
Geometry made practical

www.cgal.org

Monique Teillaud
http://www.loria.fr/˜teillaud/

INRIA Nancy - Grand Est, LORIA

Computer Science meets Mathematics
Luxembourg - Feb 18, 2016



CGAL, the Computational Geometry Algorithms
Library

The CGAL Open Source Project and the CGAL Library
Robustness
Triangulations
Non-Euclidean spaces



Part I

The CGAL Open Source Project and
the CGAL library



Goals

• Promote the research in Computational Geometry (CG)

• “make the large body of geometric algorithms developed in
the field of computational geometry available for industrial
applications”

) robust programs

• Reward structure for implementations in academia



History

• Development started in 1995
• Academic project



History

• Development started in 1995
• Academic project

• January, 2003: creation of GEOMETRY FACTORY
INRIA startup
sells commercial licenses, support, customized developments

• November, 2003: Release 3.0 - Open Source Project
new contributors

• current: CGAL 4.7 (October 2015)



Contents

> 80 chapters in the manual



Technical

• 500,000 lines of C++ code
genericity, flexibility through templates

• multi-platforms
Linux, MacOS, Windows
g++, VC++, clang,. . .

• License
a few basic packages under LGPL
most packages under GPLv3+
� free use for Open Source code
commercial license through GEOMETRY FACTORY



Technical

• 500,000 lines of C++ code
genericity, flexibility through templates

• multi-platforms
Linux, MacOS, Windows
g++, VC++, clang,. . .

• License
a few basic packages under LGPL
most packages under GPLv3+
� free use for Open Source code
commercial license through GEOMETRY FACTORY



How to get CGAL?

• release cycle: 6 months soon 4.8

from github (> 1,000 downloads per month)
included in Linux distributions (Debian, etc)
available through macport, brew

• master branch public in github

• 2d and 3d triangulation packages integrated in Matlab

• CGAL-bindings (implemented with SWIG)
CGAL triangulations, meshes, etc, in Java or Python



Users

List of identified users in various fields

• Molecular Modeling
• Particle Physics, Fluid Dynamics, Microstructures
• Medical Modeling and Biophysics
• Geographic Information Systems
• Games
• Motion Planning
• Sensor Networks
• Architecture, Buildings Modeling, Urban Modeling
• Astronomy
• 2D and 3D Modelers
• Mesh Generation and Surface Reconstruction
• Geometry Processing
• Computer Vision, Image Processing, Photogrammetry
• Computational Topology and Shape Matching
• Computational Geometry and Geometric Computing

More non-identified users. . .



Some Commercial Users

(2012)



CGAL welcomes new contributions

Contributors keep their identity:

• Listed as authors in the manual

• Mentioned on the “People” web page

• Copyright kept by the [institution of the] authors



CGAL welcomes new contributions

• Review coordinated by the Editorial Board

• Test-suite must run on all supported platforms

Advice: contact us early



Part II

Robustness



The CGAL Kernels

Elementary geometric objects
Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Circle
. . .



Affine geometry

Point - Origin ! Vector
Point - Point ! Vector
Point + Vector ! Point

Point Vector

Origin

Point + Point illegal

midpoint(a,b) = a + 1/2 x (b-a)



Kernels and number types

Cartesian representation

Point

����
x = hx

hw
y = hy

hw

Homogeneous representation

Point

������

hx
hy
hw

- ex: Intersection of two lines -
⇢

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =0

BB@

������

b1 c1
b2 c2

������
������

a1 b1
a2 b2

������

,�

������

a1 c1
a2 c2

������
������

a1 b1
a2 b2

������

1

CCA

⇢
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx , hy , hw) =✓����
b1 c1
b2 c2

���� ,�
����

a1 c1
a2 c2

���� ,
����

a1 b1
a2 b2

����

◆

Field operations Ring operations



Kernels and number types

CGAL::Cartesian< FieldType >

CGAL::Homogeneous< RingType >

�! Flexibility

typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;



Predicates and Constructions

Predicates

> 0< 0
= 0

Combinatorial

Structure

Input

Constructions

Geometric

embedding



Predicates and Constructions

Delaunay triangulation

only predicates are used
orientation, in_sphere

Voronoi diagram

constructions are needed
circumcenter



Numerical robustness issues

Many predicates = signs of polynomial expressions

Ex: Orientation of 2D points

p

q

r

orientation(p, q, r) = sign

0

@det

2

4
px py 1
qx qy 1
rx ry 1

3

5

1

A

= sign((qx � px)(ry � py )� (qy � py )(rx � px))



Numerical robustness issues

Many predicates = signs of polynomial expressions

Ex: Orientation of 2D points

p = (0.5 + x .u, 0.5 + y .u)
0  x , y < 256, u = 2�53

q = (12, 12)
r = (24, 24)

orientation(p, q, r)
evaluated with double

(x , y) 7! > 0 , = 0 , < 0

double �! inconsistencies in predicate evaluations



Numerical robustness issues

Speed and exactness through

Exact Geometric Computation

ensures that predicates are correctly evaluated
= geometric decisions are correct

=) combinatorial structure is correct



Numerical robustness issues

Speed and exactness through

Exact Geometric Computation

6=
exact arithmetics

Filtering Techniques (interval arithmetics, etc)
exact arithmetics only when needed



Filtering Predicates

sign (P(x)) ?

