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Abstract. We study the semantics and refinement of mobile objects, considering
an extension of core UML state machines by primitives that designate the location
of objects and their moves within a network. Our contribution is twofold: first, we
formalize the semantics of state machines in MTLA, an extension of Lamport’s
Temporal Logic of Actions with spatial modalities. Second, we study refinement
concepts for state machines that are semantically justified in MTLA.

1 Introduction

Software development for mobile computing and mobile computations requires appro-
priate extensions of the traditional methods and concepts for more traditional system
models. Moreover, the correctness and security of implementations of systems based
on mobile code presents a major concern, as mobile agents may roam the network and
must be guaranteed to work reliably in different locations and in different environments.
In this paper, we attempt to combine semi-formal modeling techniques for mobile
systems with formal semantics and refinement. For modeling, we consider an extension
of state machines in the “Unified Modeling Language” (UML [14]) for mobility. We
first formalize the semantics of mobile state machines in MTLA [11], an extension of
Lamport’'s Temporal Logic of Actions [9] with spatial modalities. Building on this log-
ical semantics, we study refinement concepts for mobile state machines. In particular,
we consider two notions of spatial refinement: the first one provides for an object to
be split into a hierarchy of cooperating objects. The second one can be used to justify
implementations of some high-level object by a set of objects that need not reside at the
same location.

There has been much interest in formalizing concepts of UML as well as in seman-
tic foundations for mobile computations, and we mention only the most closely related
work. Deif3 [6] suggested an encoding of (Harel) Statecharts in TLA, without consid-
ering either mobility or refinement. Several formal models of mobile computation have
been proposed, either in the form of calculi as in [5,12] or of state machine models
as in [8], and sometimes accompanied by logics to describe system behavior [4,13],
but we are not aware of refinement notions for mobile computation. Our definitions of
refinement of state machines are partly inspired by [15,16]; a related notion has been
elaborated in [17].
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Fig. 1. Prefix of a run.

1.1 Mobile UML

Mobile UML [2,3,10] extends UML [14] by concepts for modeling mobile compu-
tation. The extension is described in terms of the UML itself, using stereotypes and
tagged values as meta-modeling tools. Most importantly, instances of classes distin-
guished by the stereotypéocation> denotelocationswhere other objects may reside.
Mobile objects are instances of classes with the sterectypiles> and may change

their locations over life-time. An actual movement of a mobile object is performed by
amove action that takes the target location as its parameter.

1.2 MTLA

The logic MTLA [11] is an extension of Lamport's Temporal Logic of Actions [9]
intended for the specification of systems that rely on mobility of code. Due to space
restrictions, we refer to [11] for precise definitions of its syntax and semantics and only
recall the basic intuitions and notations.

Following the intuition of the Ambient calculus [5] due to Cardelli and Gordon,
we represent a configuration of a mobile system as a finite tree of nested locations.
In this view, mobility is reflected by modifications of the location hierarchy, as agents
move in and out of nested domains. Unlike in the Ambient calculus, we assume that
locations carry unique (“physical”) names. Moreover, instead of endowing each node
of a configuration tree with a process, MTLA associates a local state with every node. A
run is modeled as aw-sequence of configuration trees. For example, Fig. 1 shows three
configurations of a system run. The transition from the first to the second configuration
models a local action that changes the value of the local attritiitessociated with
locationag. The second transition represents a movegofrom the locationng to the
locationn;.

The logic MTLA contains both temporal and spatial modalities. Its formulas are
evaluated over runs, at a given location. Temporal modalities refer to the truth value of
formulas at suffixes of a run. For exampld" asserts thak' holds of all suffixes of the
run, at the current location.

Similarly, spatial modalities shift the spatial focus of evaluation, referring to loca-
tions below the current one. For example, the formu(&'] asserts thak’ is true of the
current run when evaluated at location provided such a location occurs (strictly and
at arbitrary depth) below the current location, otherwigé”] is trivially satisfied. The
dual formulam (F') asserts that the location occurs beneath the current location, and
that F' holds there. For example, the run of Fig. 1 satisfies the formylat! = Idle]



at the root location. We frequently use a more convenient dot notation to refer to local
attributes at a given location and write, e.gy, ctl = Idle.

