Delaunay triangulations on orientable surfaces of low genus

Mikhail Bogdanov Monique Teillaud Gert Vegter

SoCG'16-Boston

Outline

(9) Introduction
(2) 1- and 2-tori
(3) Algorithm

4 This paper

Outline

(2) 1- and 2-tori
(3) Algorithm
4. This paper

Which surfaces?

- 1 handle, flat torus

locally Euclidean metric
- 2 handles, Bolza surface

locally hyperbolic metric

Motivation

Applications - Examples

[3D] Flat torus

[Schuetrumpf, Klatt, lida, Schröder-Turk et al]

Huge: Cosmic web

[van de Weijgaert et al]

Motivation

Applications - Examples

Bolza surface

Physics

[Sausset, Tarjus, Viot]

Neuromathematics

[Chossat, Faye, Faugeras]

Motivation

Algorithms / software for Delaunay triangulations

State-of-the-art:

- \exists for the $d \mathrm{D}$ flat torus

2d [Mazón, Recio], 3d [Dolbilin, Huson], dD [Caroli, T.]
\exists software 2d [Kruithof], 3d [Caroli, T.]

- \nexists for the Bolza surface

Motivation

Algorithms / software for Delaunay triangulations

State-of-the-art:

- \exists for the $d \mathrm{D}$ flat torus

2d [Mazón, Recio], 3d [Dolbilin, Huson], dD [Caroli, T.]
\exists software 2d [Kruithof], 3d [Caroli, T.]

- \nexists for the Bolza surface

Goal:
Extend the standard incremental algorithm
[Bowyer]

- easy to implement
- efficient in practice

Motivation

- crystallographic / Fuchsian groups
- finitely presented groups
- triangle groups

Outline

(2) 1- and 2-tori
(3) Algorithm

4 This paper

The Flat Torus

$$
\begin{aligned}
& \mathbb{T}^{2}=\mathbb{R}^{2} / G \\
& G=<t_{x}, t_{y}>
\end{aligned}
$$

locally Euclidean metric

The Flat Torus

$\mathbb{T}^{2}=\mathbb{R}^{2} / G$
locally Euclidean metric
$G=\left\langle t_{x}, t_{y}\right\rangle$
Dirichlet region $=$ region of p in $\operatorname{Vor}(G . p)$

same $\forall p \in \mathbb{R}^{2}$

Hyperbolic plane \mathbb{H}^{2}

Poincaré disk conformal model

Hyperbolic plane \mathbb{H}^{2}

Poincaré disk conformal model

Hyperbolic plane \mathbb{H}^{2}

Poincaré disk conformal model

Hyperbolic plane \mathbb{H}^{2}

Hyperbolic translations

The Bolza surface

$$
\begin{aligned}
& \mathcal{M}=\mathbb{H}^{2} / \mathcal{G} \\
& \mathcal{G}=\langle a, b, c, d \mid a b c d \bar{a} \bar{b} \bar{c} \bar{d}\rangle
\end{aligned}
$$

locally hyperbolic metric
translations do not commute

The Bolza surface

$$
\begin{aligned}
& \mathcal{M}=\mathbb{H}^{2} / \mathcal{G} \\
& \mathcal{G}=\langle a, b, c, d \mid a b c d \bar{a} \bar{b} \bar{c} \bar{d}\rangle
\end{aligned}
$$

locally hyperbolic metric

translations do not commute

Thanks to 70 rdan Iordanov

The Bolza surface

$\mathcal{M}=\mathbb{H}^{2} / \mathcal{G}$
locally hyperbolic metric
$\mathcal{G}=\langle a, b, c, d \mid a b c d \bar{a} \bar{b} \bar{c} \bar{d}\rangle$
translations do not commute
Dirichlet region $=$ region of p in $\operatorname{Vor}(G . p)$

The Bolza surface

$\mathcal{M}=\mathbb{H}^{2} / \mathcal{G}$
locally hyperbolic metric
$\mathcal{G}=\langle a, b, c, d \mid a b c d \bar{a} \bar{b} \bar{c} \bar{d}\rangle$
translations do not commute
Dirichlet region $=$ region of p in $\operatorname{Vor}(G . p)$

14 sides
[Näätänen]

