
The Great Trinomial Hunt
Richard P. Brent and Paul Zimmermann

Introduction
A trinomial is a polynomial in one variable with three
nonzero terms, for example P = 6x7 + 3x3 − 5. If the
coefficients of a polynomial P (in this case 6, 3,−5) are
in some ring or field F , we say that P is a polynomial
over F , and write P ∈ F [x]. The operations of addition
and multiplication of polynomials in F [x] are defined
in the usual way, with the operations on coefficients
performed in F .

Classically the most common cases are F = Z,Q,R
or C, respectively the integers, rationals, reals or
complex numbers. However, polynomials over finite
fields are also important in applications. We restrict
our attention to polynomials over the simplest finite
field: the field GF(2) of two elements, usually written
as 0 and 1. The field operations of addition and
multiplication are defined as for integers modulo 2, so
0 + 1 = 1, 1 + 1 = 0, 0× 1 = 0, 1× 1 = 1, etc.

An important consequence of the definitions is that,
for polynomials P,Q ∈ GF(2)[x], we have

(P +Q)2 = P 2 +Q2

because the “cross term” 2PQ vanishes. High school
algebra would have been much easier if we had used
polynomials over GF(2) instead of over R!

Trinomials over GF(2) are important in cryptogra-
phy and random number generation. To illustrate why
this might be true, consider a sequence (z0, z1, z2, . . .)
satisfying the recurrence

(1) zn = zn−s + zn−r mod 2,

Richard Brent is a professor at the Mathematical Sciences
Institute of the Australian National University, Canberra.

His email address is AMS@rpbrent.com.

Paul Zimmermann is “directeur de recherche” at INRIA
Nancy – Grand Est, Villers-lès Nancy, France. His email

address is Paul.Zimmermann@loria.fr.

where r and s are given positive integers, r > s > 0,

and the initial values z0, z1, . . . , zr−1 are also given.

The recurrence then defines all the remaining terms

zr, zr+1, . . . in the sequence.

It is easy to build hardware to implement the

recurrence (1). All we need is a shift register capable of

storing r bits, and a circuit capable of computing the

addition mod 2 (equivalently, the “exclusive or”) of two

bits separated by r − s positions in the shift register

and feeding the output back into the shift register. This

is illustrated in Figure 1 for r = 7, s = 3.

!! ! ! ! !

+
!

!!!

!!

Output

Figure 1: Hardware implementation of

zn = zn−3 + zn−7 mod 2.

The recurrence (1) looks similar to the well-known

Fibonacci recurrence

Fn = Fn−1 + Fn−2;

indeed the Fibonacci numbers mod 2 satisfy our re-

currence with r = 2, s = 1. This gives a sequence

(0, 1, 1, 0, 1, 1, . . .) with period 3: not very interesting.

However, if we take r larger we can get much longer

periods.

The period can be as large as 2r − 1, which makes

such sequences interesting as components in pseudo-

random number generators or stream ciphers. In fact,

Notices of the AMS 1



the period is 2r − 1 if the initial values are not all zero
and the associated trinomial

xr + xs + 1,

regarded as a polynomial over GF(2), is primitive.
A primitive polynomial is one that is irreducible (it
has no nontrivial factors), and satisfies an additional
condition given in the “Mathematical Foundations”
section below.

A Mersenne prime is a prime of the form 2r−1. Such
primes are named after Marin Mersenne (1588–1648),
who corresponded with many of the scholars of his
day, and in 1644 gave a list (not quite correct) of the
Mersenne primes with r ≤ 257.

A Mersenne exponent is the exponent r of a Mersenne
prime 2r−1. A Mersenne exponent is necessarily prime,
but not conversely. For example, 11 is not a Mersenne
exponent because 211 − 1 = 23 · 89 is not prime.

The topic of this article is a search for primitive
trinomials of large degree r, and its interplay with a
search for large Mersenne primes. First, we need to
explain the connection between these two topics, and
briefly describe the GIMPS project. Then we describe
the algorithms used in our search, which can be split
into two distinct periods, “classical” and “modern”.
Finally, we describe the results obtained in the modern
period.