As in TLA, we use formulas to describe systems as well as their properties. State
transitions are specified using transition formulas that contain primed symbols, as in
ag.ctl = Idle A ag.ctl’ = Shopping. When P is a state formula (i.e., without primed
symbols), we writeP’ for the transition formula obtained by replacing all flexible sym-
bols by their primed counterparts; intuitively, this formula asserts Ehablds of the
successor state. MTLA adds a transition formala > B.n wheren is a name and
a andf} are sequences of names. This formula asserts that the subtree rooted at name
n within the tree indicated by moves below the patf. The next-state relation of a
system is specified by the temporal formagd], asserting that every transition that
modifies the expressiommust satisfy the action formula. Similarly, O[A]q_,,, where
n IS a name and is a sequence of names stipulates that every transition that removes
or introduces locatiom below the subtree indicated lsymust satisfyA.

Hiding of state components can be expressed in MTLA using existential quantifi-
cation. For exampled ag.ctl : F holds if one can assign some value to the attribute
ctl of locationag at every state such that holds of the resulting run. As in TLA, the
precise definition is somewhat more complicated in order to preserve invariance under
stuttering. One may also quantify over names and v#tite F'; this hides the name as
well as all its attributes. These quantifiers observe standard proof rules. In particular,
we have the introduction axioms

3-ref) F{t/n,t1/n.01,...,t/n.a1,} =3In: F
(3-sub) m(true) = 3In: m.ntrue) (m#£mn)

The axiom B-ref) asserts thall n : F' can be derived by finding a “spatial refine-
ment mapping” that substitutes witnesses for the hidden name well as for its at-
tributes. The axiom{-sub) allows us to introduce a new sublocationf an existing
locationm.

2 Statecharts and their MTLA Semantics

We introduce state machines for mobile objects and provide them with a formal seman-
tics based on MTLA. Our concepts are illustrated by means of the “shopper” example:
A mobile shopping agent is sent out to gather offers for some item in several shops;
when returning to its home base, the shopping agent presents the offers that it has found.

2.1 State Machines for Mobility

UML state machines, an object-oriented variant of Statecharts as defined by Harel [7],
are an expressive and feature-rich class of state transition systems with a complex se-
mantics [18]. In this paper, we consider a restricted class of state machines, but extended
by a special move action. In particular, we consider neither hierarchical nor pseudo-
states, with the exception of a single initial state per state machine. We consider only
events triggered by asynchronous signals (excluding call, time, and change events) and



«location» Site [@home]

name : String

present(offers : List)

[@home] /
home.present(offers)

look(item) /
(lookFor,offers)

= (item, {})

«mobile» Shopper offer(o) /
: offers=add(offers,o)
name : String
home : Site Shopping
look(i : Item) I ANY | : Site :
offer(o : Offer) move(l)
(a) Class diagram. (b) State machine for the shopper.

Fig. 2. High-level model for the shopper.

ignore deferred events. Although our encoding could be extended to encompass all fea-
tures of UML state machines, the simplifications we impose let us concentrate on the
problems of mobility and refinement that are our primary concern.

Transitions of state machines carry labels of the forig[grd]/act, any and all of
which can be absent. The trigggtig denotes a signal receptions of the foop{ par)
whereop is the name of an operation declared in the clasgands a list of parameters.
The guardyrd is a Boolean expression over the attributes of the class and the parameters
that appear in the trigger clause. In addition, we allow for guagds e, that refer to
the hierarchy of objects; such a clause is true if (the object denoteel liy)currently
located beneathk,. The most common form iself < e, requiring the current object to
be located belowe, which we abbreviate t@e. The actionact denotes the response
of an object, beyond the state transition. For simplicity, we assume that all actions are
of the formANY z : P : upd; send; move where each of the constituents may be absent.
Herein, P is a predicate over location objects, afdY z : P functions as a binder
that chooses some location objecsatisfying P which can be used in the remainder
of the action. Theupd part is a simultaneous assignmént, ..., a;) = (e1,...,e;) Of
expressiong; to attributesa;. The send part is of the forme.op(par) and denotes the
emission of a signhalp with parametersar to receiver object. Finally, themowve part
consists of a singlenove(e) action that indicates that the object should move to the
location object whose identity is denoted byWe require that all free variables in the
action are among the attributes of the class, the parameters introduced by the trigger, and
the locationz bound byANY. Figure 2(b) shows a first state machine for our shopping
agent, based on the class diagram of Fig. 2(a). For the subsequent refinements, we will
not explicitly indicate the class diagrams, as they can be inferred from the elements that
appear in the state machines.

