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Synonyms. ECM.

Related Concepts. Elliptic Curve Primality Proving (ECPP). Elliptic
Curve Arithmetic.

Definition. The Elliptic Curve Method (ECM for short) was invented in
1985 by H. W. Lenstra, Jr. [5]. It is suited to find small — say 10 to 40 digits
— prime factors of large numbers. Among the different factorization algo-
rithms whose complexity mainly depends on the size of the factor searched
for (trial division, Pollard rho, Pollard p− 1, Williams p + 1), it is asymp-
totically the best method known. ECM can be viewed as a generalization
of Pollard’s p − 1 method, just like ECPP generalizes the n − 1 primality
test. ECM relies on Hasse’s theorem: if p is prime, then an elliptic curve
over Z/pZ has group order p + 1 − t with |t| ≤ 2

√
p, where t depends on

the curve. If p + 1− t is a smooth number (see smoothness), then ECM will
— most probably — succeed and reveal the unknown factor p.

Background. Since 1985, many improvements have been proposed to ECM.
Lenstra’s original algorithm had no second phase. Brent proposes in [2] a
“birthday paradox” second phase, and further more technical refinements.
In [7], Montgomery presents different variants of phase two of ECM and Pol-
lard p−1, and introduces a parameterization with homogeneous coordinates,
which avoids inversions modulo n, with only 6 and 5 modular multiplications
per addition and duplication on E, respectively. It is also possible to choose
elliptic curves with a group order divisible by 12 or 16 [1, 7, 8].
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Phase one of ECM works as follows. Let n be the number to factor. An
elliptic curve is E(Z/nZ) = {(x : y : z) ∈ P2(Z/nZ), y2z ≡ x3 + axz2 +
bz3 mod n}, where a, b are two parameters from Z/nZ, and P2(Z/nZ) is the
projective plane over Z/nZ. The neutral element isO = (0 : 1 : 0), also called
point at infinity. The key idea is that computations in E(Z/nZ) project to
E(Z/pZ) for any prime divisor p of n, with the important particular case of
quantities which are zero in E(Z/pZ) but not in E(Z/nZ). Pick at random a
curve E and a point P on it. Then compute Q = k ·P where k is the product
of all prime powers less than a bound B1. Let p be a prime divisor of n: if
the order of E over Z/pZ divides k, then Q will be the neutral element of
E(Z/pZ), thus its z-coordinate will be zero modulo p, hence gcd(z, n) will
reveal the factor p (unless z is zero modulo another factor of n, which is
unlikely).

Phase one succeeds when all prime factors of g = #E(Z/pZ) are less than
B1; phase two allows one prime factor g1 of g to be as large as another bound
B2. The idea is to consider two families (aiQ) and (bjQ) of points on E, and
check whether two such points are equal over E(Z/pZ). If aiQ = (xi : yi : zi)
and bjQ = (x′j : y′j : z′j), then gcd(xiz

′
j − x′jzi, n) will be non-trivial. This

will succeed when g1 divides a non-trivial ai− bj. Two variants of phase two
exist: the birthday paradox continuation chooses the ai’s and bj’s randomly,
expecting that the differences ai − bj will cover most primes up to B2, while
the standard continuation chooses the ai’s and bj’s so that every prime up to
B2 divides at least one ai− bj. Both continuations may benefit from the use
of fast polynomial arithmetic, and are then called “FFT extensions” [8].

Theory. The expected running time of ECM is conjectured to beO(L(p)
√

2+o(1)M(log n))
to find one factor of n, where p is the (unknown) smallest prime divisor of n,
L(x) = e

√
log x log log x [cf. L-notation], M(log n) represents the complexity of

arithmetic modulo n, and the o(1) in the exponent is for p tending to infinity.
The second phase decreases the expected running time by a factor log p. Op-
timal bounds B1 and B2 may be estimated from the (usually unknown) size
of the smallest factor of n, using Dickman’s function [9]. For RSA moduli,
where n is the product of two primes of roughly the same size, the running
time of ECM is comparable to that of the Quadratic Sieve.

Applications. ECM has been used to find factors of Cunningham numbers
(an ± 1 for a = 2, 3, 5, 6, 7, 10, 11, 12). In particular Fermat numbers
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Fn = 22n
+1 are very good candidates for n ≥ 10, since they are too large for

general purpose factorization methods. Brent completed the factorization of
F10 and F11 using ECM, after finding a 40-digit factor of F10 in 1995, and
two factors of 21 and 22 digits of F11 in 1988 [3]. Brent, Crandall, Dilcher
and Van Halewyn found a 27-digit factor of F13 in 1995, a (different) 27-digit
factor of F16 in 1996, and a 33-digit factor of F15 in 1997. In 2009, Bessel
found a 35-digit factor of F19.

Some applications of ECM are less obvious. The factors found by the
Cunningham project [4] help to find primitive polynomials over GF(q). They
are also used in the Jacobi sum and cyclotomy tests for primality proving
[6].

Experimental Results. Brent maintains a list of the ten largest factors
found by ECM (http://wwwmaths.anu.edu.au/~brent/ftp/champs.txt);
his extrapolation from previous data would give an ECM record of 85 digits
in year 2018, and 100 digits in year 2025. As of September 2010, the ECM
record is a factor of 73 digits.

Open Problems. It is not known whether the expected running time of
ECM can be improved — either in phase 1 or in phase 2 — nor whether
there exists a method with better asymptotic complexity depending only on
the size log p of the smallest prime factor, apart from polynomial terms in
log n.
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