
3 - Types of data

1. Numeric and boolean data

2. Strings

3. Lists

4. Tuples

5. Dictionaries

Wednesday, October 3, 12

3.1 - Numeric and boolean data

• The main numeric types are: int (integer), long (long integer), float (floating).

• If two expressions have different numeric types and if they are combined with an operator, the one

that has the simplest type is converted in the most complex type.

• Boolean expressions have the type bool and two possible values: True and False.

• A boolean expression can be combined with a numeric expression by means of a numeric operator.

Its value is thus converted into 0 or 1.

• A numeric expression can be combined with a boolean expression by means of a boolean operator.

0 is thus converted into False and the other values into True.

Wednesday, October 3, 12

3.1 - Numeric and boolean data

>>> a = 1
>>> while a < 5 :
	 print a**a**a , " " , type(a**a**a)

a += 1
>>>

1 <type 'int'>

16 <type 'int'>

7625597484987 <type 'long'>

13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298
166903427690031858186486050853753882811946569946433649006084096 <type 'long'>

>>>
>>> a = 1.0
>>> while a < 5 :
	 print a**a**a , " " , type(a**a**a)

a += 1
>>>

1.0 <type 'float'>

16.0 <type 'float'>

7.62559748499e+12 <type 'float'>

1.34078079299e+154 <type 'float'>
>>>

Wednesday, October 3, 12

3.1 - Numeric and boolean data

>>> (2+False)*(2+True)
6
>>> False or 4
True
>>>

Wednesday, October 3, 12

3.2 - Strings

• A string is a sequence of characters delimited with simple or double quotes. It is a

constant of type Str.

• Special characters can be inserted in a string if they are preceded by the backslash
symbol \: \n represents a newline, \t a tabulation, \’ an apostrophe, \" a double quote.

• To enter a string with newline characters on the keyboard, we can use the newline key
if we put the string between triple simple or double quotes.

Wednesday, October 3, 12

3.2 - Strings

• An expression of any type can be converted into a string by being put into

backquotes (`). The interpreter computes the value of the expression and then the

value is converted into a string.

• A string can be represented with the UTF8 encoding (Unicode norm) if preceded with

the u symbol (for example u’bonjour’). The string takes the unicode type, which is
different from str.

Wednesday, October 3, 12

3.2 - Strings

>>> x=‘l\’eau\n\"Perrier\" ’
>>> x
‘l\’eau\n"Perrier" ’

>>> print ‘l\’eau\n\"Perrier\" ’
l’eau
"Perrier”

>>> print ’’’l’eau
	 \"Perrier\"’’’
l’eau
"Perrier"

>>> y =2
>>> z = `y+1`
>>> print y+1, type(y+1), z, type(z)
3 <type 'int'> 3 <type 'str'>

>>> for c in ’déjà’ :
	 print c
d
?
?
j
?
?

>>> for c in u’déjà’ :
	 print c
d
é
j
à
>>>

Wednesday, October 3, 12

3.2 - Strings

• Strings like numbers belong to the literal type, but they differ from them because they are

compound data constituted of atomic data: characters.

• A character located at position n in a string s can be addressed with the expression s[n]. The

position of the first character in a string is 0. A character can also be addressed from the end of the

string with expression s[-m], m being the number of characters counted from the concerned

character until the last one, both being included in the counting.

• A substring of a string s can be addressed with an expression of the form s[n:m] (slicing). The

value of the expression is the substring going from position n to position m-1. If m ≤ n, then the

substring is the empty string.

• Two strings can be concatenated with the binary operator +. A string can be repeated any number

of times if it is multiplied with an integer.

Wednesday, October 3, 12

3.2 - Strings

>>> print ‘bonjour’[2]

n
>>> print ‘bonjour’[-2]

u
>>> ‘bonjour’[2:5]

‘njo’

>>> ‘bonjour’[2:-2]
‘njo’

>>> ‘bonjour’[2:2]
‘’

>>>s='Je vais. Je viens'

>>>fin = False
>>>k = 0

>>>while not fin :
 if s[k:k+2] == '. ' :

 if s[k+2] >= 'A' and s[k+2] <= 'Z' :

 fin = True
 k += 1

print s[0:k]

Je vais.

