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Computational geometry

Solving geometric problems

@ algorithms

@ complexity analysis
worst case, average, randomized

@ implementation

@ applications
shape reconstruction, meshing, computer graphics,
geographic information system, CAD, VLSI, structural
biology...
http://www-sop.inria.fr/lgeometrica/



Implementing geometric algorithms

Ingredients for good software
@ clean mathematical formalism
@ algorithmic study, data structures, complexity
@ solving robustness issues
@ good design and programming
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predicate:

compare (X,y)
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First problem: convex hull

Incremental construction

predicate:

orientation(p,q,r) =

1 1 1
p sign

Px Ox Ix
(it is a resultant)

Q3

|

Py Qy Ty

degree 2 polynomial



p == (O-5+X.u, 0,5+y'u)

0< X,y <256, u=2"5
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Orientation predicate

Arithmetic issues

p=(0.5+x.u, 0.5+y.u)
0< X,y <256, u=2"5
q = (12,12)
r=(24,24)

orientation(p, q,r)
evaluated with double



Orientation predicate

Arithmetic issues

p=(05+x.u, 0.5+y.u)
0< X,y <256, u=2"5
q=(12,12)
r=(24,24)

orientation(p, q,r)
evaluated with double

256 x 256 pixel image
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r above (pq)
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Orientation predicate

Arithmetic issues

P<xq<xl<xS$S
r r above (pq)
s above (qr)

— s above (pq)

— inconsistency in predicate evaluations



@ [Delaunay] triangulation
@ Arrangement
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For each new point p
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For each new point p

@ locate p — triangle t
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For each new point p

@ locate p — triangle t
@ splitt into 3 triangles
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Delaunay triangulation
Definition

All circumscribing disks are empty

Dimension 2: Euler relation nd— e +f =2 — linear size
Dimension d > 2: size © (nfﬂ)



For each new point p
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For each new point p
@ locate p = find triangles in conflict in_sphere
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For each new point p

@ locate p = find triangles in conflict

«0O0>» «F)>r « =

in_sphere
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Delaunay triangulation

Incremental construction

For each new point p
@ locate p = find triangles in conflict in_sphere
@ star the region around p



In_sphere predicate

in_sphere(p,q,r,s) =

1 1 1 1
sign Px Ox I'x Sx
Py Qy ly Sy

14+p;+p2 1+03+092 1412417 1+si+s]

orientation(p, q,r)

sign of degree 4 polynomial



In_sphere predicate

in_sphere(p,q,r,s) =

1 1 1 1
sign Px Ox I'x Sx
Py Qy ly Sy

14+p;+p2 1+03+092 1412417 1+si+s]

orientation(p, q,r)

sign of degree 4 polynomial

circumcenter/radius never computed



Exact Geometric Computation

imprecise numerical evaluations
— non-robustness
combinatorial result



Exact Geometric Computation

imprecise numerical evaluations
— non-robustness
combinatorial result

Use of exact arithmetics

Evaluation of signs of polynomial expressions:
multiprecision rationals or floats



Exact Geometric Computation

imprecise numerical evaluations
— non-robustness
combinatorial result

Exact Geometric Computation

£

exact arithmetics



Exact Geometric Computation
Filtering

Optimize easy (frequent) cases

approximate computation
+

rounding errors controlled

Use exact arithmetics only on difficult cases

Cost ~ cost of floating point/double evaluation



Exact Geometric Computation
Filtering

Approximate evaluation P%(x)
+ Error €

|P%(z)| > &

Exact computation
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The Computational Geometry Algorithms Library

Open Source project
www.cgal.org

Jwr.Ssimmav;

—

> 400.000 lines of C++ code

~ 10.000 downloads per year @ Editorial board

~ 850 users on public mailing (3 members in Geometrica
list, ~ 50 developers C 11 members)

LGPL, QPL @ Test-suites each night

start-up GeometryFactory
interfaces: Python, Scilab
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R
= Delaunay triangulations

Pentium-M 1.7 GHz, 1GB
g++ 3.3.2, -O2 -DNDEBUG

CcAL-3.1-1-124

1.000.000 random points

double 48.1 sec
MP_Float 2980.2 sec
Filtered exact 58.4 sec

25 sec in release CGAL 3.3
(space filling curve)



Delaunay triangulations
CacAL-3.1-1-124

Pentium-M 1.7 GHz, 1GB
g++ 3.3.2, -O2 -DNDEBUG

degeneracies explicitely
handled

symbolic perturbations...