Mathematical Foundations
As stated above, we consider polynomials over the finite
field GF(2). An irreducible polynomial is a polynomial
that is not divisible by any non-trivial polynomial other
than itself. For example x5 + x2 + 1 is irreducible, but
x5+x+1 is not, since x5+x+1 = (x2+x+1)(x3+x2+1)
in GF(2)[x]. We do not consider binomials xr + 1, be-
cause they are divisible by x+ 1, and thus reducible for
r > 1.

An irreducible polynomial P of degree r > 1 yields a
representation of the finite field GF(2r) of 2r elements:
any polynomial of degree less than r represents an
element, the addition is polynomial addition, whose
result still has degree less than r, and the multipli-
cation is defined modulo P : one first multiplies both
inputs, and then reduces their product modulo P . Thus
GF(2r) ' GF(2)[x]/P (x).

An irreducible polynomial P of degree r > 0 over
GF(2) is said to be primitive iffP (x) 6= x and the residue
classes xk mod P, 0 ≤ k < 2r − 1, are distinct. In order
to check primitivity of an irreducible polynomial P, it
is only necessary to check that xk 6= 1 mod P for those
k that are maximal non-trivial divisors of 2r − 1. For
example, x5+x2+1 is primitive; x6+x3+1 is irreducible
but not primitive, since x9 = 1 mod (x6 +x3 + 1). Here
9 divides 26 − 1 = 63 and is a maximal divisor as
63/9 = 7 is prime.

We are interested in primitive polynomials because
x is a generator of the multiplicative group of the finite
field GF(2)[x]/P (x) if P (x) is primitive.

If r is large and 2r− 1 is not prime, it can be difficult
to test primitivity of a polynomial of degree r, because

we need to know the prime factors of 2r − 1. Thanks to

the Cunningham project [20], these are known for all

r < 929, but not in general for larger r. On the other

hand, if 2r− 1 is prime, then all irreducible polynomials

of degree r are primitive. This is the reason why we

consider degrees r that are Mersenne exponents.

Starting the Search
In the year 2000 the authors were communicating by

email with each other and with Samuli Larvala when

the topic of efficient algorithms for testing irreducibility

or primitivity of trinomials over GF(2) arose. The

first author had been interested in this topic for many

years because of the application to pseudo-random

number generators. Publication of a paper by Kumada

et al. [12], describing a search for primitive trinomials

of degree 859 433 (a Mersenne exponent), prompted

the three of us to embark on a search for primitive

trinomials of degree r, for r ranging over all known

Mersenne exponents. At that time, the largest known

Mersenne exponents were 3 021 377 and 6 972 593. The

existing programs took time proportional to r3. Since

(6972593/859433)3 ≈ 534, and the computation by

Kumada et al. had taken three months on 19 processors,

it was quite a challenge.

The GIMPS project
GIMPS stands for Great Internet Mersenne Prime

Search. It is a distributed computing project started by

George Woltman, with home page www.mersenne.org.

The goal of GIMPS is to find new Mersenne primes.

As of December 2010, GIMPS has found 13 new

Mersenne primes in 14 years, and has held the record

of the largest known prime since the discovery of

M35 in 1996. Mersenne primes are usually num-

bered in increasing order of size: M1 = 22 − 1 = 3,

M2 = 23−1 = 7,M3 = 25−1 = 31,M4 = 27−1 = 127,

. . . , M38 = 26972593 − 1, etc.

Since GIMPS does not always find Mersenne primes

in order, there can be some uncertainty in numbering

the largest known Mersenne primes. We write M ′n for

the n-th Mersenne prime in order of discovery. There

are gaps in the search above M39 = 213466917 − 1. Thus

we can have M ′n > M ′n+1 for n > 39. For example,
M ′45 = 243112609−1 was found beforeM ′46 = 237156667−1

and M ′47 = 242643801 − 1. At the time of writing this

article, 47 Mersenne primes are known, and the largest

is M ′45 = 243112609 − 1.

It is convenient to write rn for the exponent of

Mn, and r′n for the exponent of M ′n. For example,

r′45 = 43 112 609.