Our interpretation of transitions deviates in certain ways from the UML standard.
First, the UML standard prioritizes triggerless transitions (so-called “completion transi-
tions”) over transitions that require an explicit triggering event. In contrast, we consider
that completion transitions may be delayed; this less deterministic interpretation is more
appropriate for descriptions at higher levels of abstraction. As a second, minor devia-
tion, we allow guards to appear in transitions leaving a state machine’s initial state.



2.2 MTLA Semantics of State Machines

We formalize systems of interacting, mobile state machines in MTLA. The formaliza-
tion enables us to prove properties about systems specified in UML. We will also use it
to justify correctness-preserving refinement transformations.

In MTLA, every object is represented by a MTLA location whose local state in-
cludes a unigue, unmodifiable identifierif. We denote byOb; the set of all MTLA
locations that represent objects of a given object system. The shbseenotes the
set of MTLA locations that represent UML Location objects (including Mobile Loca-
tions), and the formalization of a system of state machines at a given level of abstraction
is with respect to these se¥; and Loc. An object configuration is represented as a
tree of names as described in Sect. 1.2.

The local state at each node represents the attributes of the corresponding object,
including self. In addition, we use the attribute#/ to hold the current control state of
the object (i.e., the active state of the corresponding state machinepant repre-
sent the list of events that are waiting to be processed by the object. Objects interact
asynchronously by sending and receiving messages. In the MTLA formalization, the
communication network is represented explicitly by an attributgs located at the
root node of the configuration tree.

Every transition of an object is translated into an MTLA action formula that takes a
parametep denoting the location corresponding to the object. For lack of space, we do
not give a precise, inductive definition of the translation, but only indicate its general
form. In the following, if ¢ is an MTLA expression (a term or a formula), we write
¢* and¢d,, respectively, for the expressions obtained by replagily z.self and by
replacing all attributes of o by o.a.

The action formula representing a transition is a conjunction built from the transla-
tions of its trigger, guard, and action components. The automaton transition from states
src to dest is reflected by a conjunet.ctl = src A o.ctl’ = dest.

A trigger op(par) contributes to the definition of the action formula in two ways:
first, the parametersar are added to the formal parameters of the action definition.
Second, we add the conjunct

—empty(o.evts) A head(o.evts) = (op, par) A o.evts’ = tail(o.evts)

asserting that the transition can only be taken if the trigger is actually present in the
event queue and that it is removed from the queue upon execution of the transition.
For transitions without an explicit trigger we add the conjunRCHANGED o.evts to
indicate that the event queue is unmodified.

A Boolean guard; over the object’s attributes is represented by a formgylan-
dicating thaty is true at locatiorv. A constrainte; < ez on the hierarchy of objects is
represented by a conjunct of the form

\/ o1.s€elf = (e1)o A 02.5€¢lf = (€2), A 02.01(true)
01,02€ Obj

The representation of an action consists of action formulae for multiple assignment,
message sending, and moving. If an action showsNinz : P quantifier the conjunc-
tion acts of these formulae are bound by a disjunctign. ;.. P2 A acts®. In more



detail, a multiple assignment to attributes is represented by a formula
0.af = (e1)EA...No.a; = (ex)? ANUNCHANGED (0.aj+1,...,0.a5)

whereay 1, ..., a, are the attributes of that are not modified by the assignment and
wherez is the variable bound byNY. Sending a messageop(par) is modeled by
adding a tuple of the fornjeZ, op, par?) to the networkmsgs. For actions that do not
send a message we add the conjumsys’ = msgs. If the action contains a clause
move(e), we add a conjunct

\/ l.self =€l Ne.o> .o
l€Loc

that asserts that will move to (the location with identity},. Otherwise we add the
conjunctA ;¢ ;. [falsg;.,, which abbreviateg\ ;. ;.. (I.o(true) < Ol.o{true)), to indi-
cate that the object does not enter or leave any locatiddn

To model the reception of new events by the object, we add an aktiefvi (o, ¢)
that removes an evemtaddressed to from the network and appends it to the queue
evts of unprocessed events while leaving all other attributes unchanged. We also add an
action DiscEwvt (o) that discards events that do not have associated transitions from the
current control state. The entire next-state relafient (o) of objecto is represented as
a disjunction of all actions defined from the transitions and the implicit actisngvt
and DiscFEut, existentially quantifying over all parameters that have been introduced in
the translation.

