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From points

to shape




Reconstruction

Context
Delaunay is a good start (wanted result C Delaunay)
Crust 2D Algorithm
0.4 sample = wanted result C crust
0.25 sample = crust C wanted result
3D



Reconstruction Context

Sensor =———3> Point set (no structure or unknown)
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Reconstruction Context

Childbirth simulation
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Reconstruction

4.5

Context

Childbirth simulation
Surgery planning
Radiotherapy planing

Endoscopy simulation



Reconstruction Context

Sensor =——3> Point set (no structure or unknown)

Scanner
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Reconstruction Context

Sensor =——3> Point set (no structure or unknown)
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Cultural heritage
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Reverse engineering




Reconstruction Context

Reverse engineering

Prototyping (3D print)

Quality control
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Sensor =——3> Point set (no structure or unknown)
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Reconstruction Context

Sensor =——3> Point set (no structure or unknown)

Laser illuminate in a plane

Camera

Get 3D position
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Reconstruction Context

Sensor =——3> Point set (no structure or unknown)

Geology
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%_> Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section
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Reconstruction Context

b—l> Point set (no structure or unknown)
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Reconstruction Context

%_> Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section
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Reconstruction Context

%_> Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section
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Reconstruction Context

%_> Point set (no structure or unknown)

Abstract 3D problem that we can solve in 2D section
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Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres



Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres

b-2



Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres

-3



Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres

5- 4



Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres

5-5



Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres



Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres

5-7



Reconstruction Delaunay is a good start

Medial axis of a curve (surface in 3D)

Locus of center of bitangent spheres
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Reconstruction Delaunay is a good start
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Reconstruction Delaunay is a good start

Sample is an
e-sample of a curve if VY, Disk(z, e-Ifs(z))NSample ()

Local feature size: Ifs(z) =

—— /
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Reconstruction Delaunay is a good start

Lemma:

V Disk, DisknCurve has a single connected component
or DisknMedial axis# ()
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Reconstruction Delaunay is a good start

Lemma:

V Disk, DisknCurve has a single connected component

or DisknMedial axis=# ()
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DiskNCurve has 2 cc A and B

B
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or DisknMedial axis=# ()

iIskNCurve has 2 cc A and B
a = closest of ¢ on Curve(wlog on A)
b = closest of c on B
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Reconstruction Delaunay is a good start

Lemma:

V Disk, DisknCurve has a single connected component
or DisknMedial axis=# ()

. /
C \ \
DiskNCurve has 2 cc A and B

a = closest of ¢ on Curve(wlog on A)
b = closest of c on B

Moving from c to a dist to B~
reach center of bitangent disk
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Theorem
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Theorem
If Sample is a e-sample, € < 1

neighboring points along Curve are Delaunay neighbors

xx’ neighbors on curve
= no points on cc zz’ in (¢
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Given a sampling

Delaunay is a good start
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Given a sampling
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Reconstruction Delaunay is a good start

1-sample is not enough
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Compute Voronoi diagram




Reconstruction Crust 2D Algorithm
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Reconstru C)zl/%/ \C\ust D
p Voronoi vertices
e Delaunay triangulation




Reconstru C%%]/ \C\ust D Algorithm

Keep Vorono | vertices
Compute Delaunay triangulation

Keep edges between original points
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Reconstruction Crust 2D Algorithm

Keep edges between original points
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(by Lemma)
R <2r sing
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if H‘xH <Ifs= 1 contradiction is reached




ReCO n St r U Ct I O n CrUSt 2D o4 sample = wanted result C crust
Theorem: 0.4 sample = wanted result C crust

/ o0 Plot
x, r two nel| r 4+ 2rsin (%—i—%arcsin%)
Circle thru x »

By contradict

@ Intersect os

R < 2rsing

(9 S % —|— arcs ﬂn 0.1 0.2 0.3 0.4 0.5 0.6

Jox|[<le o +[[ex

< r 4+ 2rsin (% -+ %arcsin g)

if H'xH <Ifs= 1 contradiction is reached




ReCO n St ru Ct I O n CrUSt 2D o4 sample = wanted result C crust
Theorem: 0.4 sample = wanted result C crust

