
Delaunay triangulation:

Implementation

Monique Teillaud

Choosing an algorithm

(not only) laziness

Incremental algorithm fully dynamic

any dimension

Choosing an algorithm

(not only) laziness

Incremental algorithm fully dynamic

any dimension

Choosing an algorithm

(not only) laziness

Incremental algorithm fully dynamic

any dimension

Choosing an algorithm

(not only) laziness

Incremental algorithm fully dynamic

any dimension

Choosing an algorithm

(not only) laziness

Incremental algorithm fully dynamic

any dimension

Representation

walk: access to
• vertices of a triangle
• neighbors of a triangle

in constant time

Representation

walk: access to
• vertices of a triangle
• neighbors of a triangle

in constant time

store
• d-simplices
• vertices

combinatorics:

geometry

adjacency relations as pointers

store
• points in vertices

Representation

walk: access to
• vertices of a triangle
• neighbors of a triangle

in constant time

store
• d-simplices
• vertices

combinatorics:

geometry

adjacency relations as pointers

what about the infinite region? unbounded size. . .

Representation

add a bounding box?

requires to know points in advance

Representation

add a bounding box?

requires to know points in advance

creates ugly triangles

∞

∞

∞

∞

∞

Representation

add a vertex at infinity

compactification of Rd

=⇒ triangulation of the sphere Sd

∞

∞

∞

∞

∞

Representation

no point in the infinite vertex

all d-faces are simplices

infinite simplex = half-space

combinatorics

constant-time access. . .

geometry

constant description

Representation

what if all points are collinear?

Representation

what if all points are collinear?

∞

triangulation of S1

dD triangulation, d ≥ 2 “incomplete” simplices

Representation

what if all points are collinear?

∞

triangulation of S1

what if a non-collinear point comes in ?

Representation

what if all points are collinear?

∞

triangulation of S1

what if a non-collinear point comes in ?

−→ triangulation of S2

Representation

what if all points are collinear?

∞

triangulation of S1

what if a non-collinear point comes in ?

−→ triangulation of S2

what if a non-coplanar point comes in ?

−→ triangulation of S3

Arithmetic computations

Arithmetic computations

only predicates

Combinatorial structure

Arithmetic computationsArithmetic computations

constructions

Geometric embedding

same underlying combinatorial structure

Arithmetic computations

Arithmetic computations

inexact evaluation of predicates

in disk1(p) = true

in disk2(p) = false

p

NOT just an imprecision in the result

1

2

Arithmetic computations

inexact evaluation of predicates

in disk1(p) = true

in disk2(p) = false

p

inconsistencies!

NOT just an imprecision in the result

algorithms fail

Arithmetic computations

Is s inside or outside the disk?
s

Predicate

Arithmetic computations

Is s inside or outside the disk?
s

c

circle C through p, q, r
p

q

r

unknowns c, ρ
solve −→
• center c
• radius ρ

ρ

Predicate

Arithmetic computations

Is s inside or outside the disk?
s

c

circle C through p, q, r
p

q

r

unknowns c, ρ
solve −→
• center c
• radius ρ

ρ

Bad idea. . . reals do not exist!

rounding errors ↪→ p, q, r 6∈ C(c, ρ)

“random” result for s

Predicate

Arithmetic computations

Is s inside or outside the disk?
s

sign

∣∣∣∣∣∣∣∣
1 1 1 1
px qx rx sx
py qy ry sy

p2x + p2y q2x + q2y r2x + r2y s2x + s2y

∣∣∣∣∣∣∣∣

Predicate

in disk(p, q, r, s)

sign

∣∣∣∣∣∣
1 1 1
px qx rx
py qy ry

∣∣∣∣∣∣

Arithmetic computations

A simpler predicate

p

q

r

Is r on the left or right side?

orient(p, q, r)

Arithmetic computations

double numbers are not reals
53 binary digits

p = (0.5+x.u, 0.5+y.u)
0 ≤ x, y < 256,
u = 2−53

q = (12, 12)
r = (24, 24)

(x, y) = (0, 0)

(x, y) = (256, 256)

orient(p, q, r)
> 0

= 0

< 0

fast, but wrong

Arithmetic computations

rely on an exact arithmetic package (multiprecision, etc)

powerful, but slow

a solution:

Arithmetic computations

Exact Geometric Computing paradigm

= exact predicates, 6= exact arithmetics

easy cases are more frequent
=⇒ cost ' cost of approximate (double) computation

Filtering

Arithmetic computations

Dynamic filtering interval arithmetic

[a, a] +
[
b, b

]
=

[
a + a , a + b

]error on +,−, ∗, /,√ known (IEEE 754)

and propagate. . .