A state predicaténit(o) defining the initial conditions of object is similarly ob-
tained from the transition from the initial state of the state machine. Finally, the overall
specification of the behavior of an objectf classC is given by the MTLA formulas

IC(0) = A Init(o) A o.evts = () AO[Next(0)] grir(0) A D[falSE . serf (1)
A /\lELoc D[N@:L‘t(o ]l.o
C(o) =3o.ctl,o.evts: IC(0) 2

The “internal” specificatiodC'(o) asserts that the initial state must satisfy the ini-
tial condition, that all modifications of attributes ofand all moves ob (entering or
leaving any location of.oc) are accounted for by the next-state relation, and that the
object identity is immutable. Heregtr(o) denotes the tuple consisting of the explic-
itly declared attributes and the implicit attribute$ andevts. For example, the formula
IShopper(ag) shown in Fig. 3 defines the behavior of an objegtof classShopper
introduced in Fig. 2(b). The “external” specificati@i o) is obtained from/C (o) by
hiding the implicit attributes:t/ and evts.

The specification of a finite system of objects consists of the conjunction of the
specifications of the individual objects. Moreover, we add conjuncts that describe the
hierarchy of locations and objects and that constrain the network. For our shopper exam-
ple, we might assume a typical system configuration being given by the object diagram



Init(ag) ag.ctl =ldle AV ¢ oc(l.ag(true) A ag.home = L.self)
Stationary(ag) = NiecLoclfals€ qg
Deg(ag, msg) —empty(ag.evts) A head(ag.evts) = msg A ag.evts' = tail(ag.evts)
Look(ag,item) = A ag.ctl = Idle A ag.ctl’ = Shopping A Deq(ag, (look, item))
A ag.lookFor' = item A ag.offers’ = {} AUNCHANGED ag.home
A msgs' = msgs A Stationary(ag)
Offer(ag,0) = A ag.ctl = Shopping A ag.ctl’ = Shopping A Deq(ag, (offer, o))
A ag.offers’ = add(ag.offers, 0) AN UNCHANGED {ag.lookFor, ag.home)
A msgs’ = msgs A Stationary(ag)
Present(ag) = AV icopj ag-home = L.self Al.ag(true)
A ag.ctl = Shopping A ag.ctl’ = Idle
A UNCHANGED (ag.lookFor, ag.offers, ag.home, ag.evts)
A msgs' = msgs U{{ag.home,present, ag.offers)}
A Stationary(ag)
Mowe(ag) = Vieroe N Lself € Site
A ag.ctl = Shopping A ag.ctl’ = Shopping
A UNCHANGED (ag.lookFor, ag.offers, ag.home, ag.evts)
A msgs' = msgs A€.ag > l.ag
RevEvt(ag,e) = A (ag.self,e) € msgs Amsgs' = msgs\ (ag.self , e)
A ag.evts' = append(ag.evts, e)
A UNCHANGED (ag.ctl, ag.lookFor, ag.offers, ag.home)
A Stationary(ag)
DiscEvt(ag) = A —empty(ag.evts) A ag.evts’ = tail(ag.evts)
A =3¢ : head(ag.evts) = (look, ) V ag.ctl # Idle
A —3o: head(ag.evts) = (offer, o) V ag.ctl # Shopping
A UNCHANGED (ag.ctl, ag.lookFor, ag.offers, ag.home)
A msgs' = msgs A Stationary(ag)

Next(ag) =V (3i: Look(ag,1))V (Jo: Offer(ag,0))V Present(ag)
V Move(ag)V (3e: RevEvt(ag,e))V DiscEvt(ag)
attr(ag) = (ag.ctl, ag.lookFor, ag.offers, ag.home, ag.evts)

IShopper(ag) = A Init(ag) A ag.evts = () ND[Next(ag)]qstr(ag) N BlfAlSE ug. sely
A /\leLoc D[Next(ag)}l.ag

Fig. 3. MTLA specification of the shopper behavior (see Fig. 2(b))

in Fig. 4. This configuration can be translated into the formula

Sys = Amsgs : A \NY.q shi(self = shop-i A joe[falseg A /\jvzl sh;[fals€]) A Site(sh;)
A joe(self =joe N AN sh;[falsd) A Site(joe)
A joe.ag(self = shopper) A Shopper(ag)
A /\lELoc D[faJSd l.shy,...,l.shy,l.j0e
A msgs = () AO[V e o1 Ne:z:t(o)]msgs

The formula in the scope of the existential quantifier asserts that the configuration
contains thaV + 1 sitesshs, ..., shy andjoe, and a shopping ageny. Moreover,joe
and the shops are immobile and unnested locations, whege#s situated beneath
joe. The last conjunct asserts that messages are only sent and received according to
the specifications of the participating objects. The external specification is obtained by



«location» joe : Site

«location» shl : Site ‘

«location»
ag : Shopper

«location» shN: Site ‘

Fig. 4. Object diagram for the shopper example.

hiding, via existential quantification, the set of messages in transit, which is implicit at
the UML level.