R
= Delaunay triangulations

Pentium-M 1.7 GHz, 1GB
g++ 3.3.2, -O2 -DNDEBUG

CcAL-3.1-1-124

‘ - 49.787 points
‘ (Dassault Systemes)

\ double loop!
exact and filtered < 8 sec



Delaunay triangulation

Only predicates:

orientation, in_sphere

«0O0>» «F)>r « =
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Predicates and constructions

Delaunay triangulation Voronoi diagram
geometric dual

Only predicates: also constructions:
orientation, in_sphere circumcenter



Predicates and constructions

Input

/

Predicates \

’/1\ Constructions

<0 =0 >0

Combinatorial Geometric
Structure embedding




Arrangements
Definition

Partition of the plane
into

o faces

@ edges

@ vertices

induced by a collection of
curves



Arrangements

Definition

Partition of the plane
into

o faces

@ edges

@ vertices

induced by a collection of
curves



Bentley-Ottmann sweep

highly sensitive to arithmetic rounding
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Arrangements

Arithmetic issues

Wrong comparison —
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Arrangements

Arithmetic issues

Wrong comparison —
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Arrangements

Arithmetic issues
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Arrangements

Arithmetic issues

Wrong comparison —
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Arrangements

Arithmetic issues

Wrong comparison —




Arrangements

Arithmetic issues

Wrong comparison —
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pink and blue are not consecutive = failure



Arrangement

Variants

S set of n segments in the plane

@ 1st pb. Compute the pairs of segment that intersect
@ 2nd pb. Compute the arrangement A



Arrangement

Variants

S set of n segments in the plane

@ 1st pb. Compute the pairs of segment that intersect
@ 2nd pb. Compute the arrangement A
@ 3rd pb. Compute the trapezoidal map T

\ k= number of intersections

number of edges of A: < n + 2k

{ number of walls of T: < 2(n + k)
size of Aand T: O(n + k)

V.



Arrangement

Variants and predicates

1st pb. ©(n?) intersection tests
[Pop1] M [P2p3] # 0

2nd pb. Description of A uses

[PoP1] N [P2p3] <x [PoP1] N [P4Ps]

comparisons of constructed points

3rd pb. Description of T uses

[PoP1] N [P2p3] <x [P4Ps] N [PeP7]




Arrangement

Predicates

P1 :
P2 :
P2
P3 :
P4
P5 :

Po <x P1

Po <y (P1P2)

[Pop1] N [p2p3] # 0

Po <x [P1P2] N [P3p4]

[PoP1] N [P2p3] <x [PoP1] N [P4Ps]
[Pop1] N [P2P3] <x [P4aPs] N [Psp7]

Predicates i, i’ are signs of polynomial expressions of degree i
in the coordinates of points p;.



P1 :

Po <x P1

Xo < X1
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P1 :

Po <x P1

Xo < X1
P2 :

Po <y (P1P2)

orientation

«O>» «Fr «=>»

<

degree 1

degree 2
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Arrangement

Predicates
P1 : Po <x P1
Xo < X1

degree 1

P2 : Po <y (P1P2)
orientation

degree 2

P2" [Pop1] N [P2pa] # 0

compare + 2 x orientation

degree 2



Arrangement
Predicates

N
Pip;] N [Pkpi] = pi + (P — IOi)B
where

N = orientation(p;,px,pi)
D = orientation(p;, pj, px) — orientation(p;, p;, pr)