Swan’s Theorem
We state a useful theorem, known as Swan’s theorem,

although the result was found much earlier by Pel-

let [14] and Stickelberger [18]. In fact, there are several

theorems in Swan’s paper [19]. We state a simplified

version of Swan’s Corollary 5.

2 Notices of the AMS Volume 0, Number 0



Theorem 1. Let r > s > 0, and assume r + s is odd.

Then Tr,s(x) = xr + xs + 1 has an even number of

irreducible factors over GF(2) in the following cases:

a) r even, r 6= 2s, rs/2 = 0 or 1 mod 4.

b) r odd, s not a divisor of 2r, r = ±3 mod 8.

c) r odd, s a divisor of 2r, r = ±1 mod 8.

In all other cases xr + xs + 1 has an odd number of

irreducible factors.

If both r and s are even, then Tr,s is a square and

has an even number of irreducible factors. If both r and

s are odd, we can apply the theorem to the “reciprocal

polynomial” Tr,r−s(x) = xrT (1/x) = xr + xr−s + 1,

since Tr,s(x) and Tr,r−s(x) have the same number of

irreducible factors.

For r an odd prime, and excluding the easily-checked

cases s = 2 or r− 2, case (b) says that the trinomial has

an even number of irreducible factors, and hence must

be reducible, if r = ±3 mod 8. Thus, we only need to

consider those Mersenne exponents with r = ±1 mod 8.

Of the 14 known Mersenne exponents r > 106, only 8

satisfy this condition.

Cost of the Basic Operations
The basic operations that we need are squarings modulo

the trinomial T = xr + xs + 1, multiplications modulo

T , and greatest common divisors (GCDs) between T

and a polynomial of degree less than r. We measure

the cost of these operations in terms of the number of

bit or word-operations required to implement them. In

GF(2)[x], squarings cost O(r), due to the fact that the
square of xi + xj is x2i + x2j . The reduction modulo T

of a polynomial of degree less than 2r costs O(r), due

to the sparsity of T ; thus modular squarings cost O(r).

Modular multiplications cost O(M(r)), where M(r)

is the cost of multiplication of two polynomials of

degree less than r over GF(2); the reduction modulo T

costs O(r), so the multiplication cost dominates the re-

duction cost. The “classical” polynomial multiplication

algorithm has M(r) = O(r2), but an algorithm1 due to

Schönhage has M(r) = O(r log r log log r) [16].

A GCD computation for polynomials of degree

bounded by r costs O(M(r) log r) using a “divide and

conquer” approach combined with Schönhage’s fast

polynomial multiplication. The costs are summarized

in Table 1.

modular squaring O(r)
modular product O(M(r))

GCD O(M(r) log r)

Table 1: Cost of the basic operations.

1This algorithm differs from the Schönhage-Strassen
integer-multiplication algorithm, which does not work over

GF(2). For details see [2, 16].

Testing Irreducibility
Let Pr(x) = x2r

− x. As was known to Gauss, Pr(x) is
the product of all irreducible polynomials of degree d,
where d runs over the divisors of r. For example,

P3(x) = x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1)

in GF(2)[x]. Here x and x + 1 are the irreducible
polynomials of degree 1, and the other factors are the
irreducible polynomials of degree 3. Note that we can
always write “+” instead of “−” when working over
GF(2), since 1 = −1 (or, equivalently, 1 + 1 = 0).

In particular, if r is an odd prime, then a polynomial
P (x) ∈ GF(2)[x] with degree r is irreducible iff

(2) x2r

= x mod P (x) .

(If r is not prime, then (2) is necessary but not sufficient:
we have to check a further condition to guarantee
irreducibility, see [8].)

When r is prime, equation (2) gives a simple test
for irreducibility (or primitivity, in the case that r is a
Mersenne exponent): just perform r modular squarings,
starting from x, and check if the result is x. Since
the cost of each squaring is O(r), the cost of the
irreducibility test is O(r2).

