

Delaunay triangulations on orientable surfaces of low genus

Algorithm

This paper

Outline

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Outline

2 1- and 2- tori

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction	1- and 2- tori	Algorithm	I his paper
Which surfaces?			

• 1 handle, flat torus

locally Euclidean metric

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

2 handles, Bolza surface

Motivation

Algorithm

Applications - Examples

[3D] Flat torus

[Schuetrumpf, Klatt, lida, Schröder-Turk et al]

[van de Weijgaert et al]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Intr	odi	icti	on

Motivation

1- and 2- tori

Algorithm

Applications - Examples

Bolza surface

[Sausset, Tarjus, Viot]

Neuromathematics

[Chossat, Faye, Faugeras]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

In		\sim		Ot	10	n
	LI		лu	ιu		

Algorithm

Motivation

Algorithms / software for Delaunay triangulations

State-of-the-art:

● ∃ for the *d*D flat torus

2d [Mazón, Recio], 3d [Dolbilin, Huson], dD [Caroli, T.]

∃ software

2d [Kruithof], 3d [Caroli, T.]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• $\not\exists$ for the Bolza surface

Intr	'nd	uct	ion
	ou	uci	

Algorithm

Motivation

Algorithms / software for Delaunay triangulations

State-of-the-art:

● ∃ for the *d*D flat torus

2d [Mazón, Recio], 3d [Dolbilin, Huson], dD [Caroli, T.]

∃ software

2d [Kruithof], 3d [Caroli, *T*.]

• $\not\exists$ for the Bolza surface

Goal:

Extend the standard incremental algorithm [Bowyer]

- easy to implement
- efficient in practice

Algorithm

Motivation

・ロト・個ト・モート ヨー・シタウ

Algorithm

This paper

Outline

Introduction

Introduction	1- ar	nd 2- tori			Algo	orithm	This paper
The Flat Toru	s						
$\mathbb{T}^2=\mathbb{R}^2/G$					loc	ally E	uclidean metric
$G = < t_x, t_y >$							
Dirichlet regio	on = reg	jion o	f <i>p</i> in	Vor(C	a .p)		
	•	•	•	•	•	•	
	•	•	•	•	•	•	
	•	•	•	•	•	•	
	•	•	•	•	•	•	

same $\forall p \in \mathbb{R}^2$

This paper

Hyperbolic plane \mathbb{H}^2

This paper

Hyperbolic plane \mathbb{H}^2

Poincaré disk conformal model

This paper

Hyperbolic plane \mathbb{H}^2

Poincaré disk conformal model

This paper

Hyperbolic plane \mathbb{H}^2

Hyperbolic translations

Introduction	1- and 2- ton	Algontinin	This paper
The Bolza s	surface		
$\mathcal{M}=\mathbb{H}^2/\mathcal{G}$		locally hyperboli	c metric

 $\mathcal{G} = \left\langle \textit{a},\textit{b},\textit{c},\textit{d} \mid \textit{abcd}\overline{a}\overline{b}\overline{c}\overline{d} \right\rangle$

translations do not commute

				27		
				τı		
	0	G		5		

The Bolza surface

 $\mathcal{M}=\mathbb{H}^2/\mathcal{G}$

 $\mathcal{G} = \left\langle \textit{a},\textit{b},\textit{c},\textit{d} \mid \textit{abcd}\overline{a}\overline{b}\overline{c}\overline{d} \right\rangle$

locally hyperbolic metric

translations do not commute

Thanks to lordan lordanov 🔗 🗠

Introduction	1- and 2- ton	Algonthim	This paper
The Bolza sur	face		

 $\mathcal{M} = \mathbb{H}^2/\mathcal{G}$

 $\mathcal{G} = \langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} \rangle$

locally hyperbolic metric

[Näätänen]

3

translations do not commute

Dirichlet region = region of p in Vor(G.p)

depends on p

generic: 18 sides (日) (四) (三) (三) (三)