>>>

Wednesday, October 3, 12

3.2 - Strings

• To process strings, Python provides predefined functions. A function is a program which is

callable by means of the function name followed by its arguments between parentheses. It returns a

value.

• The table below presents the main functions for manipulating strings. The complete list of

predefined functions is available at the following Web address: 	 	 	

http://docs.python.org/lib/built-in-funcs.html

Function call Meaning

len(s) Returns the length of the string s

chr(n) Returns the character with n as its
ASCII code

ord(c) Returns the integer that is the
ASCII code of character c

unichr(n) Returns the character with n as its
UTF8 code

Wednesday, October 3, 12

http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/built-in-funcs.html

3.2 - Strings

>>>entree = u'Je vais. Je viens'
>>>sortie = u’’
>>>for c in entree :
	 if c >= u’a' and c <= u’z' :
	 	 code = ord(c)
 	 sortie += unichr(code - 32)
	 else :
	 	 sortie += c
print sortie

JE VAIS. JE VIENS

>>>

>>>entree = u'Je vais. Je viens'
>>>sortie = u’’
>>> longueur = len(entree)
>>>for k in range(longueur):
	 c = entree[k]
	 if c >= u’a' and <= u’z' :
	 	 code = ord(c)
 	 sortie += unichr(code - 32)
	 else :
	 	 sortie += c
print sortie

JE VAIS. JE VIENS

>>>

Wednesday, October 3, 12

3.2 - Strings
• Strings, as Python objects, are associated with functions linked to their types and called methods.

For a given object x, it is possible to be aware of the associated methods by means of the function

call dir(x).

• Calling a method m associated with the object x with the arguments a1 a2 … an is performed through

the expression x.m(a1, a2, … an).

• The table below presents some methods associated with strings (see the complete list at the

following Web address: http://docs.python.org/lib/string-methods.html)

Method Meaning

split(sep) Returns the list of the substrings resulting from splitting the string
with the separator sep (if this is missing, the default separator is the
standard separator)

find(subs, debut, fin) Returns the position of the first occurrence of the substring subs
found in the segment [debut : fin] of the string. Returns -1 if no
occurrence is found. The two last arguments are optional.

Wednesday, October 3, 12

3.2 - Strings

>>>phrase = u'J\’ai mangé de l\’époisse, de la tome et du comté’

>>>mot = u’tome’
>>>trouve = False

>>>for m in phrase.split() :
	 if m == mot :

	 	 trouve = True

 	 break
if trouve :

	 print ‘le mot \" ‘, mot, ‘\" est dans la phrase ‘\" , phrase, ‘\" ’
else :

	 print ‘le mot \" ‘, mot, ‘\" n\’est pas dans la phrase \ \"‘, phrase, ‘\" '

Le mot " tome " est dans la phrase " J’ai mangé de l’époisse, de la tome et du comté "

>>>

Wednesday, October 3, 12

3.2 - Exercises

1. Give the result of running the following program when the value “tout” is entered on
the keyboard. The same question when the value “tot” is entered. What is the
function of the program ?

 w = input(“Enter a word !\n”)
l = len(w)

 correct = True

 k = 0

 while correct and k < (l+1)/2:
 if w[k] != w[-k-1] :

 correct = False

 k += 1

 print correct

Wednesday, October 3, 12

3.2 - Exercises

2. Give the result of running the program below when the following text is entered on
the keyboard: “Marie is coming and buying a ring.” . What is the function of the
program ?

 text = input(“Enter a text ! \n”)

 list_words = text.split()

 k = 0

 for w in list_words:
 position = w.find(‘ing’)

 if position != -1 and position + 3 == len(w) :

 k += 1

 print k

Wednesday, October 3, 12

3.2 - Exercises

3. Write a Python program for each of the following specifications.

a) Count the number of occurrences of a given word in a text (the word separators are
those used by default in the split method).

b) Replace all occurrences of a word with another one in a text (the definition of separator
is the same as in the previous question).

c) From a text, extract the list of all words beginning with a capital letter.

d) From a text, extract the list of all numeric values (for a decimal number, the scientific
notation is allowed with the symbols “E” or “e” for the beginning of the exponent).

Wednesday, October 3, 12

3.2 - Solution of the exercises

1. Execution of the program

§ >>>
§ Enter a word !
§ "tout"
§ False
§ >>>

§ >>>
§ Enter a word !
§ "tot"
§ True
§ >>>

• The program detects if the words entered at the keyboard are palindromes.