13 - 17



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

14 -1



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

~—

14 -



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

Assume empty circle
\

14 -



Reco n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

Assume empty circle

No Voronoi vertices there

—

14 -



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

Assume empty circle

No Voronoi vertices there
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X

’ N
~

7

\

g

<

14 -



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

14 - 7



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

14 - 8



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

Assume empty circle




ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

Assume empty circle

— iggest of two angles
' 2 arcsin &
' [oy| > 2siny

14 -



ReCO n St ru Ct I O n CrUSt 2D o025 sample = crust C wanted result
Theorem: 0.25 sample = crust C wanted result

Assume empty circle

|lzy|| = 2sip

By Lemma, circle zx’yintefsects medial axis
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Reconstruction 3D
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Reconstruction 3D

Difficulty: sliver
small sphere four sample points

almost flat Delaunay tetrahedron

Which triangle belongs to reconstruction 7
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Reconstruction 3D

Difficulty: sliver
small sphere four sample points

almost flat Delaunay tetrahedron

Which triangle belongs to reconstruction 7

Crust: Voronoi vertices may kill useful triangles
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Reconstruction 3D
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Reconstruction 3D

Pole = farthest of seed




Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole
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Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole

Approximate normal

Approximate medial axis — crust
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Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole

Approximate normal

Approximate medial axis — crust Do not kill slivers
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Meshing

Discretize space to solve (differential) equations
Finite elements

Finite differences
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Meshing

Discretize space to solve (differential) equations
Finite elements
Finite differences
Good mesh:
Control shape of elements (no small angles)
Control size of elements (adjust to function variability)

Minimize number of elements

18 - 2



Meshing

Gallery

Structured meshes (advancing front, deformation)

Delaunay mesh refinement
[Ruppert]
protecting small angles
off-centers

Delaunay mesh optimization

3D
19
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Gallery

sharp features
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Regular grid

21 -1



MGSh | ng Structured meshes

Regular grid

Shape
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Regular grid

Shape

Deform

to fit the grid in the shape
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MGSh | ﬂg Structured meshes

Shape

Advancing front
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Shape
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Structured meshes

Meshing
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Meshing

Shape

Add grid

Triangulate
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MeSh | ng Structured meshes

Shape

Triangulate

Uniform mesh
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MGSh | ﬂg Structured meshes

Shape
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Unstructured mesh
Use Delaunay (good angles property)

Add vertices
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Def: Edge encroached by vertex

if inside diametral circle
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Meshing Del

Input: PSLG

3y mesh refinement  [Ruppert]

Delaunay

Split at middle
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay refinement ‘
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Input: PSLG

Delaunay refinement

Small angle

Add circumcenie !
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Input: PSLG
Delaunay refinement
Small angle ‘
Add circumc ‘ /
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Input: PSLG
Delaunay refinement l‘

P
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay refinement
Angle is multiplied by 2 ‘
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay refinement l
Small angle .

But circumcircla AC
Split edge
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Delaunay refinement l
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Input: PSLG

N
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Meshing

Input: PSLG

Delaunay refinement




Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay refinement
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Input: PSLG

Delaunay refinement
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay refinement

Output: Mesh with angle guaranties “ r
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Small angles means < o < 20°

Theorem: algorithm terminates with mesh of size O(optimal)
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distance to second non incident segment
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Ifs: R2 — R

distance to second non incident segment

—
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma: Ifs(q) < Ifs(p) + ||pq||

oV
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma: Ifs(q) < Ifs(p) + ||pq||

two non-incident edgqesz/ﬁ
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Meshing Delaupay mesh refinement  [Ruppert]

Lemma: Ifs(q) </Ifs(p) + ||pq||

two non-incident edges <
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Assume no angles > 90° in input
Lemma:
There are constants Cg > C7 > 1 such that

At initialization, nearest vertex of vertex p
is at distance > Ifs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance > = Ifs(p)
T

Nearest vertex of midpoint p of split segment
is at distance > Ifs( )

28



Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma:

There are constants Cg > C7 > 1 such that e
At initialization, nearest vertex of vertex p

is at distance > Ifs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance > CT Ifs(p)