The Bolza surface

$\mathcal{M}=\mathbb{H}^{2} / \mathcal{G}$
locally hyperbolic metric
$\mathcal{G}=\langle a, b, c, d \mid a b c d \bar{a} \bar{b} \bar{c} \bar{d}\rangle$
translations do not commute
Dirichlet region $=$ region of p in $\operatorname{Vor}(G . p)$

8 sides
[Näätänen]

Outline

(1) Introduction

(2) 1- and 2-tori
(3) Algorithm

4 This paper

Incremental algorithm
 [Bowyer]

\mathbb{R}^{2}

Incremental algorithm [Bowyer]

\mathbb{R}^{2}

Incremental algorithm
 [Bowyer]

\mathbb{R}^{2}

Incremental algorithm
 [Bowyer]

\mathbb{R}^{2}

the conflict region is a topological disk

Incremental algorithm
 [Bowyer]

On a surface
the conflict region is not always a topological disk

Incremental algorithm
 [Bowyer]

On a surface
the conflict region is not always a topological disk

Outline

(9) Introduction

(2) 1- and 2-tori
(3) Algorithm

4 This paper

Sufficient condition

M manifold,
$\operatorname{systole}(M)=$ least length of a non-contractible loop on M

Sufficient condition

M manifold,
$\operatorname{systole}(M)=$ least length of a non-contractible loop on M
\mathcal{P} set of points
If

$$
\text { systole }(M)>2 \cdot \text { diameter(largest empty disk)(P) }
$$

then the graph of edges of $D T_{M}(\mathcal{P})$ has no cycle of length ≤ 2

systole $(M)>2 \cdot$ diameter(largest empty disk) (\mathcal{P})

Use a sequence of covering spaces M_{k} of M
\simeq a sequence of normal subgroups of \mathcal{G} increase systole

systole $(M)>2 \cdot$ diameter(largest empty disk) (\mathcal{P})

Use a sequence of covering spaces M_{k} of M
\simeq a sequence of normal subgroups of \mathcal{G}
$\leadsto \quad$ increase systole
until
the graph of edges of $D T_{M_{k}}(\mathcal{P})$ has no cycle of length $\leq 2, \forall \mathcal{P}$

the conflict region is always a disk

systole $(M)>2 \cdot$ diameter(largest empty disk) (\mathcal{P})

Use a sequence of covering spaces M_{k} of M
\simeq a sequence of normal subgroups of \mathcal{G}
$\leadsto \quad$ increase systole
until
the graph of edges of $D T_{M_{k}}(\mathcal{P})$ has no cycle of length $\leq 2, \forall \mathcal{P}$

the conflict region is always a disk
Reduce the number of sheets while points are inserted

Covering spaces

- Tool: construction of 2^{k}-sheeted covering spaces construction of normal subgroups of \mathcal{G} of index 2^{k}

Covering spaces

- Tool: construction of 2^{k}-sheeted covering spaces construction of normal subgroups of \mathcal{G} of index 2^{k}
- Flat torus: 9 sheets [Caroli, T.] $\longrightarrow 8$ sheets

Covering spaces

- Tool: construction of 2^{k}-sheeted covering spaces construction of normal subgroups of \mathcal{G} of index 2^{k}
- Flat torus: 9 sheets [Caroli, T.] $\longrightarrow 8$ sheets
- Bolza surface:
- ≥ 32 sheets
(argument: areas)
- ≤ 128 sheets
(GAP assisted proof)
- practical approach: 1 sheet +14 "dummy" points


```
typo on page 13: 48 -> 32
```


Covering spaces

- Tool: construction of 2^{k}-sheeted covering spaces construction of normal subgroups of \mathcal{G} of index 2^{k}
- Flat torus: 9 sheets [Caroli, $T.] \longrightarrow 8$ sheets
- Bolza surface:
- ≥ 32 sheets
- ≤ 128 sheets
(argument: areas)
- practical approach: 1 sheet +14 "dummy" points
- general hyperbolic closed surfaces: existence

Future work

Bolza surface

- algebraic issues
- implementation
- tighten the gap $32 \leftrightarrow 128$

Higher genus

Future work

Bolza surface

- algebraic issues
- implementation
- tighten the gap $32 \leftrightarrow 128$

Higher genus

Thank you for your attention