For this example0b;j is the set{shy,...,shy,joe,ag} and Loc = Obj \ {ag}.
Moreover, we define a setite containing the identities of the elements Kic, i.e.
Site = {shop-1,...,shop-N ,joe}.

One purpose of our formalization is to prove properties about a system of objects.
For the shopper example, we can deduce that the shopping agent is always located at its
home agent or at one of the shops, expressed by the formula

.ag
D( \ lLa (true}) (3)

leLoc

3 Refinement of state machines

In an approach based on refinement, interesting correctness properties of systems can
already be established for models expressed at a high level of abstraction. Subsequent
models introduce more detail, but ensure that all properties are preserved. In this paper,
we focus on the refinement of state machines, and we add a “spatial” dimension to re-
finement that allows a designer to introduce more structure in the object hierarchy. In
particular, a single high-level object can be refined into a tree of sub-objects. Through-
out, we assume that the public interface of a refining class contains that of the refined
one, and that the setghj and Loc of objects and Location objects of the refining model

are supersets of those of the refined model.

3.1 Interface Preserving Refinement

Usually, early system models afford a high degree of non-determinism, which is re-
duced during system design. For example, consider the state machine for the shopping
agent shown in Fig. 5, which imposes a number of constraints with respect to the state
machine shown in Fig. 2(b). After arriving at a new shop location (whose identity is
recorded in the additional attributec), the agent may now either query for offers by
sending a new messagetOffer or it may immediately move on to another neighbor
location. In the former case, the agent waits until the offers are received, adds them to
its local memory, and then moves on. When the agent arrives at its home location, it
may quit the cycle, presenting the collected offers and returning tiilhetate.

Intuitively, the state machine of Fig. 5 is a refinement of the one shown in Fig. 2(b)
because the states of the refined state machine can be mapped to those of the high-level
state machine such that every transition of the lower-level machine either is explicitly



' Shopping
|

I
[@home] look(item) / / ANY x : nbs(loc) :
dle (item) / | Ready X : nbs(loc)
loc=home (lookFor,offers) loc=x; move(x)
= (item, {})
/ home.present 1

(offers) offer(o) /
________________ offers=add(offers,0)

I

1 I loc.getOffer(lookFor)
1 Returning WaitOffer

1

I

I

Fig. 5. Refined state machine for the shopper.

Arrived

allowed or is invisible at the higher level. In particular, the st&esdy, Arrived, Wait-
Offer, andReturning can all be mapped to the high-level st&tepping, as indicated by
the dashed line enclosing these states. Assuming that thesge} contains only iden-
tities in Site, for all s € Site, each transition of the refined model either corresponds to
a transition of the abstract model or to a stuttering transition. For example, the transition
from Arrived to WaitOffer is invisible at the level of abstraction of the model shown in
Fig. 2(b).

We now formalize this intuition by defining the notion of a state mactirefin-
ing another state maching for a classC. Semantically, refinement is represented in
linear-time formalisms by trace inclusion or, logically, by validity of implication. How-
ever, we will be a little more precise about the context in whi¢tand R are supposed
to be embedded. Both machines are specified with respect to attribute and method sig-
natures’* and>™ that include all method names that appear in transition labels (either
received or sent), and we assume th8textendss" . Similarly, we assume that the
setsObj # and Loc™ of MTLA names for the objects and the Location objects at the
level of the refinement are supersets of the correspondingX¢t$ and Loc™ at the
abstract level. Finally, the refinement may be subject to global hypotheses about the
refined system, such as the hierarchy of names, that are formally asserted by an MTLA
state predicaté/. Thus, we say that the clagswith associated state machine formal-
ized by the MTLA formulaC” refines class// whose state machine is described by
CM under hypothesi#/ if for all system specification§ys* and Sys® where Sys?
results fromSys™ by replacing all occurrences 6f" (o) by C'*(0) and by conjoining
some formulas such thalys® impliesTO H, the implicationSys = Sys™ is valid.