Nearest vertex of midpoint p of split segment
is at distance > Ifs( )

29 - 1



Meshi Nng Delaunay mesh refinement  [Ruppert]

NV (p)

29 - 2



Meshi Nng Delaunay mesh refinement  [Ruppert]

NV (p)

29 - 3



Meshi Nng Delaunay mesh refinement  [Ruppert]

NV (p)

29 - 4



Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma:

There are constants Cg > C7 > 1 such that

At initialization, nearest vertex of vertex p
is at distance > Ifs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance > Ifs( )

Nearest vertex of midpoint p of split segment
is at distance > Ifs( )

30 -1



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
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Meshing Delaunay mesh refinement  [Ruppert]
skinny: 0 < «

b wlog: a added after b
a
5
A

30 - 3




Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b
If a input vertex

30 -4



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b

If a input vertex

a b also input vertex

Ifs(a) < d

by first statement

30 -5



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
wlog: a added after b

If a input vertex

Ifs(a) < d

If a circumcenter

30-6



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
wlog: a added after b

Input vertex

Ifs(a) < d

clrcumcenter

of circle of radius < d

induction:

30 -7



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
wlog: a added after b

Input vertex

Ifs(a) < d

clrcumcenter

|fS(CL) S CTd

of circle of radius < d

induction:

30 -8



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
wlog: a added after b

If a input vertex

Ifs(a) < d

If a circumcenter

|fS(CL) S CTd

If @ midpoint

30-9



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
wlog: a added after b

If a input vertex

Ifs(a) < d

If a circumcenter

|fS(CL) S CTd

If @ midpoint

Induction:

30 - 10



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
wlog: a added after b

If a input vertex

Ifs(a) < d

If a circumcenter

|fS(CL) S CTd

If @ midpoint
|fS(CL) < Csd

Induction:

30 - 11



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
wlog: a added after b

If a input vertex

Ifs(a) < d

If a circumcenter

|fS(CL) S CTd

If @ midpoint
|fS(CL) < Csd

30 - 12



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b
a
5
A
| |fS(CL) < Csd

30 - 13



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b
d
Q
a
| |fS(CL) < Csd
d = 2rsin6

30 - 14



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b
a
5
A
| |fS(CL) < Csd

Ifs(a) < 2Cgrsin6

30 - 15



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b
a
5
A
| |fS(CL) < Csd

Ifs(a) < 2Cgrsin6
Ifs(p) < Ifs(a) + r Le’h/ha

30 - 16



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b
a
5
A
| |fS(CL) < Csd

Ifs(a) < 2Cgrsin6
Ifs(p) < Ifs(a) + r Le’h/ha

<7r(1+2Cgsina)
30 - 17



Meshi Nng Delaunay mesh refinement  [Ruppert]

skinny: 0 < «
b wlog: a added after b
a
3
A
| |fS(CL) < Csd

Ifs(a) < 2Cgrsinf
Ifs(p) < Ifs(a) + r Le’”/ha

<71+ 2Cgsina)
30 - 18 OKif Cr > 14+ 2Cssina




Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma:
There are constants Cg > C7 > 1 such that
At initialization, nearest vertex of vertex p
is at distance > Ifs(p)

Nearest vertex of circumcenter p of skinny triangle
is at distance > CT Ifs(p)

Nearest vertex of midpoint p of split segment
is at distance > Ifs( )

31-1



Meshi Nng Delaunay mesh refinement  [Ruppert]

a is creating the edge split

31-2



Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint

31-3



Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint

of non incident segment

(<=angle condition)

|pall = s(p) = & Hfs(p)

31 -4



Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

of non |nC|dent segment

(<=angle condition)

|pall = s(p) = & Hfs(p)

31-5



Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

a clrcumcenter(not inserted)

31-6



Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

a clrcumcenter(not inserted)

Induction:

r’ > CiTlfs(a)




Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

a clrcumcenter(not inserted)

Induction:

31-8



Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

a clrcumcenter(not inserted)

Induction:




Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

a clrcumcenter(not inserted)

Induction:

r’ < +/2r
L
ifs(p < Ifs(a) + r "My

<7r'Cp+r




Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

a clrcumcenter(not inserted)

