Geometry made practical

www.cgal.org
Monique Teillaud
http://www.loria.fr/~teillaud/

INRIA Nancy - Grand Est, LORIA

Computer Science meets Mathematics
Luxembourg - Feb 18, 2016

CGAL, the Computational Geometry Algorithms Library

- The CGAL Open Source Project and the CGAL Library
- Robustness
- Triangulations
- Non-Euclidean spaces

Part I

The CGAL Open Source Project and the CGAL library

Goals

- Promote the research in Computational Geometry (CG)
- "make the large body of geometric algorithms developed in the field of computational geometry available for industrial applications"

\Rightarrow robust programs

- Reward structure for implementations in academia

History

- Development started in 1995
- Academic project

History

- Development started in 1995
- Academic project
- January, 2003: creation of Geometry Factory

INRIA startup
sells commercial licenses, support, customized developments

- November, 2003: Release 3.0-Open Source Project
- new contributors
- current: CGAL 4.7 (October 2015)

Contents

> 80 chapters in the manual

Subdivision

Simplification Parameterization

Lower Envelope

Arrangement

Intersection Detection

Streamlines

Minkowski Sum

PCA

Technical

- 500,000 lines of C++ code genericity, flexibility through templates
- multi-platforms

Linux, MacOS, Windows g++, VC++, clang,...

Technical

- 500,000 lines of C++ code genericity, flexibility through templates
- multi-platforms

Linux, MacOS, Windows
g++, VC++, clang,...

- License
- a few basic packages under LGPL
- most packages under GPLv3+
- free use for Open Source code
- commercial license through Geometry Factory

How to get CGAL?

- release cycle: 6 months
- from github (>1,000 downloads per month)
- included in Linux distributions (Debian, etc)
- available through macport, brew
- master branch public in github
- 2d and 3d triangulation packages integrated in Matlab
- CGAL-bindings (implemented with SWIG)

CGAL triangulations, meshes, etc, in Java or Python

Users

List of identified users in various fields

- Molecular Modeling
- Particle Physics, Fluid Dynamics, Microstructures
- Medical Modeling and Biophysics
- Geographic Information Systems
- Games
- Motion Planning
- Sensor Networks
- Architecture, Buildings Modeling, Urban Modeling
- Astronomy
- 2D and 3D Modelers
- Mesh Generation and Surface Reconstruction
- Geometry Processing
- Computer Vision, Image Processing, Photogrammetry
- Computational Topology and Shape Matching
- Computational Geometry and Geometric Computing

More non-identified users. . .

Some Commercial Users

(2012)

CGAL welcomes new contributions

Contributors keep their identity:

- Listed as authors in the manual

```
3D Triangulations
Syvam Pian ana Manique TeNiaud
```



```
diagrams.
3D Triangulation Data Structure
Syyvan Pian and Monique Tenlaud
```



```
contsinef for the vertioss and calls of the viangistion end prevides besic combinatorial operstions on the trianguation,
    Clation Entry Reterence Manual
3D Periodic Triangulations
Manvel Caroll and INanoue Teilaud
```

This package albows to buld and hande thianqualibins of point selts in the three dimensibnal hat torus. Thiangulaions are buil heremenentaly and can be modied by Inserition or remeval of vertices. They otier point location fecinines

Introduced in: Cane 2.1 Lleonse: QPL
Ctation Entry
User Manual Reforence Manual

 Liconsa: GP,
User Manual Refternce Manual

- Mentioned on the "People" web page
- Copyright kept by the [institution of the] authors

CGAL welcomes new contributions

- Review coordinated by the Editorial Board
- Test-suite must run on all supported platforms

Advice: contact us early

Part II

Robustness

The CGAL Kernels

- Elementary geometric objects
- Elementary computations on them
Primitives
Predicates
2D, 3D, dD
- comparison
Constructions
- Point
- Orientation
- intersection
- Vector
- InSphere
- Triangle
- Circle

Affine geometry

Point - Origin \rightarrow Vector
Point - Point \rightarrow Vector
Point + Vector \rightarrow Point

Point + Point illegal
midpoint($a, b)=a+1 / 2 \times(b-a)$

Kernels and number types

Cartesian representation
Point $\left\lvert\, \begin{aligned} & x=\frac{h x}{h w} \\ & y=\frac{h y}{h w}\end{aligned}\right.$

Homogeneous representation
Point $\left\lvert\, \begin{aligned} & h x \\ & h y \\ & h w\end{aligned}\right.$

- ex: Intersection of two lines -

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1}=0 \\
a_{2} x+b_{2} y+c_{2}=0
\end{array}\right. \\
& (x, y)= \\
& \left(\begin{array}{ll}
\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \\
\hline \left.\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array} \right\rvert\,
\end{array},-\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}\right)
\end{aligned}
$$

Field operations
$\left\{\begin{array}{l}a_{1} h x+b_{1} h y+c_{1} h w=0 \\ a_{2} h x+b_{2} h y+c_{2} h w=0\end{array}\right.$
$(h x, h y, h w)=$
$\left(\left|\begin{array}{ll}b_{1} & c_{1} \\ b_{2} & c_{2}\end{array}\right|,-\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|,\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|\right)$

Ring operations

Kernels and number types

CGAL::Cartesian< FieldType > CGAL::Homogeneous< RingType >

\longrightarrow Flexibility
typedef double
typedef Cartesian< NumberType
typedef Kernel::Point_2

NumberType;

Kernel;
Point;