In order to prove thai? refinesM, we relate the machines by a mappindhat
associates with every statef R a pairn(s) = (Inv(s), Abs(s)) wherelnuv(s) is a set
of MTLA state predicates, possibly containing spatial operators, and wiiei@) is a
state of M. With such a mapping we associate certain proof obligations: the invariants
must be inductive fok, and the (MTLA formalizations of the) transitions of the ma-
chine R must imply some transition allowed at the corresponding stafe obr leave
unchanged the state 61.



Theorem 1. Assume thafl/ and R are two state machines for classé$’ and C*
such that the attribute and method signatd® of C'* extends the signaturg" of
CM | and thatn is a mapping associating with every statef R a set/nv(s) of MTLA
state predicates and a statkhs(s) of M. If all of the following conditions hold theR
refinesM under hypothesig&l. We writed for

d{Abs(o.ctl)/o.ctl,0.evts]sm [o.evts, msgs|sm /msgs}
wheree|s denotes the subsequence of elementfose first component is

1. Abs(s§') = 53" wheres{! and s§* denote the initial states df/ and R. Moreover,
= H A Initf (o) = o[Inv(sd")] A InitM (o)

holds for the initial conditiongnit* and Init™ of M and R.
2. For every transition ofR with source and target statesand ¢ formalized by the
MTLA action formulaA (o, par):

= HAH' Ao[Inv(s)] A Ao, par) = o[Inv(t)']

3. For every states of R and every outgoing transition of formalized by formula
A(o,par), let Abs(s) denote the corresponding state &f, let Bi(o, par1), ...,
By (0, pary,) be theMTLA formulas for the outgoing transitions ofbs(s), let
attr™ (o) be the tuple of attributes defined fof and Loc™ the set of locations
for M. Then:

= HAH" Ao[Inv(s)] A A(o,par) =

vV Vit,(3par; : B;(o,par;))
V UNCHANGED (attrM (o), msgslsm) AN\ e o [fAlSE o

Theorem 1 ensures th&tcan replacél/, subject to hypothesédg. In particular, all
properties expressed by MTLA formulas that have been established for the high-level
system will be preserved by the implementation.

In order to prove that the state machine of Fig. 5 refines that of Fig. 2(b) (with re-
specttoH =Vs € Site : nbs(s) € Site) we must define the mappimg We have already
indicated the definition of the state abstraction mappiig. For the mappingnv, we
associate (the MTLA encoding o home with stateReturning andag.loc € Site with
all other states. It is then easy to verify the conditions of Theorem 1. In particular, the
transitions leaving statérrived do not modify the shopping agent’s attributes, and they
do not send messages contained in the original signature. They are therefore allowed by
condition (3) of Theorem 1.

Theorem 1 can also be used to justify refinements that modify the spatial hierarchy
of locations. Consider the state machine shown in Fig. 6. It is based on the idea that
prior to interacting with an object, incoming agents are first placed in a special subloca-
tion for security checking. Instead of a simple, atomic move from one shop to another
as in Figs. 2(b) and 5, this version moves the shopping agent first to the “incoming”
sublocation of the target location. If the agent is accepted by the host, as modeled by



refuse()

[@home] look(item) /

loc=home (lookFor,offers)

= (item, {})

/ home.present admit() /
ff /

(offers) offer(o) move(dock(loc))

/ ANY x : nbs(loc) : Incoming
loc=x; move(incoming(x))

offers=add(offers,0)

/ loc.getOffer(lookFor)
Returning WaitOffer Docked

[@home]

Fig. 6. Spatial refinement of the network sites.

the reception of amdmit signal, it transfers to the “dock” sublocation where the real

processing takes place. Otherwise, the host will serefiige signal, and the shopping

agent moves on to another neighbor host. Here we assume that every |dcation

contains sublocationk.in andl_dock. Moreover, we assume functionrgoming and

dock that look up the id’s of the corresponding sub-locations for a given network site.
Formally, Theorem 1 can again be used to show that the “docked” shopper of Fig. 6

is a refinement of that shown in Fig. 5 with respect to the hypothesis

H= /\ A L.lZin(true) Al.l_dock(true)
1eLoc™ A incoming(l.self) = l_in.self Adock(l.self ) = [_dock.self