There are more sophisticated algorithms for testing
irreducibility, based on modular composition [11] and
fast matrix multiplication [3]. However, these algorithms
are actually slower than the classical algorithm when
applied to trinomials of degree less than about 107.

When searching for irreducible trinomials of degree
r, we can assume that s ≤ r/2, since xr + xs + 1 is
irreducible iff the reciprocal polynomial xr + xr−s + 1
is irreducible. This simple observation saves a factor
of 2. In the following, we always assume that s ≤ r/2.

Degrees of Factors
In order to predict the expected behaviour of our
algorithm, we need to know the expected distribution of
degrees of irreducible factors. Our complexity estimates
are based on the assumption that trinomials of degree
r behave like the set of all polynomials of the same
degree, up to a constant factor:

Assumption 1. Over all trinomials xr + xs + 1 of
degree r over GF(2), the probability πd that a trinomial
has no non-trivial factor of degree ≤ d is at most c/d,
where c is an absolute constant and 1 < d ≤ r/ ln r.

This assumption is plausible and in agreement with
experiments, though not proven. It is not critical,
because the correctness of our algorithms does not
depend on the assumption – only the predicted running
time depends on it. The upper bound r/ ln r on d
is large enough for our application to predicting the
running time. An upper bound of r on d would probably
be incorrect, since it would imply at most c irreducible
trinomials of degree r, but we expect this number to be
unbounded.

Some evidence for the assumption, in the case
r = r38, is presented in Table 2. The maximum value
of dπd is 2.08, occurring at d = 226 887. It would be

Notices of the AMS 3



interesting to try to explain the exact values of dπd for
small d, but this would lead us too far afield.

d dπd

1 1.00
2 1.33
3 1.43
4 1.52
5 1.54
6 1.60
7 1.60
8 1.67
9 1.64
10 1.65
100 1.77
1000 1.76
10000 1.88
226887 2.08

Table 2: Statistics for r = r38

Sieving
When testing a large integer N for primality, it is
sensible to check if it has any small factors before
applying a primality test such as the AKS, ECPP, or
(if we are willing to accept a small probability of error)
Rabin-Miller test. Similarly, when testing a high-degree
polynomial for irreducibility, it is wise to check if it has
any small factors before applying the O(r2) test.

Since the irreducible polynomials of degree d divide
Pd(x), we can check if a trinomial T has a factor of
degree d (or some divisor of d) by computing

gcd(T,Pd).

If T = xr +xs + 1 and 2d < r, we can reduce this to the
computation of a GCD of polynomials of degree less
than 2d. Let d′ = 2d − 1, r′ = r mod d′, s′ = s mod d′.

Then Pd = x(xd′ − 1),

T = xr′ + xs′ + 1 mod (xd′ − 1),

so we only need to compute

gcd(xr′ + xs′ + 1, xd′ − 1).

We call this process “sieving” by analogy with the
process of sieving out small prime factors of integers,
even though it is performed using GCD computations.

If the trinomials that have factors of degree less than
log2(r) are excluded by sieving, then by Assumption 1
we are left with O(r/ log r) trinomials to test. The cost
of sieving is negligible. Thus the overall search has cost
O(r3/ log r).

The Importance of Certificates
Primitive trinomials of degree r < r32 = 756 839 are
listed in Heringa et al. [10]. Kumada et al. [12] reported
a search for primitive trinomials of degree r33 = 859 433
(they did not consider r32). They found one prim-
itive trinomial; however they missed the trinomial

x859433 + x170340 + 1, because of a bug in their sieving
routine. We discovered the missing trinomial in June
2000 while testing our program on the known cases.

This motivated us to produce certificates of reducibil-
ity for all the trinomials that we tested (excluding,
of course, the small number that turned out to be
irreducible). A certificate of reducibility is, ideally, a
non-trivial factor. If a trinomial T is found by sieving
to have a small factor, then it is easy to keep a record
of this factor. If we do not know a factor, but the
trinomial fails the irreducibility test (2), then we can

record the residue R(x) = x2r

− x mod T . Because the
residue can be large, we might choose to record only
part of it, e.g., R(x) mod x32.