Predicates and Constructions

Predicates and Constructions

Delaunay triangulation

only predicates are used orientation, in_sphere

Voronoi diagram

constructions are needed circumcenter

Numerical robustness issues

Many predicates $=$ signs of polynomial expressions

Ex: Orientation of 2D points

$$
\begin{aligned}
\operatorname{orientation}(p, q, r) & =\operatorname{sign}\left(\operatorname{det}\left[\begin{array}{lll}
p_{x} & p_{y} & 1 \\
q_{x} & q_{y} & 1 \\
r_{x} & r_{y} & 1
\end{array}\right]\right) \\
& =\operatorname{sign}\left(\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right)\right)
\end{aligned}
$$

Numerical robustness issues

Many predicates $=$ signs of polynomial expressions
Ex: Orientation of 2D points

$$
\begin{aligned}
& p=(0.5+x \cdot u, 0.5+y \cdot u) \\
& 0 \leq x, y<256, \quad u=2^{-53} \\
& q=(12,12) \\
& r=(24,24)
\end{aligned}
$$

orientation (p, q, r)
evaluated with double
$(x, y) \mapsto>0,=0$,

double \longrightarrow inconsistencies in predicate evaluations

Numerical robustness issues

Speed and exactness through

Exact Geometric Computation

ensures that predicates are correctly evaluated
= geometric decisions are correct
\Longrightarrow combinatorial structure is correct

Numerical robustness issues

Speed and exactness through

Exact Geometric Computation

\neq
exact arithmetics

Filtering Techniques (interval arithmetics, etc) exact arithmetics only when needed

Filtering Predicates

sign $(P(x))$?

Approximate evaluation $P^{a}(x)$

$$
+ \text { error } \varepsilon
$$

$$
\operatorname{sign}(P(x))=\operatorname{sign}\left(P^{a}(x)\right)
$$

Exact computation

Robustness issues

- Numerical issues: Exact Geometric Computation
- Degenerate cases............. explicitly handled
(symbolic perturbation techniques, etc)

The circular/spherical kernels

```
typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt( NT(2) );
Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // 2 = squared radius
assert( C.has_on_boundary(q) );
```

OK if NT gives exact sqrt assertion violation otherwise

The circular/spherical kernels

Circular/spherical kernels

- solve needs for e.g. intersection of circles.
- extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2
= roots of polynomials of degree 2
Algebraic methods reduce comparisons to computations of signs of polynomial expressions

Application of the 2D circular kernel

Computation of arrangements of 2D circular arcs and line segments

Application of the 3D spherical kernel

Computation of arrangements of 3D spheres

Part III

Triangulations

Definition

2D (dD) simplicial complex = set \mathbb{K} of $0,1,2, \ldots, d$-faces such that

- $\sigma \in \mathbb{K}, \tau \leq \sigma \Rightarrow \tau \in \mathbb{K}$
- $\sigma, \sigma^{\prime} \in \mathbb{K} \Rightarrow \sigma \cap \sigma^{\prime} \leq \sigma, \sigma^{\prime}$

Various triangulations

Basic triangulations

Delaunay triangulations

Weighted Delaunay triangulations (dual of power diagram) power product between $p^{(w)}$ and $z^{(w)}$

$$
\Pi\left(p^{(w)}, z^{(w)}\right)=\|p-z\|^{2}-w_{p}-w_{z}
$$

Geometry vs. Combinatorics

Triangulation of a set of points = partition of the convex hull into simplices.

Addition of an infinite vertex

\longrightarrow "triangulation" of the outside of the convex hull.

- Any cell is a "tetrahedron".
- Any facet is incident to two cells.

Triangulation of \mathbb{R}^{d}
\simeq
Triangulation of the topological sphere \mathbb{S}^{d}.

Dimensions

$\operatorname{dim} 0$
dim 1

$\operatorname{dim} 2$

a 4-dimensiona triangulated sphere

Dimensions

Adding a point outside the current affine hull:
From $d=1$ to $d=2$

Traits class

Triangulation_2<Traits, TDS $>$
Geometric traits classes provide:
Geometric objects + predicates + constructors
Flexibility:

- The Kernel can be used as a traits class for several algorithms
- Otherwise: Default traits classes provided
- The user can plug his own traits class

Traits class

Generic algorithms

Delaunay_Triangulation_2<Traits, TDS $>$

Traits parameter provides:

- Point
- orientation test, in_circle test

Traits class

2D Kernel used as traits class

```
typedef
    CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2< K > Delaunay;
```

-2D points: coordinates (\mathbf{x}, \mathbf{y})

- orientation, in_circle

Traits class

Changing the traits class

```
typedef
    CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef
    CGAL::Projection_traits_xy_3< K > Traits;
typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;
```

- 3D points: coordinates ($\mathbf{x}, \mathbf{y}, \mathbf{z}$)
- orientation, in_circle: on x and y coordinates only

3D Delaunay Triangulations

- fully dynamic (also weighted triangulations)
- fast: 1 M points $\simeq 10 \mathrm{sec}(\simeq 10 \mu \mathrm{sec} /$ point $)$
- robust
- basis for 3D α-shapes and 3D meshes
- integrated in Matlab 2009
- recent: multi-core

3D meshes

- Delaunay refinement

Non-Euclidean spaces

(cubic) flat torus

- 2D, 3D periodic triangulations

Non-Euclidean spaces

(cubic) flat torus

In the pipe...

- periodic meshes

Non-Euclidean spaces

sphere

In the pipe...

- Delaunay triangulations

Non-Euclidean spaces

hyperbolic plane

In the pipe...

- Delaunay triangulations

Non-Euclidean spaces

hyperbolic surfaces

Research in progress

- Delaunay triangulation of the Bolza surface...?

Thank you for your attention
Thanks to several students and CGAL colleagues for some pictures