Induction:

r’ < +/2r




Meshi Nng Delaunay mesh refinement  [Ruppert]

a midpoint
Ipall > & Ifs(p)

a clrcumcenter(not inserted)

Induction:

r’ < +/2r

31-L9K fCs 2 14 V20 < r(v2Cr + 1)




Meshi Ng Delaunay mesh refinement  [Ruppert]

OKif Cr > 1+ 2Cgsin o
OK if Cqg > 1—|—\/§CT

32 -1



Meshi Ng Delaunay mesh refinement  [Ruppert]

OKif Cr > 1+ 2Cgsin o
OK if Cqg > 1—|—\/§CT

Cr >1+2(14++/2Cr)sina

Cr—1 <
SN
2(1+2C1) —

32 -2



Meshi Ng Delaunay mesh refinement  [Ruppert]

OKif Cr > 1+ 2Cgsin o
OK if Cqg > 1—|—\/§CT

Cr—1
A 2(1442C7)

Cr >1+2(14++/2Cr)sina
575 = 5in 20.7°

Cr—1 > 2\/— D
SN
2(1+2C1) — Fd

>

Cr

32 -3



MGSh | Nng Delaunay mesh refinement

OKif Cr > 1+ 2Cgsin«
OK if Cqg > 1—|—\/§CT

Cr >1+2(14++/2Cr)sina

Cr—1

2(1+v/2Cr) = sin o Choose o < 20°
. 14+2sin o
Cr = 1—2+/2 sin o

o 1+2
OS T 1-2v2sin o

32 -4

[Ruppert]



Meshi Ng Delaunay mesh refinement  [Ruppert]

OKif Cr > 1+ 2Cgsin o
OK if Cqg > 1—|—\/§CT

Cr >1+2(14++/2Cr)sina

Cr—1

2(1+v/2C7) B e Choose o < 20° 20°
. 14+2sin«o
Cr = 1—2v/2 sin a 51
1442
OS T 1-2v2sin o &

32 -5



Meshi Ng Delaunay mesh refinement  [Ruppert]

OK if Or > 1+ 2Cg sin «

Cr >142(1++2Cr)sina

Cr—1

2(1+v2Cr) = sina Choose o < 20° 2()° 10°
. 14+2sin«
Cr = 1—2v/2sin a o1 2.7
142
OS o 1—2+v/2sin « 4 4.8

32 -6



Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma: no vertex close to the last inserted vertex

33-1



Meshi Ng Delaunay mesh refinement  [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex

33 -2



Meshi Ng Delaunay mesh refinement  [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex

Vp, q € Output; |

pq|| > Csl+1|fs(p)

33 -3



Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex

Vp,

Cs+1 ifs(p)

p after ¢
Ipall > &Ifs(p) >

1+1 Ifs(p)

33-4



Meshi Nng Delaunay mesh refinement  [Ruppert]

Lemma: no vertex close to the last inserted vertex

Theorem: no vertex close to another vertex

Vp, q € Output; ||pq|| > CS1+1|fs(p)

p after ¢

Ipg|l > #-1fs(p) > &5 lfs(p)

Ifs(p)—
Ipql| > =Ifs(¢q) > S(szSIIquI
pql| > Csl+1|fs(p)

33-5



Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f dw)

1
Ifs? ()

34 -1



Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f dw)

1
Ifs? ()

1
o1fs(p)
IS empty

34 -2



Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f lfs21(m)dx)

Csl+1 ifs(p)

IS empty




Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f lfszl(m)dx)

Csl+1 ifs(p)
IS empty

1 1
2 Cs—|—1|fs(p)

are disjoint




Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f mdx)

1
o1fs(p)
IS empty

1 1
2 Cs—|—1|fs(p)

are disjoint

f 1f821(aj) dr > fDisks lfsQl(a:) dx




Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f dw)