Arithmetic computations

Dynamic filtering interval arithmetic

[a, a] +
[
b, b

]
=

[
a + a , a + b

]error on +,−, ∗, /,√ known (IEEE 754)

and propagate. . .

0 6∈
[

result , result
]

?

y n

sign certified exact arithmetic

Choosing an algorithm

Degree of predicates & number of operations

−→ constant in O()

−→ size of errors

−→ length of integers for exact arithmetic

Choosing an algorithm

Degree of predicates & number of operations

−→ constant in O()

−→ size of errors

−→ length of integers for exact arithmetic

Incremental algorithm
only uses intrinsic predicates

any algorithm computing Delaunay triangulation
is able to answer them

orient, in disk

Sweep
uses ad hoc higher degree predicates

laziness is not the only criterion

Choosing an algorithm

Degree of predicates & number of operations

−→ constant in O()

−→ size of errors

−→ length of integers for exact arithmetic

Incremental algorithm
only uses intrinsic predicates

any algorithm computing Delaunay triangulation
is able to answer them

orient, in disk

Sweep
uses ad hoc higher degree predicates

Degeneracies

p

Degeneracies

Exact computation

p

in disk(·, ·, ·, p) = 0

what if p lies on a circle?

yes, it does happen!
input data are rounded

Degeneracies

Delaunay complex

non-simplicial faces

Degeneracies

Delaunay complex

non-simplicial faces

non-constant storage and access

users want triangles

Degeneracies

p
?

“the” Delaunay triangulation is not unique

Degeneracies

Simulating the absence of degeneracies

p

Degeneracies

Simulating the absence of degeneracies

as if p outside

p

Degeneracies

Simulating the absence of degeneracies

p

as if p inside

Degeneracies

decisions must be made in a consistent way

Degeneracies

Degeneracies

Symbolic perturbation

Input data 7→ data depending on a symbolic parameter ε

• ε = 0: (maybe) degenerate problem
• ε 6= 0: non-degenerate problem 7→ Result(ε)

Final result = limε→0+ Result(ε)

Degeneracies

SoS: simulation of simplicity

Input: n points pi = (xi, yi), i = 1, . . . , n

∀i, (xi, yi) 7→ (xi, yi) + ε2
i

(i, i2)

Degeneracies

SoS: simulation of simplicity

Input: n points pi = (xi, yi), i = 1, . . . , n

∀i, (xi, yi) 7→ (xi, yi) + ε2
i

(i, i2)

orient(O, pi, pi) = sign

∣∣∣∣ xi xj
yi yj

∣∣∣∣∣∣∣∣ x3 x1
y3 y1

∣∣∣∣ 7→ ∣∣∣∣ x3 + 3ε8 x1 + ε2

y3 + 9ε8 y1 + ε2

∣∣∣∣ =∣∣∣∣ x3 x1
y3 y1

∣∣∣∣ + ε2
∣∣∣∣ x3 1
y3 1

∣∣∣∣ + ε8
∣∣∣∣ 3 x1
9 y1

∣∣∣∣ + ε10
∣∣∣∣ 3 1
9 1

∣∣∣∣

Degeneracies

SoS: simulation of simplicity

Input: n points pi = (xi, yi), i = 1, . . . , n

∀i, (xi, yi) 7→ (xi, yi) + ε2
i

(i, i2)