The statesncoming andDocked are mapped to the single high-level stateived, and

the invariant mapping associates (the MTLA encoding@fpc with the locationin-
coming andag.loc € Site with all states. Indeed, the move action labeling the transition
from the Ready to thelncoming state will be formalized by an MTLA action formula
VicrLock €-ag > I_in.ag, which implies the corresponding formu\g,.; . v €.ag >

[.ag formalizing the move between the high-level staReady andArrived, using the
hypothesisH. Similarly, H and the invariant establish that the move betweenrthe
coming andDocked states maps to a stuttering action: Clearly, the local attributes and
the message queue are left unchanged. Moreover, the invariant associated with state
coming asserts that the agent is located beneath the site (with idelstityfherefore, a
move to the “dock” sublocation of that same site is invisible with respect to the locations
in LocM: the action impliegfalsg); 4,, for all I € Loc™.

For these kinds of refinement to be admissible, it is essential that the spatial oper-
ators of MTLA refer to locations at an arbitrary depth instead of just the children of
a node and that it is therefore impossible to specify the precise location of the agent.
In fact, we consider the concept of “immediate sublocation” to be as dependent on the
current level of abstraction as the notion of “immediate successor state”, and MTLA
allows to express neither.

3.2 Interface Refinement |: Spatial Distribution of State

Frequently, refinements of the spatial hierarchy will be accompanied by a distribution
of the high-level attributes over the hierarchy of sublocations of the refined model. For



offer(o) /
dt.res=add(dt.res,0)

[rin Seq(si/te)]

path.rt=r

look(item) /
(dt.tgt, dt.res)
= (item, {})

GotRoute

[not empty(path.rt)] /

path.rt = tail(path.rt);
move(head(path.rt))

Shopping

[@home] / home.present(dt.res)

Fig. 7. Spatial refinement of the shopper.

a simple example, departing again from the high-level shopper of Fig. 2(b), consider
the state machine shown in Fig. 7. Here we assume that the shopping agent contains
two sub-agentpath that determines the path to follow through the network dirttiat
collects the data, and we have replaced the attribatésor and offers of the high-

level shopper by attributegt and res assigned to thelt sub-agent. The transition

from Idle to GotRoute determines the route of the agent. It is guarded by the condition

r € Seq(Site), asserting that is a list of (identities of) network sites.

Spatial distribution of attributes is similar to the concept of data refinement in stan-
dard refinement-based formalisms. Intuitively, the refinement of Fig. 7 is admissible
provided that the public interface is preserved. We will therefore assume that the at-
tributesitem andoffers have been marked as private in the class diagram for the abstract
shopper, ensuring that no other object relies on their presence.

Formally, we modify slightly the MTLA formalization of state machines, taking
into account the visibility (either “private” or “public”) of attributes. We redefine the
external specification of the behavior of an objeatf classC with private attributes
ai, ..., a; asthe MTLA formula

C(o) = Fo.a,...,0.ax,0.ctl,0.evts : IC(0) 4)

whereIC(o) is defined as before by formula (1). Since the specification of an object
system is based on the external object specification, private attributes are invisible at the
system level, and the definition of refinement modulo a hypothesis remains as before.
The verification of refinement relies on conditions generalizing those of Theorem 1,
provided that the private attributes of the high-level object can be computed from those
of the implementation via a refinement mapping [1]. The relation between the two di-
agramsR and M is therefore given by the mapping as before, complemented by
termsty,..., & that represent the values of the private high-level attributes ., a;.
These terms have then to be substituted for the attributes in the formulas concerning the
high-level state machin&f.

Theorem 2. Extending the context of Theorem 1 by terms. ., ¢, we now write for
&{Abs(o.ctl)/o.ctl,o.evtssm [o.evts,msgslsm /msgs,t1/o.a1,...,t/0.a5}

3 The renaming of the attributes is not necessary, but will make it clear in the following to which
model we are referring.



offer(o) /
[@home] look(item) / offers=add(offers,0)
loc=home (lookFor,offers)=(item,{}) . move(transit)

[@home] / ANY | : Site :
home.present(offers) loc=I; move(l)

Fig. 8. State machine for the “slow shopper”.

If the set of public attributes aR is a superset of those @f then R refinesM under
hypothesid{ up to hiding of attribute®.ay, ... 0.a if the conditions of Theorem 1 hold
for this new interpretation of substitution.

