to particularize the mother class.

• The syntax of the head for the definition of a class C1 that inherits a class C2 is the

following: class C1(C2) :

• In the definition of a class C1 that inherits a class C2 , methods of C2 can be redefined.

This mechanism is called method overriding.

11Friday, December 26, 14

5.5 - Class inheritance

>>> class LabelledWord :
 def __init__(self, w = "", l = "") :
 self.word = w
 self.label = l
 def display(self) :
 return (self.word, self.label)

>>> class LabelledWordList(Liste) :
 def __init__(self, lw=LabelledWord(), t=None) :
 Liste.__init__(self, lw,t)

>>> lw1 = LabelledWord("Jean", "NP")
>>> lw2 = LabelledWord("aime", "V")
>>> lw3 = LabelledWord("Marie", "NP")
>>> l1 = LabelledWordList(lw3)
>>> l2 = LabelledWordList(lw2, l1)
>>> l3 = LabelledWordList(lw1, l2)
>>> print l3.display()
[<__main__.LabelledWord instance at 0xcd7300>, <__main__.LabelledWord instance at

0xcd7328>, <__main__.LabelledWord instance at 0xcd7350>]

12Friday, December 26, 14

5.5 - Class inheritance

>>> class LabelledWordList(Liste):

 def __init__(self, lw=LabelledWord(), t=None):
 Liste.__init__(self, lw,t)

 def display(self):
 if self.tail == None :

 return [self.head.display()]

 else :
 x = [self.head.display()]

 x.extend(self.tail.display())
 return x

>>> lw1 = LabelledWord("Jean", "NP")
>>> lw2 = LabelledWord("aime", "V")
>>> lw3 = LabelledWord("Marie", "NP")
>>> l1 = LabelledWordList(lw3)
>>> l2 = LabelledWordList(lw2, l1)
>>> l3 = LabelledWordList(lw1, l2)
>>> print l3.display()
[(‘Jean’, ‘NP’), (‘aime’, ‘V’), (‘Marie’, ‘NP’)]

13Friday, December 26, 14

5.6 - Exercises

1. InflectedWord is a class with 3 attributes : word, lemma, category. The first attribute represents an inflected
word, the second one its lemma and the last one its grammatical category. It has a unique method, display,
which returns the values of the attributes in the form of a triple.
Define the InflectedWord class and the subclasses InflectedVerb and InflectedNoun that take the inflection
parameters into account for verbs and nouns in English.

2. A syntactic tree is a tree labelled in which every leaf is labelled with a word and every other node with a
grammatical category. We consider syntactic trees with two daughters for each node at most.

a) Write a class BinaryTree to represent binary trees (trees with two daughters for each node at most). The class
has 3 attributes: label, left_daughter, right_daughter. It has a method depth which returns the depth of a tree
and a method display which returns a presentation of the tree in the form of a parenthesized word.

b) Write a class SyntacticTree which inherits the BinaryTree class with an additional method treeyield which
returns the list of words that are the leaves of the tree, in the same order as in the tree.

c) With the previous classes, write a program that displays the syntactic tree of the sentence “the teacher
congratulates the good students”.

14Friday, December 26, 14

5.6 - Exercises

3. We propose to create a class DepTree to deal with syntactic dependency trees. A syntactic
dependency tree is a tree, the nodes of which are labelled with the words of a sentence and the
edges are labelled with grammatical functions. Here is an example for the sentence “Jean en connaît
la fin” (“Jean knows the end of it”) .

a) Write a definition of the DepTree class with 3 attributes: word, position, dependencies:

• word is a string representing the word labeling the root of the tree,

• position is a natural number indicating the position in the sentence of the word
labelling the root ,

• dependencies is a list of dependencies in the form of pairs (label, daughter), where
label is a string representing a dependency and daughter is the dependency tree,
the root of which is the target of the dependency.

Jean
n

en
pro

connaît
v

la
det

fin
n

.
punct

detsubj

obj

mod

15Friday, December 26, 14

5.6 - Exercises

Moreover, define the following methods:

• treeyield that gives the list of words labelling the nodes of the dependency
tree ranked in the linear order of the sentence,

• depth giving the depth of the tree,

• display returning the tree in the form a parenthesized string

b) With the DepTree class, write a program displaying the dependency tree of the
sentence “Jean en connaît la fin”

16Friday, December 26, 14