The Classical Period
The period 2000–2003 could be called the classical peri-
od. We used efficient implementations of the classical
algorithms outlined above. Since different trinomials
could be tested on different computers, it was easy to
conduct a search in parallel, using as many processors
as were available. For example, we often made use of
PCs in an undergraduate teaching laboratory during
the vacation, when the students were away.

In this way, we found three primitive trinomials of
degree r32 = 756 839 (in June 2000), two of degree
r37 = 3 021 377 (August and December 2000), and one
of degree r38 = 6 972 593 (in August 2002)2. The compu-
tation for degree r38 was completed and double-checked
by July 2003.

For degree r38 = 6 972 593, there turned out to be
only one primitive trinomial xr + xs + 1 (assuming, as
usual, that s ≤ r/2)3. How can we be sure that we did
not miss any? For each non-primitive trinomial we had
a certificate, and these certificates were checked in an
independent computation. In fact, we found a small
number of discrepancies, possibly due to memory parity
errors in some of the older PCs that were used. This is
a risk in any long computation – we should not assume
that computers are infallible. The same phenomenon
was observed by Nicely [13] in his computation of
Brun’s constant (which also uncovered the infamous
“Pentium bug”).

Since we had caught up with the GIMPS project,
we thought (not for the last time) that this game
had finished, and published our results in [4, 5]. How-
ever, GIMPS soon overtook us by finding several
larger Mersenne primes with exponents ±1 mod 8:
r′41 = 24 036 583, . . . , r′44 = 32 582 657.

The search for degree r38 = 6 972 593 had taken
more than two years (February 2001 to July 2003), so
it did not seem feasible to tackle the new Mersenne
exponents r′41, . . . , r

′
44.

2Primitive trinomials of degree r34, r35 and r36 were ruled

out by Swan’s theorem, as were r39 and r′40.
3The unique primitive trinomial of degree 6 972 593 is

x6972593 + x3037958 + 1. It was named Bibury after the vil-
lage that the three authors of [5] were visiting on the day

that it was discovered.

4 Notices of the AMS Volume 0, Number 0



The Modern Period
We realised that, in order to extend the computation,
we had to find more efficient algorithms. The expensive
part of the computation was testing irreducibility
using equation (2). If we could sieve much further,
we could avoid most of the irreducibility tests. From
Assumption 1, if we could sieve to degree r/ ln r, then
we would expect only O(log r) irreducibility tests.

What we needed was an algorithm that would find
the smallest factor of a sparse polynomial (specifically,
a trinomial) in a time that was fast on average.

There are many algorithms for factoring polynomials
over finite fields, see for example [8]. The cost of most
of them is dominated by GCD computations. However,
it is possible to replace most GCD computations by
modular multiplications, using a process called blocking
(introduced by Pollard [15] in the context of integer
factorization, and by von zur Gathen and Shoup [9] for
polynomial factorization). The idea is simple: instead
of computing gcd(T, P1), . . . , gcd(T, Pk) in the hope of
finding a non-trivial GCD (and hence a factor of T ),
we compute gcd(T, P1P2 · · ·Pk mod T ), and backtrack
if necessary to split factors if they are not irreducible.
Since a GCD typically takes about 40 times as long as
a modular multiplication for r ≈ r′41, blocking can give
a large speedup.

During a visit by the second author to the first
author in February 2007, we realised that a second level
of blocking could be used to replace most modular multi-
plications by squarings. Since a modular multiplication
might take 400 times as long as a squaring (for r ≈ r′41),
this second level of blocking can provide another large
speedup. The details are described in [6]. Here we
merely note that m multiplications and m squarings
can be replaced by one multiplication and m2 squarings.
The optimal value of m is m0 ≈

√
M(r)/S(r), where

M(r) is the cost of a modular multiplication and S(r)
is the cost of a modular squaring, and the resulting
speedup is about m0/2. If M(r)/S(r) = 400, then
m0 ≈ 20 and the speedup over single-level blocking is
roughly a factor of ten.