For the example shown in Fig. 7, the hypothesis is
H = ag.path(true) A ag.dt(true)

The implementation statddle and GotRoute are both mapped to the abstract state
Idle. The invariant mapping assigns the state formuwjapath.rt € Seq(Site) to the
statesGotRoute and Shopping. Finally, the refinement mapping is defined by substi-
tuting ag.dt.res and ag.dt.tgt for ag.offers and ag.lookFor, respectively. All proof
obligations of Theorem 2 are then easily verified.

3.3 Interface Refinement Il: Virtualisation of Locations

Whereas the notions of spatial refinement that we have considered so far have intro-
duced new (sub-)objects, we have taken care to preserve the hierarchy of the objects
present at the abstract levels. Together with the choice of modalities of MTLA, which
cannot express the precise location of an object, we have thus been able to represent
refinement as implication and to preserve all MTLA properties. However, it can occa-
sionally be desirable to allow for refinements that do not at all times preserve the spatial
relationships imposed by the original specification.

For example, the previous specifications of the shopping agent have all assumed
that moves between locations happen atomically. Figure 8 presents a variation of the
original state machine of Fig. 2(b) where the agent moves to an intermediati
location, which is not included iite, before moving to the next site. (A subsequent
refinement could add more structure to thansit location, modeling the transport of
the agent across the network.) We cannot use Theorems 1 or 2 to prove that this model
refines the original one because the move to the transit location cannot be mapped to
any high-level action. In fact, the MTLA formula representing the “slow shopper” does
not imply the formula encoding the original specification, and the invariant formula (3)
asserting that the shopping agent is always located at some location that represents a
network site does not hold of the slow shopper.

Such relationships can be formalized by considering a weaker notion of refinement,
abstracting from some of the names that occur in the original specification. In our run-
ning example, the name of the shopping agent should not actually be part of the inter-
face: the purpose of the system is that the agent’'s home site learns about offers made by



other network sites; the use of a mobile agent is an implementation detail. We say that an
object system formalized by an MTLA formulanpl refines another system formalized

by Spec up to hiding of name if the implication Impl = 3n : Spec holds. In general,

the behavior required of objeet at the abstract level may be implemented by several
implementation objects, hence it does not appear useful to give a “local” rule, similar
to Theorems 1 and 2, that attempts to prove refinement by considering a single state
machine at a time. Instead, the strategy in proving such a refinement is to define a “spa-
tial refinement mapping”, using the rules given in Sect. 1.2. For the slow shopper, we
first use rule #-sub) to introduce a new sublocation, Sayirtual, for every high-level
location! and then define a refinement mapping that returns the implementation-level
agent as long as it is not at thansit location, and otherwise the locatidrvirtual as-
sociated with the previous site visited as stored in the attrilbatel he local attributes

of the high-level shopper are simply obtained from those of the implementation-level
agent. Observe in particular that the invariant (3) cannot be proven of the specification
Jag : Sys becauseug is no longer free in that formula.

Refinement up to hiding of names allows for implementations that differ more rad-
ically in structure. For example, the single shopping agent of the initial specification
could be implemented by a number of shopping agents that roam the network in parallel,
cooperating to establish the shopping list. On the other hand, a correct implementation
could also be based on a client-server solution instead of using mobile agents.

4 Conclusion

We have studied the applicability of the logic MTLA proposed in [11] in view of for-
malizing Mobile UML State Machines [3] and of establishing refinement relationships
between models described in this language. A configuration of a mobile system is rep-
resented as a tree of names, and mobility is reflected by changes to the name hierarchy.
MTLA accomodates local attributes at every node in the tree, simplifying the formal-
ization of state-based notations such as UML state machines. The operators of MTLA
have been designed to support system refinement; in particular, all spatial operators re-
fer to nodes arbitrarily deep beneath the current node and not just its children as in other
spatial logics, e.g. [4].

We have assumed some simplifications and restrictions for our formalization of
Mobile UML state machines. In particular, we assume that spatial relationships are
specified using constraintg < e, comparing the relative positions of two objects at
the current level of abstraction. This assumption has been essential to obtain a sound and
elegant representation of refinement as implication of specifications for mobile systems.

Our main objective has been the study of three fundamental refinement principles,
focusing on refinements of the spatial hierarchy. We have indicated sufficient conditions
for verifying refinement. However, these conditions are incomplete: in particular, it is
well known that refinement mappings need to be complemented by devices such as his-
tory and prophecy variables in order to obtain completeness [1]. We have also ignored
liveness and fairness properties in this paper, and we have mostly restricted ourselves
to proving refinement “object by object”. We intend to study adequate composition and
decomposition concepts in future work.
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