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Which surfaces?

1 handle, flat torus

locally Euclidean metric

2 handles, Bolza surface

locally hyperbolic metric
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Tiny: Nuclear pasta
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B. Schuetrumpf,1,2 M. A. Klatt,3 K. Iida,4 G. E. Schröder-Turk,3 J. A. Maruhn,1 K. Mecke,3 and P.-G. Reinhard3

1Institut für Theoretische Physik, Goethe Universität Frankfurt, D-60438 Frankfurt, Germany
2FRIB/NSCL Michigan State University, East Lansing, Michigan 48824, USA

3Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
4Department of Natural Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan

(Received 22 April 2014; published 4 February 2015)

Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured
phases, called nuclear pasta. We investigate the role of periodic networklike structures with negatively curved
interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. As the
most prominent result, we identify for the first time the single gyroid network structure of cubic chiral I4123
symmetry, a well-known configuration in nanostructured soft-matter systems, both as a dynamical state and as a
cooled static solution. Single gyroid structures form spontaneously in the course of the dynamical simulations.
Most of them are isomeric states. The very small energy differences from the ground state indicate its relevance
for structures in nuclear pasta.
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I. INTRODUCTION

Nuclear matter, although not observable in laboratories
on Earth, plays a crucial role in astrophysical scenarios
such as neutron stars or core-collapse supernovae [1,2].
Near equilibrium density, nuclear matter is a homogeneous
quantum liquid, somewhat trivial from a structural perspective.
However, an exciting world of various geometrical profiles
develops at lower densities covering ensembles of rods, slabs,
tubes, or bubbles [3–7]. Most of these phases can be considered
as manifestations of liquid crystals [8] and the geometrical
analogy to spaghetti, lasagna, etc., has led to these being
summarized under the notion of a nuclear “pasta.” Their
complex shapes and topologies can be classified by integral
curvature measures [7,9,10], developed in the realm of soft-
matter physics and known as Minkowski functionals [11–14].

A particularly intricate structure amongst the pasta phases
is the gyroid, a triply periodic geometry consisting of
two intergrown network domains separated by a periodic
manifoldlike surface which is (at least on average) saddle
shaped and has negative Gaussian curvature (cf. Fig. 1). In
soft-matter systems, these periodic saddle-shaped surfaces
have been found in solid biological systems [15–21], in
the so-called “core-shell” gyroid phase of diblock copoly-
mers [22] and in inverse bicontinuous phases in lipid-water
systems [23]. Gyroidlike geometries can also be expected
in nuclear pasta, due to a balance between the nuclear and
Coulomb forces [9,10]. Similar kinds of periodic bicontinuous
structures are discussed in supernova cores and neutron star
crusts [24,25]. It is generally accepted that liquid crystalline
phases, i.e., pasta phases, occur in supernova cores in the
form of slabs, rods, and tubes [3–6]. The search for elaborate
structures in astrophysical matter with self-consistent nuclear
models has a long history, starting from the first full Skyrme-
Hartree-Fock (SHF) simulation of Bonche and Vautherin [26].
With continued refinement of the calculations, more and more
intricate structures have been discovered. For example, the
possible occurrence of periodic bicontinuous structures was
found by stationary Hartree-Fock calculations [5,27–30], later

on in dynamical simulations of supernova matter using time-
dependent Hartree-Fock (TDHF) calculations for supernova
matter [31,32], and also in a quantum molecular dynamics
approach [33]. Gyroids have been examined so far only
within a liquid-drop model [9,10] where double gyroids were
found to be energetically close to the ground state. (Note
the important difference between single and double gyroid
geometries, see Fig. 2.) If realized in supernova matter, the
networklike percolating nature of the gyroid could greatly

FIG. 1. (Color online) Gyroidal pasta shape: The green structure
on the left hand represents the density distribution of the gyroidal state
of nuclear pasta matter computed with time-dependent Hartree-Fock
calculations for an average density of 0.06 fm−3 and a box length of
a = 22 fm. Shown is the Gibbs dividing surface with a corresponding
threshold density. The solid volume represents densities above this
value and the void represents densities below this value. The blue
structure on the right-hand side shows the nodal approximation (4) of
a single gyroid constant-mean-curvature surface at the same volume
fraction. Also shown by orange bars is a gyroid network in the void
phase of both the pasta shape and the nodal approximation, showing
that they are indeed homotopic. Black frames are guides to the eye,
of size 1.25a, the cubic lattice parameter.
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6.4. Computation of hyperbolic planforms 103

(a) χ1 : G, the corresponding eigenvalue

is λ = 23.0790.

(b) χ2 : G0κ, the corresponding eigen-

value is λ = 91.4865.

(c) χ3 : G0κ� , the corresponding eigen-

value is λ = 32.6757.

(d) χ4 : G, the corresponding eigenvalue

is λ = 222.5434.

Figure 6.7: The four H-planforms with their corresponding eigenvalue associated

with the four irreducible representations of dimension 1, see text.

[Chossat, Faye, Faugeras]
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easy to implement
efficient in practice
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Beautiful groups
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The Flat Torus

T2 = R2/G locally Euclidean metric

G =< tx , ty >

Dirichlet region = region of p in Vor(G.p)

same ∀p ∈ R2
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〉
translations do not commute

Thanks to Iordan Iordanov
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Dirichlet region = region of p in Vor(G.p)

depends on p generic: 18 sides [Näätänen]
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The Bolza surface

M = H2/G locally hyperbolic metric

G =
〈
a,b, c,d | abcdabcd

〉
translations do not commute

Dirichlet region = region of p in Vor(G.p)

depends on p 14 sides [Näätänen]
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The Bolza surface

M = H2/G locally hyperbolic metric

G =
〈
a,b, c,d | abcdabcd

〉
translations do not commute

Dirichlet region = region of p in Vor(G.p)

depends on p 8 sides [Näätänen]
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On a surface

the conflict region is not always a topological disk
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systole(M) > 2 · diameter(largest empty disk)(P)

then
the graph of edges of DTM(P) has no cycle of length ≤ 2
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systole(M) > 2 · diameter(largest empty disk)(P)

Use a sequence of covering spaces Mk of M
' a sequence of normal subgroups of G

 increase systole

until
the graph of edges of DTMk (P) has no cycle of length ≤ 2, ∀P

the conflict region is always a disk

Reduce the number of sheets while points are inserted
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Covering spaces

Tool: construction of 2k -sheeted covering spaces
construction of normal subgroups of G of index 2k

Flat torus: 9 sheets [Caroli, T.] −→ 8 sheets

Bolza surface:
≥ 32 sheets (argument: areas)
≤ 128 sheets (GAP assisted proof)
practical approach: 1 sheet + 14 “dummy” points

general hyperbolic closed surfaces: existence



Introduction 1- and 2- tori Algorithm This paper

Covering spaces

Tool: construction of 2k -sheeted covering spaces
construction of normal subgroups of G of index 2k

Flat torus: 9 sheets [Caroli, T.] −→ 8 sheets

aa
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