Using these ideas, combined with a fast implementa-
tion of polynomial multiplication (for details, see [2])
and a subquadratic GCD algorithm, we were able to
find ten primitive trinomials of degrees r′41, . . . , r

′
44 by

January 2008. Once again, we thought we were finished
and published our results [7], only to have GIMPS leap
ahead again by discovering M ′45 in August 2008, and
M ′46 and M ′47 shortly afterwards. The exponent r′46
was ruled out by Swan’s theorem, but we had to set
to work on degrees r′45 = 43 112 609 and (later) the
slightly smaller r′47 = 42 643 801.

The search for degree r′45 ran from September 2008
to May 2009, with assistance from Dan Bernstein
and Tanja Lange who kindly allowed us to use their
computing resources in Eindhoven, and resulted in four
primitive trinomials of record degree.

The search for degree r′47 ran from June 2009 to
August 2009, and found five primitive trinomials. In this

case we were lucky to have access to a new computing
cluster with 224 processors at the Australian National
University, so the computation took less time than the
earlier searches.

The results of our computations in the “Modern
Period” are given in Table 3. There does not seem to
be any predictable pattern in the s values. The number
of primitive trinomials for a given Mersenne exponent
r = ±1 mod 8 appears to follow a Poisson distribution
with mean about 3.2 (and hence it is unlikely to be
bounded by an absolute constant – see the discussion
of Assumption 1 above).

r s

24 036 583 8 412 642, 8 785 528

25 964 951 880 890, 4 627 670, 4 830 131, 6 383 880

30 402 457 2 162 059
32 582 657 5 110 722, 5 552 421, 7 545 455

42 643 801 55 981, 3 706 066, 3 896 488,

12 899 278, 20 150 445
43 112 609 3 569 337, 4 463 337, 17 212 521, 21 078 848

Table 3: Primitive trinomials xr + xs + 1 whose
degree r is a Mersenne exponent, for s ≤ r/2.

The Modern Algorithm – Some Details
To summarize the “modern” algorithm for finding
primitive trinomials, we improve on the classical al-
gorithm by sieving much further to find a factor of
smallest degree, using a factoring algorithm based on
fast multiplication and two levels of blocking. In the
following paragraphs we give some details of the modern
algorithm and compare it with the classical algorithms.

Given a trinomial T = xr + xs + 1, we search for
a factor of smallest degree d ≤ r/2. (In fact, using
Swan’s theorem, we can usually restrict the search to
d ≤ r/3, because we know that the trinomial has an
odd number of irreducible factors.) If such a factor is
found, we know that T is reducible, so the program
outputs “reducible” and saves the factor for a certificate
of reducibility. The factor can be found by taking the

GCD of T and x2d

+ x; if this GCD is non-trivial,
then T has at least one factor of degree dividing d. If
factors of degree smaller than d have already been ruled
out, then the GCD only contains factors of degree d
(possibly a product of several such factors). This is
known as distinct degree factorization (DDF).

If the GCD has degree λd for λ > 1, and one wants
to split the product into λ factors of degree d, then an
equal degree factorization algorithm (EDF) is used. If
the EDF is necessary it is usually cheap, since the total
degree λd is usually small if λ > 1.

In this way we produce certificates of reducibility
that consist just of a non-trivial factor of smallest possi-
ble degree, and the lexicographically least such factor if
there are several4. The certificates can be checked, for

4It is worth going to the trouble to find the lexicographical-

ly least factor, since this makes the certificate unique and

Notices of the AMS 5



example with an independent program using NTL [17],
much faster than the original computation (typically
in less than one hour for any of the degrees listed in
Table 3).

For large d, when 2d � r, we do not compute

x2d

+ x itself, but its remainder, say h, modulo T .

Indeed, gcd(T, x2d

+ x) = gcd(T, h). To compute h, we
start from x, perform d modular squarings, and add
x. In this way, we work with polynomials of degree
less than 2r. Checking for factors of degree d costs
d modular squarings and one GCD. Since we check

potential degrees d in ascending order, x2d

mod T is

computed from x2d−1
mod T , which was obtained at the

previous step, with one extra modular squaring. Thus,
from Table 1, the cost per value of d is O(M(r) log r).
However, this does not take into account the speedup
due to blocking, discussed above.