Introduction	1- and 2- tori	Algorithm	I his paper
The Bolza s	urface		

 $\mathcal{M}=\mathbb{H}^2/\mathcal{G}$

 $\mathcal{G} = \left\langle \textit{a},\textit{b},\textit{c},\textit{d} \mid \textit{abcd}\overline{a}\overline{b}\overline{c}\overline{d} \right\rangle$

locally hyperbolic metric

translations do not commute

Dirichlet region = region of p in Vor(G.p)

depends on *p*

Introduction	1- and 2- tori	Algorithm	I his paper
The Bolza su	rface		

 $\mathcal{M}=\mathbb{H}^2/\mathcal{G}$

 $\mathcal{G} = \langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} \rangle$

locally hyperbolic metric

translations do not commute

8 sides [Nä

Dirichlet region = region of p in Vor(G.p)

depends on *p*

tr						n
	-	-	-	~	-	

Algorithm

This paper

Outline

2 1- and 2- tori

Introduction	1- and 2- tori	Algorithm	This paper
Incremental al	gorithm	[Bowyer]	
\mathbb{R}^2			

 \mathbb{R}^2

Introduction	1- and 2- tori	Algorithm	This paper
Incremental al	gorithm	[Bowyer]	
\mathbb{R}^2			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

the conflict region is a topological disk

On a surface

the conflict region is not always a topological disk

On a surface

the conflict region is not always a topological disk

Algorithm

This paper

Outline

Introduction

2 1- and 2- tori

3 Algorithm

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

Introduction	1- and 2- tori	Algorithm	This paper
Sufficient cond	ition		

M manifold, systole(*M*) = least length of a non-contractible loop on *M*

Introduction	1- and 2- tori	Algorithm	This paper	
Sufficient conditi	on			

M manifold, systole(M) = least length of a non-contractible loop on M

 $\ensuremath{\mathcal{P}}$ set of points

```
If

systole(M) > 2 · diameter(largest empty disk)(\mathcal{P})

then

the graph of edges of DT_M(\mathcal{P}) has no cycle of length \leq 2
```

systole(M) > 2 · diameter(largest empty disk)(\mathcal{P})

Use a sequence of covering spaces M_k of M \simeq *a sequence of normal subgroups of* G

 \rightsquigarrow increase systole

systole(M) > 2 · diameter(largest empty disk)(\mathcal{P})

Use a sequence of covering spaces M_k of M

 \simeq a sequence of normal subgroups of ${\mathcal G}$

✓ increase systole

until

the graph of edges of $DT_{M_k}(\mathcal{P})$ has no cycle of length \leq 2, $\forall \mathcal{P}$

the conflict region is always a disk

(ロ) (同) (三) (三) (三) (○) (○)

systole(M) > 2 · diameter(largest empty disk)(\mathcal{P})

Use a sequence of covering spaces M_k of M

 \simeq a sequence of normal subgroups of ${\mathcal G}$

 \rightsquigarrow increase systole

until

the graph of edges of $DT_{M_k}(\mathcal{P})$ has no cycle of length \leq 2, $\forall \mathcal{P}$

the conflict region is always a disk

(ロ) (同) (三) (三) (三) (○) (○)

Reduce the number of sheets while points are inserted

	Ŧ		α		\sim	

Algorithm

This paper

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Covering spaces

 Tool: construction of 2^k-sheeted covering spaces construction of normal subgroups of G of index 2^k

- Tool: construction of 2^k-sheeted covering spaces construction of normal subgroups of G of index 2^k
- Flat torus: 9 sheets [Caroli, T.] → 8 sheets

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Covering spaces

- Tool: construction of 2^k-sheeted covering spaces construction of normal subgroups of G of index 2^k
- Flat torus: 9 sheets [Caroli, T.] → 8 sheets
- Bolza surface:
 - ≥ 32 sheets
 - ≤ 128 sheets

(argument: areas)

(ロ) (同) (三) (三) (三) (○) (○)

- (GAP assisted proof)
- practical approach: 1 sheet + 14 "dummy" points

typo on page 13: 48 \rightarrow 32

Covering spaces

- Tool: construction of 2^k-sheeted covering spaces construction of normal subgroups of G of index 2^k
- Flat torus: 9 sheets [Caroli, T.] \longrightarrow 8 sheets
- Bolza surface:
 - \geq 32 sheets (argument: areas)
 - \leq 128 sheets (GAP assisted proof)
 - practical approach: 1 sheet + 14 "dummy" points
- general hyperbolic closed surfaces: existence

・ロト・日本・日本・日本・日本

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Future work

Bolza surface

- algebraic issues
- implementation
- tighten the gap $32 \leftrightarrow 128$

Higher genus

Future work

Bolza surface

- algebraic issues
- implementation
- tighten the gap $32 \leftrightarrow 128$

Higher genus

Thank you for your attention