Arrangement
Predicates

[Pipi] N [pkpi] = pi + (P} — pi)g

where
N = orientation(pi, pk,pPr)
D = orientation(p;, pj, px) — orientation(p;, pj, Pi)
P3 :  po <x [P1P2] N [Pap4]
P4 : [PoP1] N [P2p3] <x [PoP1] N [P4Ps]
PS5 : [PoP1] N [P2Ps] <x [P4Ps] N [PsP7]

Explicit formulae + some more proofs — degree



Arrangement

Compromise: algebraic/combinatorial complexity

1st pb. Compute the pairs of segment that intersect

Naive algorithm ©(n?)
@ optimal degree 2
@ optimal worst-case complexity



Arrangement
Compromise: algebraic/combinatorial complexity

1st pb. Compute the pairs of segment that intersect

Naive algorithm ©(n?)
@ optimal degree 2
@ optimal worst-case complexity

Lower bound Q(nlogn + k).
There are algorithms

@ optimal complexity
@ degree 3



Arrangement

Compromise: algebraic/combinatorial complexity

2nd pb. Compute the arrangement A

Simple algorithm:
- solve 1st pb
- sort intersection points on each segment

@ degree 4
@ O((n+k)logn)

Lower bound Q(nlogn + k).



@ the world is not linear
e CAD

e structural biology
o ...
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Curved objects

@ the world is not linear

e CAD
e structural biology
o ...

@ curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves
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Curved objects

@ the world is not linear

e CAD
e structural biology
o ...

@ curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves

manipulations of curves and surfaces




Curved objects

@ the world is not linear

e CAD
e structural biology
o ...

@ curves appear with linear input:

Voronoi diagrams of line segments
= subset of arrangement of curves

Exact manipulations of curves and surfaces



Arrangements of curves

Combinatorial complexity well studied

Effective computation ? recent work
European projects ECG, ACS — CGAL

Problems

@ Generalize algorithms
2 curves intersect more than once,. ..

@ Predicates
algebraic aspects

@ Implementation

e algorithms and data structures
e predicates



Arrangements of curves

Algebraic aspects

Bézout's theorem:
two curves of degree d, d’ intersect in d.d’ points
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Algebraic aspects
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Arrangements of curves

Algebraic aspects

Bézout's theorem:
two curves of degree d, d’ intersect in d.d’ points

2 conics
degree 4

2 circles
(x—-a)2 + (y-b2 - r2 =0
(x—a’)2 4 (y_b/)z - 2 =0

homogeneization: x2 +y? +w(...) =0
all circles contain (1,i,0) and (1, —i,0)

Bézout's bound: complex projective space



Arrangements of curves

Algebraic aspects

Bézout's theorem:
two curves of degree d, d’ intersect in d.d’ points

2 conics
degree 4

2 circles
(x—-a)2 + (y-b2 - r2 =0
(X _ a/)z 4 (y _ b/)z — 12 0

<= 1 circle and 1 line (radical axis)
degree 2

Bézout's bound: complex projective space



Arrangements of curves

Algebraic aspects

major predicate
points’ coordinates = algebraic numbers

Question:

exact comparison of algebraic numbers



Arrangements of curves

Algebraic aspects

major predicate
points’ coordinates = algebraic numbers

Question:

exact comparison of algebraic numbers

( note: Different notions of degree
@ above: degree of polynomial expressions
@ here: degree of roots )



Arrangements of curves

Comparison of algebraic numbers

2 main approaches

@ root isolation and comparison of intervals
when roots are very close or equal
up to separation bound — very slow



Arrangements of curves

Comparison of algebraic numbers

2 main approaches

@ root isolation and comparison of intervals
when roots are very close or equal
up to separation bound — very slow

@ algebraic methods for root comparison
not sensitive to special cases



Arrangements of curves

Comparison of algebraic numbers

Sturm sequences
P, Q € K[X] signed remainder sequence of P and Q =
sequence S(P,Q) : Po,P1, ... Py