The critical fact is that most trinomials have a small
factor, so the search runs fast on average.

After searching unsuccessfully for factors of degree
d < 106 say, we could switch to the classical irre-
ducibility test (2), which is faster than factoring if
the factor has degree greater than about 106. How-
ever, in that case our list of certificates would be
incomplete. Since it is rare to find a factor of degree
greater than 106, we let the program run until it
finds a factor or outputs “irreducible”. In the latter
case, of course, we can verify the result using the
classical test. Of the certificates (smallest irreducible
factors) found during our searches, the largest is a
factor P (x) = x10199457 + x10199450 + · · ·+ x4 + x+ 1
of the trinomial x42643801 + x3562191 + 1. Note that,
although the trinomial is sparse and has a compact
representation, the factor is dense and hence too large
to present here in full.

Classical versus Modern
For simplicity we use the Õ notation which ignores log
factors. The “classical” algorithm takes an expected

time Õ(r2) per trinomial, or Õ(r3) to cover all trinomials
of degree r.

The “modern” algorithm takes expected time Õ(r)

per trinomial, or Õ(r2) to cover all trinomials of
degree r.

In practice, the modern algorithm is faster by a
factor of about 160 for r = r38 = 6 972 593, and by a
factor of about 1000 for r = r′45 = 43 112 609.

Thus, comparing the computation for r = r′45 with
that for r = r38: using the classical algorithm would
take about 240 times longer (impractical), but using
the modern algorithm saves a factor of 1000.

How to Speed up the Search
The key ideas are summarised here. Points (1)–(4)
apply to both the classical and modern algorithms;
points (5)–(6) apply only to the modern algorithm.

allows us to compare different versions of the program and

locate bugs more easily than would otherwise be the case.

(1) Since the computations for each trinomial
can be performed independently, it is easy to
conduct a search in parallel, using as many
computers as are available.

(2) Because the coefficients of polynomials
over GF(2) are just 0 or 1, there is a
one-one correspondence between polynomials
of degree < d and binary numbers with
d bits. Thus, on a 64-bit computer we
can encode a polynomial of degree d in
d(d+ 1)/64e computer words. If we take care
writing the programs, we can operate on
such polynomials using full-word computer
operations, thus doing 64 operations in parallel.

(3) Squaring of polynomials over GF(2) can be
done in linear time (linear in the degree of the
polynomial), because the cross terms in the
square vanish:(∑

k

akx
k

)2

=
∑

k

akx
2k .

(4) Reduction of a polynomial of degree 2(r − 1)
modulo a trinomial T = xr + xs + 1 of degree
r can also be done in linear time. Simply use
the identity xn = xn+s−r + xn−r mod T for
n = 2r − 2, 2r − 3, . . . , r to replace the terms
of degree ≥ r by lower-degree terms.

(5) Most GCD computations involving polynomials
can be replaced by multiplication of polyno-
mials, using a technique known as “blocking”
(described above).

(6) Most multiplications of polynomials can be
replaced by squarings, using another level of
blocking, as described in [6].

Conclusion
The combination of these six ideas makes it feasible to
find primitive trinomials of very large degree. In fact,
the current record degree is the same as the largest
known Mersenne exponent, r = r′45 = 43 112 609. We
are ready to find more primitive trinomials as soon as
GIMPS finds another Mersenne prime that is not ruled
out by Swan’s Theorem. Our task is easier than that of
GIMPS, because finding a primitive trinomial of degree
r, and verifying that a single value of r is a Mersenne

exponent, both cost about the same: Õ(r2).
The trinomial hunt has resulted in improved software

for operations on polynomials over GF(2), and has
shown that the best algorithms in theory are not
always the best in practice. It has also provided a large
database of factors of trinomials over GF(2), leading
to several interesting conjectures which are a topic for
future research.

