The Elliptic Curve Method for Factoring

Paul Zimmermann, INRIA Nancy - Grand Est Paul.Zimmermann@inria.fr

17 September, 2009, revised 25 September, 2010

Synonyms. ECM.

Related Concepts. Elliptic Curve Primality Proving (ECPP). Elliptic Curve Arithmetic.

Definition. The Elliptic Curve Method (ECM for short) was invented in 1985 by H. W. Lenstra, Jr. [5]. It is suited to find small — say 10 to 40 digits — prime factors of large numbers. Among the different factorization algorithms whose complexity mainly depends on the size of the factor searched for (trial division, Pollard rho, Pollard p-1, Williams p+1), it is asymptotically the best method known. ECM can be viewed as a generalization of Pollard's p-1 method, just like ECPP generalizes the n-1 primality test. ECM relies on Hasse's theorem: if p is prime, then an elliptic curve over $\mathbb{Z}/p\mathbb{Z}$ has group order p+1-t with $|t| \leq 2\sqrt{p}$, where t depends on the curve. If p+1-t is a smooth number (see smoothness), then ECM will — most probably — succeed and reveal the unknown factor p.

Background. Since 1985, many improvements have been proposed to ECM. Lenstra's original algorithm had no second phase. Brent proposes in [2] a "birthday paradox" second phase, and further more technical refinements. In [7], Montgomery presents different variants of phase two of ECM and Pollard p-1, and introduces a parameterization with homogeneous coordinates, which avoids inversions modulo n, with only 6 and 5 modular multiplications per addition and duplication on E, respectively. It is also possible to choose elliptic curves with a group order divisible by 12 or 16 [1, 7, 8].

Phase one of ECM works as follows. Let n be the number to factor. An elliptic curve is $E(\mathbb{Z}/n\mathbb{Z}) = \{(x : y : z) \in \mathbb{P}^2(\mathbb{Z}/n\mathbb{Z}), y^2z \equiv x^3 + axz^2 + bz^3 \mod n\}$, where a, b are two parameters from $\mathbb{Z}/n\mathbb{Z}$, and $\mathbb{P}^2(\mathbb{Z}/n\mathbb{Z})$ is the projective plane over $\mathbb{Z}/n\mathbb{Z}$. The neutral element is $\mathcal{O} = (0 : 1 : 0)$, also called point at infinity. The key idea is that computations in $E(\mathbb{Z}/n\mathbb{Z})$ project to $E(\mathbb{Z}/p\mathbb{Z})$ for any prime divisor p of n, with the important particular case of quantities which are zero in $E(\mathbb{Z}/p\mathbb{Z})$ but not in $E(\mathbb{Z}/n\mathbb{Z})$. Pick at random a curve E and a point P on it. Then compute $Q = k \cdot P$ where k is the product of all prime powers less than a bound B_1 . Let p be a prime divisor of n: if the order of E over $\mathbb{Z}/p\mathbb{Z}$ divides k, then Q will be the neutral element of $E(\mathbb{Z}/p\mathbb{Z})$, thus its z-coordinate will be zero modulo p, hence gcd(z, n) will reveal the factor p (unless z is zero modulo another factor of n, which is unlikely).

Phase one succeeds when all prime factors of $g = \#E(\mathbb{Z}/p\mathbb{Z})$ are less than B_1 ; phase two allows one prime factor g_1 of g to be as large as another bound B_2 . The idea is to consider two families (a_iQ) and (b_jQ) of points on E, and check whether two such points are equal over $E(\mathbb{Z}/p\mathbb{Z})$. If $a_iQ = (x_i : y_i : z_i)$ and $b_jQ = (x'_j : y'_j : z'_j)$, then $gcd(x_iz'_j - x'_jz_i, n)$ will be non-trivial. This will succeed when g_1 divides a non-trivial $a_i - b_j$. Two variants of phase two exist: the *birthday paradox continuation* chooses the a_i 's and b_j 's randomly, expecting that the differences $a_i - b_j$ will cover most primes up to B_2 , while the standard continuation chooses the a_i 's so that every prime up to B_2 divides at least one $a_i - b_j$. Both continuations may benefit from the use of fast polynomial arithmetic, and are then called "FFT extensions" [8].