Ifs(x) < Ifs(p) + 7

1
Ifs? ()

1
o1fs(p)
IS empty

1 1
2 Cs—|—1|fs(p)

are disjoint

f 1f821(aj) dr > fDisks lfsQl(a:) dx

1
> ZDiSkS fDisk (Ifs(p)+7)2 dx



Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f mdx)
Ifs(x) < Ifs(p) + 7

1
o1fs(p)
IS empty

1 1
2 Cs—|—1|fs(p)

are disjoint

f 1f821(aj) dr > fDisks lfsQl(a:) dx

1
> ZDiSkS fDisk (Ifs(p)+7)2 dx

2 2
1 dCC r r T

fDisk (Ifs(p)+7r)? — WUs(p)+r)2 — @2ICs+D)r+r2 — 2Cs+3
34 -7




Meshing Delaunay mesh refinement  [Ruppert]

Theorem: number of vertices in ouput is O (f ;dx)

1fs? (x)
Ifs(x) < Ifs(p) + 7

1
o1fs(p)
IS empty

1 1
2 Cs—|—1|fs(p)

are disjoint

f 1f821(aj) dr > fDisks lfsQl(a:) dx

1
2 ZDiSkS fDisk (Ifs(p)+7)2 dx

T

2Cs+3

> fvertices



Meshi Nng Delaunay mesh refinement  [Ruppert]

Optimality (up to a constant)

35



M@Shiﬂg Delaunay mesh refinement small angles

Assume no angles > 90° in input

36 -1



M@Shiﬂg Delaunay mesh refinement small angles

Am;wt

36 - 2



Meshing Delaunay mesh refi

ent small angles

Assume fo angles—=-96°in input

36 - 3



Meshing Delaunay mesh refi

ent small angles

36 -4



Meshing Delaunay mesh refinement small angles

A@gﬁs%?@put

36 -5



Meshing Delaunay mesh refinement small angles

A@gﬁs%?@put

36 -6



Meshing Delaunay mesh refinement small angles

Asstime 1o angles—=-90° in input

36 - 7



MGShiﬂg Delaunay mesh refinement small angles

Amlout

Protect vertices

36 - 8



M@Shiﬂg Delaunay mesh refinement small angles

Am;wt

Protect vertices

36 -9



M@Sh | Nng Delaunay mesh refinement  off-centers

Very skinny triangle

/

=

37 -1



MGSh | Nng Delaunay mesh refinement  off-centers

Very skinny triangle

/ Insert circumcenter

37 -2



MGSh | Nng Delaunay mesh refinement  off-centers

Very skinny triangle
Insert circumcenter

Still skinny triangle




M@Sh | Nng Delaunay mesh refinement  off-centers

Very skinny triangle
Insert circumcenter

Still skinny triangle

Off center is point

that creates

a non skinny triangle




MGSh | Nng Delaunay mesh refinement  off-centers

Very skinny triangle
Insert circumcenter

Still skinny triangle

Off center is point

that creates

a non skinny triangle

Same theoretical guarantees

Save 30% in practice
37 -5



M@Sh | Nng Delaunay mesh optimization

L Loyd iteration

38 -1



MGSh | Nng Delaunay mesh optimization

L Loyd iteration

38 - 2



M@Sh | Nng Delaunay mesh optimization

L Loyd iteration

38 - 3



M@Sh | Nng Delaunay mesh optimization

L Loyd iteration Move to barycenter

Clip by some boundary

36-4



M@Sh | Nng Delaunay mesh optimization

L Loyd iteration

38 -5



M@Sh | Nng Delaunay mesh optimization

L Loyd iteration

38-6



M@Sh | Nng Delaunay mesh optimization

L Loyd iteration

38 - 7



M@Sh | Nng Delaunay mesh optimization

| Loyd iteration Reach a nice point distribution

38 - 8



Meshing Delaunay mesh optimization

Alternate
Delaunay mesh refinement

Lloyd smooting  or different kind of smoothing

39 -1
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eshing

39 - 3

£

Delaunay Refinement (DR)
Approximation: 0.001

506 171.2

DR + Optimization (NODT)
+ Sliver perturbation

0 sliver < 15 deg

15.03 157.22

Delaunay mesh optimization



M esh NG Delaunay mesh optimization
Delaunay Refinement DR & Lloyd DR & ODT
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Meshing 3D
Constraints: edges and faces

Point to insert may be encroached by edges or faces