Approximate evaluation P

a(x)

+ error "

|Pa(x)| > "

?

Y N

sign(P (x)) = sign(P

a(x)) Exact computation



Robustness issues

• Numerical issues: Exact Geometric Computation

+

• Degenerate cases. . . . . . . . . . . . explicitly handled
(symbolic perturbation techniques, etc)



The circular/spherical kernels

typedef CGAL::Cartesian<NT> Kernel;
NT sqrt2 = sqrt( NT(2) );

Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);
Kernel::Circle_2 C(p,2); // 2 = squared radius

assert( C.has_on_boundary(q) );

OK if NT gives exact sqrt
assertion violation otherwise



The circular/spherical kernels

Circular/spherical kernels
• solve needs for e.g. intersection of circles.
• extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2
= roots of polynomials of degree 2

Algebraic methods reduce comparisons to
computations of signs of polynomial expressions



Application of the 2D circular kernel

Computation of arrangements
of 2D circular arcs and line segments



Application of the 3D spherical kernel

Computation of arrangements of 3D spheres



Part III

Triangulations



Definition

2D (dD) simplicial complex = set K of 0,1,2,. . . ,d-faces such
that

� 2 K, ⌧  � ) ⌧ 2 K
�,�0 2 K ) � \ �0  �,�0



Various triangulations 2D, 3D, dD

p

Basic triangulations Delaunay triangulations

Weighted Delaunay triangulations (dual of power diagram)
power product between p(w) and z(w)

⇧(p(w), z(w)) = kp � zk2 � wp � wz

p q

p
wp

p
wq



Geometry vs. Combinatorics

Triangulation of a set of points =
partition of the convex hull into
simplices.

Addition of an infinite vertex
without coordinates

1

1

11

1

1 1

(2D)
�! “triangulation” of the outside of the convex hull.
- Any cell is a “tetrahedron”.
- Any facet is incident to two cells.

Triangulation of Rd

'
Triangulation of the topological sphere Sd .



Dimensions

triangulated
a 4-dimensional

dim 0

dim 2

sphere

dim 1

dim 3



Dimensions

Adding a point outside the current affine hull:
From d = 1 to d = 2

1 1

1 1 1

p

1

v(1)
v(p)



Traits class

Triangulation_2<Traits, TDS>

Geometric traits classes provide:
Geometric objects + predicates + constructors

Flexibility:
• The Kernel can be used as a traits class for several
algorithms
• Otherwise: Default traits classes provided
• The user can plug his own traits class



Traits class

Generic algorithms

Delaunay_Triangulation_2<Traits, TDS>

Traits parameter provides:
• Point
• orientation test, in_circle test



Traits class

2D Kernel used as traits class

typedef

CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_2< K > Delaunay;

• 2D points: coordinates (x, y)
• orientation, in_circle



Traits class

Changing the traits class

typedef

CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef

CGAL::Projection_traits_xy_3< K > Traits;

typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;

• 3D points: coordinates (x, y, z)
• orientation, in_circle:

on x and y coordinates only



3D Delaunay Triangulations

fully dynamic (also weighted triangulations)

fast: 1 M points ' 10 sec (' 10 µsec /point)

robust

basis for 3D ↵-shapes and 3D meshes

integrated in Matlab 2009

recent: multi-core

demo



3D meshes

Delaunay refinement



Non-Euclidean spaces
(cubic) flat torus

2D, 3D periodic triangulations demo



Non-Euclidean spaces
(cubic) flat torus

In the pipe. . .

periodic meshes



Non-Euclidean spaces
sphere

In the pipe. . .

Delaunay triangulations



Non-Euclidean spaces
hyperbolic plane

In the pipe. . .

Delaunay triangulations

demo



Non-Euclidean spaces
hyperbolic surfaces

Research in progress

Delaunay triangulation of the Bolza surface. . . ?



www.cgal.org

Thank you for your attention

Thanks to several students and CGAL colleagues for some pictures


	The CGAL Open Source Project and the CGAL library 
	Robustness
	Triangulations
	Algorithms