orient(O, pi, pi) = sign

∣∣∣∣ xi xj
yi yj

∣∣∣∣∣∣∣∣ x3 x1
y3 y1

∣∣∣∣ 7→ ∣∣∣∣ x3 + 3ε8 x1 + ε2

y3 + 9ε8 y1 + ε2

∣∣∣∣ =∣∣∣∣ x3 x1
y3 y1

∣∣∣∣ + ε2
∣∣∣∣ x3 1
y3 1

∣∣∣∣ + ε8
∣∣∣∣ 3 x1
9 y1

∣∣∣∣ + ε10
∣∣∣∣ 3 1
9 1

∣∣∣∣

non-null polynomial

sign = sign of first non-null coefficient

Degeneracies

SoS: simulation of simplicity

Input: n points pi = (xi, yi), i = 1, . . . , n

∀i, (xi, yi) 7→ (xi, yi) + ε2
i

(i, i2)

orient(O, pi, pi) = sign

∣∣∣∣ xi xj
yi yj

∣∣∣∣
−→ always > 0 or < 0

same for in disk

Degeneracies

SoS: simulation of simplicity

Input: n points pi = (xi, yi), i = 1, . . . , n

∀i, (xi, yi) 7→ (xi, yi) + ε2
i

(i, i2)

orient(O, pi, pi) = sign

∣∣∣∣ xi xj
yi yj

∣∣∣∣
−→ always > 0 or < 0

same for in disk

may create FLAT simplices

Degeneracies

Perturbing points in d+ 1th dimension

πi = (xi, yi, ti = x2i + y2i)

pi = (xi, yi)

Degeneracies

Perturbing points in d+ 1th dimension

πi = (xi, yi, ti = x2i + y2i)

in disk(pi, pj , pk, pl) =
D(pi,pj ,pk,pl)

orient(pi,pj ,pk)

D(pi, pj , pk, pl) = orient(πi, πj , πk, πl)

pi = (xi, yi)

Degeneracies

Perturbing points in d+ 1th dimension

πi = (xi, yi, ti = x2i + y2i)

in disk(pi, pj , pk, pl) =
D(pi,pj ,pk,pl)

orient(pi,pj ,pk)

7→ orient(πε
i , π

ε
j , π

ε
k, π

ε
l)

7→ πε
i = (xi, yi, ti + εn−i)

D(pi, pj , pk, pl) = orient(πi, πj , πk, πl)

pi = (xi, yi)

orient(πε
i , π

ε
j , π

ε
k, π

ε
l) =

∣∣∣∣∣∣∣∣∣∣
1 1 1 1
xi xj xk xl
yi yj yk yl
zi zj zk zl

ti+ε
n−i tj+ε

n−j tk+ε
n−k tl+ε

n−l

∣∣∣∣∣∣∣∣∣∣
= D(pi, pj , pk, pl)

−orient(pi, pj , pk)ε
n−l

+orient(pi, pj , pl)ε
n−k

−orient(pi, pk, pl)ε
n−j

+orient(pj , pk, pl)ε
n−i

−→ non-null polynomial in ε4 cocircular points

point with highest index
in the disk of the other 3

Degeneracies

Perturbing points in d+ 1th dimension

Degeneracies

Perturbing points in d+ 1th dimension

global indexing = lexicographic order

orientation predicate not perturbed

=⇒ NO flat simplex created

easy to implement

−→ Delaunay triangulation uniquely defined

Computational Geometry Algorithms Library

distributed under GPL

www.cgal.org

open source

commercial licences distributed by GeometryFactory

Computational Geometry Algorithms Library

www.cgal.org

2D, 3D, dD [weighted] Delaunay triangulations

fully dynamic

fully robust

2D ' 10 million points / second

3D ' 1 million points / second

(on a standard laptop)

Computational Geometry Algorithms Library

www.cgal.org

2D, 3D periodic [weighted] Delaunay triangulations (flat torus)

Computational Geometry Algorithms Library

www.cgal.org

soon (?)

hyperbolic Delaunay triangulations

Computational Geometry Algorithms Library

www.cgal.org

soon (?)

Delaunay triangulations on the sphere

Computational Geometry Algorithms Library

www.cgal.org

used by astrophysicists, biologists, . . .

Computational Geometry Algorithms Library

www.cgal.org

used by astrophysicists, biologists, . . .mathematician(s?)

Take home (?)

There is a long way from the algorithm to the software

clean mathematical models

knowledge of computers

union makes strength

Needed

good algorithms