Wednesday, October 3, 12

3.2 - Solution of the exercises

2. Execution of the program:

§ >>>
§ Enter a text !
§ "Marie is coming and buying a ring.”
§ 2
§ >>>

• The program counts the number words ending with ”ing” in a text.

Wednesday, October 3, 12

3.2 - Solution of the exercises
3.

#a)

text =input("Enter a text ! \n")
word =input("Enter a word ! \n")
list_words = text.split()
k = 0
for w in list_words:
 if w==word :
 k += 1
print "number of occurrences of ", word, " in the text: ", k

#b)
text1 =input("Enter a text ! \n")
word1 =input("Enter a word to replace ! \n")
word2 =input("Enter a word to substitute ! \n")
list_words1 = text1.split()
list_words2 = []
for w in list_words1:
 if w==word1 :
 list_words2.append(word2)
 else:
 list_words2.append(w)
text2 = ' '.join(list_words2)
print "After replacement of ", word1, " by ", word2, " the text becomes:\n", text2

Wednesday, October 3, 12

3.3 - Solution of the exercises

3.

#c)

text =input("Enter a text ! \n")
list_words1= text.split()
list_words2 = []
for w in list_words1:
 if w[0] >= 'A' and w[0] <='Z' :
 list_words2.append(w)
print "list of words starting with a capital letter: ", list_words

Wednesday, October 3, 12

3.3 - Solution of the exercises
3.
#d

text = input("Input a text !\n")

liste_numbers = []

number = ''

number_found = False

dot_found = False

exp_found = False

n=0

for n in range(len(text)):

 c = text[n]

 if number_found :

 if c == '.':

 if dot_found:

 liste_numbers += [number]

 number = ''

 number_found = False

 dot_found = False

 exp_found = False

 else:

 dot_found = True

 number += '.'

elif c == 'E' or c=='e':
 if exp_found:
 liste_numbers += [number]
 number = ''
 number_found = False
 dot_found = False
 exp_found = False
 else:
 dot_found = True
 exp_found = True
 number += 'E'
 elif c >= '0' and c <= '9' :
 number += c
 if n == len(text)-1 :
 liste_numbers += [number]
 else:
 liste_numbers += [number]
 number = ''
 number_found = False
 dot_found = False
 exp_found = False
 elif c >= '0' and c <= '9' :
 number_found = True
 number += c
print liste_numbers

Exemple d'entrée : 122.44 abbEcaa6.4E7666E90.5

Wednesday, October 3, 12

3.3 - Lists

• Lists are sequences of Python objects, which are possibly heterogeneous. They have

the type list. Their syntax is the following: [o1, o2, …, on]

• Like strings, lists are compound objects of type sequence. Thus, + et * operators

apply to them and one can address one element of a list, as well as a sublist with the

operation of slicing.

• Unlike strings, lists are mutable objects: an element of a list is modifiable while a

character of a string is not. Therefore, element addressing and slicing are usable for

modifying a list.

Wednesday, October 3, 12

3.3 - Lists

>>>liste = [23, ‘bonjour’, [1,2]]
>>>print liste[2]
[1,2]
>>>print liste[2][0]
1
>>>liste[1] = ‘bonsoir’
>>>print liste
[23, ‘bonsoir’, [1,2]]
>>> liste[1:1] = [‘je’, ‘dis’]
>>>print liste
[23, ‘je’, ‘dis’, ‘bonsoir’, [1,2]]
>>> liste += [3,4]
>>>print liste
[23, ‘je’, ‘dis’, ‘bonsoir’, [1,2],

3, 4]

>>>texte = u’Je suis tombé malade. Je n’ai pas travaillé.’
>>> liste_mots = texte.split()
>>> liste_mots_etiquetes = []
>>> for mot in liste_mots :
	 liste_mots_etiquetes += [[mot, len(mot)]]

>>> print liste_mots_etiquetes
[[u'Je', 2], [u'suis', 4], [u'tomb\xe9', 5], [u'malade.', 7],

[u'Je', 2], [u'n\u2019ai', 4], [u'pas', 3], [u'travaill\xe9.',
10]]

Wednesday, October 3, 12

3.3 - Lists

• As Python objects, lists are associated with methods. The table below presents some methods

associated with lists (see the complete list at the Web address: http://docs.python.org/lib/typesseq-

mutable.html)

Method Meaning

count(elt) Returns the number of elements from the list that have the value of
elt

index(elt) Returns the lowest index of an element that have the value of elt. If
there is no element, an error is triggered.

insert(i,elt) Inserts the value of elt just after the element at position i.

remove(elt) Deletes the first element that has the value of elt.

reverse() Reverses the order of the list.

sort() Order the list according the default order associated with the type of
its elements.