Acknowledgements
We thank Allan Steel for verifying many of our primitive
trinomials using Magma [1], and Philippe Falandry,
Shuhong Gao, Robert Hedges, Samuli Larvala, Brendan

McKay, Éric Schost, Julian Seward, Victor Shoup,

6 Notices of the AMS Volume 0, Number 0



Andrew Tridgell and George Woltman for their advice

and assistance in various ways. Nate Begeman, Dan

Bernstein, Nicolas Daminelli, Tanja Lange, Ernst Mayer,

Barry Mead, Mark Rodenkirch, Juan Luis Varona,

and Mike Yoder contributed machine cycles to the

search. Finally, we thank the University of Oxford, the

Australian National University, and INRIA for use of

their computing facilities, and the Australian Research

Council for its support.

References
[1] W. Bosma and J. Cannon, Handbook of Magma Func-

tions, School of Mathematics and Statistics, University

of Sydney, 1995. http://magma.maths.usyd.edu.au/
[2] R. P. Brent, P. Gaudry, E. Thomé and P. Zimmer-

mann, Faster multiplication in GF (2)[x], Proc. ANTS
VIII 2008, Lecture Notes in Computer Science 5011,

153–166.

[3] R. P. Brent and H. T. Kung, Fast algorithms for ma-
nipulating formal power series, J. ACM 25 (1978),
581–595.

[4] R. P. Brent, S. Larvala and P. Zimmermann, A fast
algorithm for testing reducibility of trinomials mod 2
and some new primitive trinomials of degree 3021377,

Math. Comp. 72 (2003), 1443–1452.
[5] R. P. Brent, S. Larvala and P. Zimmermann, A prim-

itive trinomial of degree 6972593, Math. Comp. 74

(2005), 1001–1002,
[6] R. P. Brent and P. Zimmermann, A multi-level blocking

distinct-degree factorization algorithm, Finite Fields
and Applications: Contemporary Mathematics 461

(2008), 47–58.

[7] R. P. Brent and P. Zimmermann, Ten new primitive
binary trinomials, Math. Comp. 78 (2009), 1197–1199.

[8] J. von zur Gathen and J. Gerhard, Modern Computer

Algebra, Cambridge Univ. Press, 1999.
[9] J. von zur Gathen and V. Shoup, Computing Frobe-

nius maps and factoring polynomials, Computational

Complexity 2 (1992), 187–224.
[10] J. R. Heringa, H. W. J. Blöte and A. Compagner, New

primitive trinomials of Mersenne-exponent degrees for
random-number generation, International J. of Modern

Physics C 3 (1992), 561–564.

[11] K. Kedlaya and C. Umans, Fast modular composition
in any characteristic, Proc. FOCS 2008, 146–155.

[12] T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto,

New primitive t-nomials (t = 3, 5) over GF(2) whose
degree is a Mersenne exponent, Math. Comp. 69 (2000),

811–814. Corrigenda: ibid 71 (2002), 1337–1338.

[13] T. Nicely, A new error analysis for Brun’s constant,
Virginia Journal of Science 52 (2001), 45–55.

[14] A.-E. Pellet, Sur la décomposition d’une fonction

entière en facteurs irréductibles suivant un module pre-
mier p, Comptes Rendus de l’Académie des Sciences

Paris 86 (1878), 1071–1072.
[15] J. M. Pollard. A Monte Carlo method for factorization,

BIT 15 (1975), 331–334,

[16] A. Schönhage, Schnelle Multiplikation von Polynomen
über Körpern der Charakteristik 2, Acta Informatica

7 (1977), 395–398.

[17] V. Shoup, NTL: A library for doing number theory.
http://www.shoup.net/ntl/

[18] L. Stickelberger, Über eine neue Eigenschaft der

Diskriminanten algebraischer Zahlkörper, Verhand-

lungen des ersten Internationalen Mathematiker-

Kongresses, Zürich, 1897, 182–193.

[19] R. G. Swan, Factorization of polynomials over finite
fields, Pacific J. Math. 12 (1962), 1099–1106.

[20] S. Wagstaff, Jr., The Cunningham Project. http://

homes.cerias.purdue.edu/~ssw/cun/

[21] G. Woltman et al., GIMPS, The Great Internet

Mersenne Prime Search. http://www.mersenne.org/

Notices of the AMS 7