Theory. The expected running time of ECM is conjectured to be $\mathcal{O}(L(p)^{\sqrt{2}+o(1)}M(\log n))$ to find one factor of n, where p is the (unknown) smallest prime divisor of n, $L(x) = e^{\sqrt{\log x \log \log x}}$ [cf. <u>L-notation</u>], $M(\log n)$ represents the complexity of arithmetic modulo n, and the o(1) in the exponent is for p tending to infinity. The second phase decreases the expected running time by a factor $\log p$. Optimal bounds B_1 and B_2 may be estimated from the (usually unknown) size of the smallest factor of n, using Dickman's function [9]. For RSA moduli, where n is the product of two primes of roughly the same size, the running time of ECM is comparable to that of the Quadratic Sieve.

Applications. ECM has been used to find factors of Cunningham numbers $(a^n \pm 1 \text{ for } a = 2, 3, 5, 6, 7, 10, 11, 12)$. In particular Fermat numbers

 $F_n = 2^{2^n} + 1$ are very good candidates for $n \ge 10$, since they are too large for general purpose factorization methods. Brent completed the factorization of F_{10} and F_{11} using ECM, after finding a 40-digit factor of F_{10} in 1995, and two factors of 21 and 22 digits of F_{11} in 1988 [3]. Brent, Crandall, Dilcher and Van Halewyn found a 27-digit factor of F_{13} in 1995, a (different) 27-digit factor of F_{16} in 1996, and a 33-digit factor of F_{15} in 1997. In 2009, Bessel found a 35-digit factor of F_{19} .

Some applications of ECM are less obvious. The factors found by the Cunningham project [4] help to find primitive polynomials over GF(q). They are also used in the Jacobi sum and cyclotomy tests for primality proving [6].

Experimental Results. Brent maintains a list of the ten largest factors found by ECM (http://wwwmaths.anu.edu.au/~brent/ftp/champs.txt); his extrapolation from previous data would give an ECM record of 85 digits in year 2018, and 100 digits in year 2025. As of September 2010, the ECM record is a factor of 73 digits.

Open Problems. It is not known whether the expected running time of ECM can be improved — either in phase 1 or in phase 2 — nor whether there exists a method with better asymptotic complexity depending only on the size $\log p$ of the smallest prime factor, apart from polynomial terms in $\log n$.

Recommended Readings

- ATKIN, A. O. L., AND MORAIN, F. Finding suitable curves for the elliptic curve method of factorization. *Mathematics of Computation 60*, 201 (1993), 399–405.
- BRENT, R. P. Some integer factorization algorithms using elliptic curves. Australian Computer Science Communications 8 (1986), 149– 163. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/ pub102.html.
- [3] BRENT, R. P. Factorization of the tenth Fermat number. *Mathematics of Computation 68*, 225 (1999), 429–451.

- [4] BRILLHART, J., LEHMER, D. H., SELFRIDGE, J. L., TUCKERMAN, B., AND S. S. WAGSTAFF, J. Factorizations of bⁿ ± 1 for b = 2,3,5,6,7,10,11,12 up to high powers, 3rd ed., vol. 22 of Contemporary Mathematics. American Math. Society, 2002. http://www.cerias. purdue.edu/homes/ssw/cun/third/.
- [5] LENSTRA, H. W. Factoring integers with elliptic curves. Annals of Mathematics 126 (1987), 649–673.
- [6] MIHAILESCU, P. Cyclotomy primality proving recent developments. In Proc. of ANTS III (Portland, Oregon, 1998), vol. 1423 of Lecture Notes in Computer Science, pp. 95–110.
- [7] MONTGOMERY, P. L. Speeding the Pollard and elliptic curve methods of factorization. *Mathematics of Computation* 48, 177 (1987), 243–264.
- [8] MONTGOMERY, P. L. An FFT Extension of the Elliptic Curve Method of Factorization. PhD thesis, University of California, Los Angeles, 1992. ftp.cwi.nl:/pub/pmontgom/ucladissertation.psl.gz.
- [9] VAN DE LUNE, J., AND WATTEL, E. On the numerical solution of a differential-difference equation arising in analytic number theory. *Mathematics of Computation* 23, 106 (1969), 417–421.