Wednesday, October 3, 12

http://docs.python.org/lib/typesseq-mutable.html
http://docs.python.org/lib/typesseq-mutable.html
http://docs.python.org/lib/typesseq-mutable.html
http://docs.python.org/lib/typesseq-mutable.html

3.3 - Lists

>>>texte = u’Le médecin a examiné le malade mais le malade n’était pas vraiment
malade.’

>>> liste_mots = texte.split()
>>> lexique = [u’médecin’, u’malade’]
>>> for mot in lexique :
	 i =lexique.index(mot)
	 lexique[i] = [mot, liste_mots.count(mot)]

>>> print lexique

[[u'm\xe9decin', 1], [u'malade', 2]]

Wednesday, October 3, 12

3.3 - Exercises

1. Write a Python program for each of the following specifications.

a) Insert a word into a sorted list of words according the alphabetic order. The
list must remain sorted and if the word is already present in the list, nothing is
done.

b) Check that a list is a sublist of another list (its elements must be present in
the second list in the same order).

c) Split a text in the form of a string into a list of sentences, each sentence being
represented as a list of words (punctuation signs are taken as words).

Wednesday, October 3, 12

3.3 - Solution of the exercises

1. Programs:

 a)
list_words =input("Enter a list of words sorted according the alphabetic order ! \n")
word = input("Enter a word to insert ! \n")
k=0
insertion = False
while k < len(list_words) and not insertion:
 w=list_words[k]
 if w > word:
 list_words.insert(k-1,word)
 insertion= True
 elif w==word:
 insertion=True
 k+=1
print "list after insertion of word ", word, ": ", list_words

Wednesday, October 3, 12

3.3 - Solution of the exercises
1. Programs:

b)

list1= input("Enter a first list !\n")
list2= input("Enter a second list !\n")
correct = True
l1 = len(list1)
k1=0
k2=0
while k1 < l1 and correct:
 e1=list1[k1]
 try: # We try to run the block just below
 k2 = list2.index(e1,k2)+1
 except ValueError:#If there is an error of type "ValueError" in the execution of the block just

above, the block just below is executed
 correct= False
 k1 +=1
if correct:
 print "The first list is a sublist of the second list."
else:
 print "The first list is not a sublist of the second list."

Wednesday, October 3, 12

3.3 - Solution of the exercises

1. Programs:

 c)
text= input("Enter a text !\n")
list_words = text.split()
sentence_stop = ['.', ';',':','?','!']
list_sentences =[]
sentence =[]
for w in list_words:
 sentence.append(w)
 if w in sentence_stop:
 list_sentences.append(sentence)
 sentence=[]
print "List of sentences: \n"
for s in list_sentences :
 print s

#check the program with the sentence : "Where is John ? I don't know , maybe at
school . Ok ! "

Wednesday, October 3, 12

3.4 - Tuples

• Tuples are sequences of Python objects, which are possibly heterogeneous. They have

the type tuple and the following syntax: o1, o2, …, on or (o1, o2, …, on). The empty

tuple is represented with () .

• Like strings and lists, tuples are compound objects of type sequence. Thus + and *

operators apply and tuple elements are addressable, as well as sub-tuples with the

operation of slicing.

• Unlike lists, tuples are unmutable: their elements are not modifiable individually.

Tuples are used instead of lists, to avoid errors and to economise storage space.