Ppb = P
PL = Q
P2 = —Rem(Po,Pl)
Pk = —Rem(Pk_z,Pk_l)
Pk+1 = —Rem(Pk_l, Pk) =0

where
Rem(A, B) = remainder of the Euclidean division of A by B



Arrangements of curves

Comparison of algebraic numbers

Sturm sequences
a,b € RU{—o0, +oo}

Var (S; a) = number of sign variations in the sequence
Po(a),P1(a),...,Pa(a)

Var(S;a,b) = Var(S;a) — Var(S; b)



Arrangements of curves

Comparison of algebraic numbers

Sturm sequences allow to
@ count roots

Sturm sequence of P = S(P, P/)

Var(S(P,P’); a,b)
is the number of roots of P in the interval [a, b]



Arrangements of curves

Comparison of algebraic numbers

Sturm sequences allow to
@ count roots
@ compare roots

- P, Q relative prime,
- P square free,
-a < b non roots of P.

S =(P,P’Q,...) Sturm sequence of P,P'Q

Var(S;a,b)= > sign(Q(p))

P(p)=0,a<p<b
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Arrangements of curves
Comparison of algebraic numbers
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Arrangements of curves

Comparison of algebraic numbers

comparison reduces to
sign of algebraic expressions !

— Efficient filtered exact computations



Arrangements of curves

Comparison of algebraic numbers

Small degree:
algebraic expressions can be pre-computed

static Sturm sequences (degree 2)
P <0 N P >0

J

Case 1,23

P> >0;P; <0

v
>l <l b <l >l

The polynomial expressions have a true geometric meaning
Sturm sequences < resultant based methods. . .
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@ ﬁ = and applications

@ generic arrangements
@ manipulations of 2d circular arcs

!yl[ll!lll!ll i

T

esanivll

VLSI design

industrial data
89,918 input arcs
495,209 vertices
878,799 edges
383,871 faces

CaGAL 3.3: 169 sec
Pentium 4, 2.5 GHz, 1GB
Linux (2.4.20 Kernel)
g++4.0.2



@ exact drawing of curves

= any zoom possible
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= any zoom possible

@ exact topology of curves

>

DA



Hot topics

@ exact drawing of curves
= any zoom possible
@ exact topology of curves
@ arrangements of quadrics, spheres

e surfacic approaches
@ volumic approaches

algebraic issues, data structures. ..
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Hot topics

@ exact drawing of curves
= any zoom possible
@ exact topology of curves
@ arrangements of quadrics, spheres

e surfacic approaches
@ volumic approaches

algebraic issues, data structures. ..

@ design of interface geometry/algebra
geometric/algebraic concepts // C++ concepts

@ definition of the degree of predicates/algorithm/problem



Where it happens (unordered - non exhaustive)

USA

@ NYU (Chee Yap, pioneer of the Exact Geometric
Computation, CORE library)

@ University of N. Carolina (Dinesh Manocha et al, MAPC,
EsoLID no degeneracies allowed)



Where it happens (unordered - non exhaustive)

Mostly in Europe

@ MPI Saarbricken (arrangements of 2d cubics, 3d quadrics,
ExAcus prototype — CGAL)

@ Tel-Aviv (generic arrangements of curves, CGAL)
@ Athens (algebraic aspects, Voronoi of conics)



Where it happens (unordered - non exhaustive)

in France
@ INRIA Rocquencourt/UPMC
SALSA, real algebraic geometry, RUR,
software FGb/RS (— Maple)
@ INRIA Lorraine
VEGAS, quadrics, Voronoi of 3D lines
@ INRIA Sophia Antipolis
GEOMETRICA + ABS
arrangements of spheres,
computations on 2d/3d circular arcs,
specifications of curved and algebraic operations (with
MPI),
CGAL design and implementation

@ collaboration on interface FBb/RS «— CGAL