Wednesday, October 3, 12

3.4 - Tuples
>>>tuple = (23, ‘bonjour’, [1,2])
>>>print tuple[2]
[1,2]
>>>tuple[1] = ‘bonsoir’
Traceback (most recent call

last):
 File "<pyshell#3>", line 1, in

<module>
 tuple[1] = 'bonsoir'
TypeError: 'tuple' object does

not support item
assignment

>>>print tuple[1:-1]
(‘bonjour’,)
>>> tuple += 3,4
>>>print tuple
(23, ‘bonjour’, [1,2], 3, 4)
>>> u,v,x,y,z = tuple
>>> print v
‘bonjour’

>>>texte = u’Je suis tombé malade. Je n’ai pas travaillé.’
>>> liste_mots = texte.split()
>>> liste_mots_etiquetes = []
>>> for mot in liste_mots :
	 liste_mots_etiquetes += [(mot, len(mot))]

>>> print liste_mots_etiquetes
[(u'Je', 2), (u'suis', 4), (u'tomb\xe9', 5), (u'malade.', 7),

(u'Je', 2), (u'n\u2019ai', 4), (u'pas', 3), (u'travaill\xe9.',
10)]

Wednesday, October 3, 12

3.5 - Dictionaries

• Dictionaries are collections of Python objects which are possibly heterogeneous and which are

addressable with a key. They have the type dict, which is an instanciation of the more general

type mapping. They have the syntax : {c1 : o1, c2: o2, …, cn : on} , where ci are keys and oi the

corresponding values.

• The element of dictionary d associated with key c, called entry, is accessible with the expression

d[c].

• Dictionaries are mutable objects. To add entry v associated with key c to dictionary d, or to update

it, one uses the instruction d[c] = v . To delete the entry associated with key c from dictionary d, one

uses the function call del(d[c]).

• As Python objects, dictionaries are associated with methods, their complete list is available at the

Web address: http://docs.python.org/lib/typesmapping.html

Wednesday, October 3, 12

http://docs.python.org/lib/typesmapping.html
http://docs.python.org/lib/typesmapping.html

3.5 - Dictionaries

>>>d = {‘a’ : 23, 2 : ‘bon’}
>>>print d[‘a’]
23
>>>d[‘b’] = ‘mal’ ; d[‘a’] = 12
>>>print d
{‘a’ : 12, 2 : ‘bon’, ‘b’ : ‘mal’}
>>> del(d[‘a’])
>>>print d
{2 : ‘bon’, ‘b’ : ‘mal’}
>>>

>>>texte = u’Jean le voit avec le patron’
>>> liste_mots = texte.split()
>>> freq = {}
>>> for mot in liste_mots :
	 if freq.has_key(mot):
	 	 freq[mot] += 1
	 else:
	 	 freq[mot] = 1

>>> print freq
{u’avec’ : 1, u’Jean’ : 1, u’le’ : 2, u’voit’ : 1, u’patron.', 2}

Wednesday, October 3, 12

3.5 - Exercises

1. Write a Python program for each of the following specifications.

a) Count the number of occurrences of each character in a text using a
dictionary (the text is given in the form of a string).

b) Reverse a French-English dictionary. For sake of simplification, we
assume that the correspondence between French words and English
words is one-to-one.

c) Memorise the position of each word in a text in a dictionary. The position
is represented by a pair (position of the first character, position of the last
character). If a word appears several times, all its positions must be
memorised.

Wednesday, October 3, 12

3.5 - Solution of the exercises

1. Python programs:
#a)
text = input("Enter a text !\n")
dico={}
for c in text:
 if dico.has_key(c):
 dico[c] +=1
 else:
 dico[c]=1
print "Number of characters of each type in the text:\n", dico

#b)
dico_fr_en = input("Enter a French-English dictionary !\n")
dico_en_fr={}
for fr_w in dico_fr_en:
 en_w=dico_fr_en[fr_w]
 dico_en_fr[en_w]= fr_w
print "English-French dictionary:\n", dico_en_fr

Wednesday, October 3, 12

3.5 - Solution of the exercises

 if d.has_key(word) :
 d[word] +=[(word_beginning, k-1)]
 else :
 d[word] = [(word_beginning, k-1)]
 else :
 word += c
 elif not (c in separator) :
 word_found = True
 word_beginning = k
 word = c
 k += 1

print "Position of the words in the text:\n",d

1. Python programs:

c)

text = input("Entrez un texte ! ")

d = {}
word = ""

word_found = False

separator = ['\n', '\t', ' ']
word_beginning = 0

for k in range(len(text)):
 c = text[k]

 if word_found :

 if c in separator or k == len(text)-1:
 word_found = False

 if k == len(text)-1 :
 word += c

 k +=1

Wednesday, October 3, 12

