
Formal Analysis of a Self-Stabilizing Algorithm
Using Predicate Diagrams?

Dominique Cansell1 Dominique Ḿery2 Stephan Merz3

1 Universit́e de Metz & LORIA,cansell@loria.fr
2 Universit́e Henri Poincaŕe, Nancy & LORIA,mery@loria.fr

3 Institut für Informatik, Universiẗat München,merz@informatik.uni-muenchen.de

Abstract

We present the verification of a protocol designed to en-
sure self-stabilization in a ring of processors. The proof
is organized as a series of refinements; it is mechanized
based on a combination of theorem proving and model
checking to guarantee the correctness of these refine-
ments. We argue that the framework of predicate dia-
grams is flexible enough to carry out a non-trivial veri-
fication task, that it provides a natural interface between
automatic and interactive verification technology, and
that it allows to present the correctness argument in an
accessible manner.

Keywords: formal methods, theorem proving, model
checking, abstraction, refinement

1 Introduction

In a seminal paper [3], Dijkstra introduced the concept
of self-stabilizing systems and presented three algorithms
that achieve self-stabilization in a ring ofN processors.
We present a verification of one of Dijkstra’s algorithms
in terms of Boolean abstractions. Specifically, we use the
format of predicate diagrams that we have introduced in
previous work [1, 2] to justify the correctness of the pro-
tocol both to the human reader and to verification tools.
The proof is given as a series of refinements

Prop v Dabs v Dconc v Spec

where Prop is a temporal logic formula that expresses
stabilization,Dabs andDconc are predicate diagrams that
represent, respectively, an “abstract” and a more detailed
view of the protocol, andSpecis a TLA+ specification of
Dijkstra’s algorithm. The correctness of the property over
the abstract diagram is obtained using model checking.

?This work has been partially supported by PROCOPE grant from
DAAD and EGIDE.

Alternatively,Dabs could be constructed fromProp using
standard automata-theoretic techniques. Model checking
is also used to justify thatDconc is indeed a refinement
of Dabs. (In general, a combination of model check-
ing and interactive, non-temporal theorem proving may
be necessary to establish the correctness of diagram re-
finements). Finally, non-temporal theorem proving estab-
lishes the correctness ofDconc with respect to the pro-
tocol specificationSpec. In contrast to a previous “flat”
verification [9] of the protocol in PVS, our proof has a
clearer structure and also requires less user interaction be-
cause part of the verification effort is delegated to model
checking. The diagrammatic presentation of the abstrac-
tion helps to clarify the structure of the proof and pro-
vides a natural interface between the model checker and
the interactive theorem prover. The definition of diagram
refinement given in [2], which in particular allows the im-
plementation of fairness conditions at the higher level by
a combination of lower-level fairness conditions and ar-
guments based on well-founded orderings, turned out to
be flexible enough for the purposes of this case study.

2 Formal Background

2.1 Temporal Logic of Actions

Our formalism is framed in Lamport’s TLA [6], and we
therefore briefly recall its main concepts. TLA formu-
las are built fromstate predicatesand action formulas;
the latter may contain primed state variables. For exam-
ple, x> 3 is a state predicate, andx≤ y′+1 is an action.
State formulas are interpreted overstates, which assign
values to state variables. Action formulas are interpreted
over pairs(s, t) of states, wheres and t interpret respec-
tively the unprimed and primed state variables. For an ac-
tion formulaA, we denote byENABLED A the state predi-
cate obtained fromA by existential quantification over the
primed state variables; that predicate holds of precisely

those statess for which there exists some statet such that
(s, t) satisfiesA. For a state predicateP, we denote byP′

the action formula obtained fromP by replacing all flexi-
ble variablesv that occur inP by v′. For an action formula
A and a tuplev of state variables,[A]v denotes the formula
A∨v′ = v, and〈A〉v denotes the dual formulaA∧v′ 6= v.
Temporal formulas are built from state predicates and
action formulas[A]v using boolean connectives, theal-
ways operator2, and quantification over rigid (state-
independent) variables (written∃x : F) or flexible (state-
dependent) variables (written∃∃∃∃∃∃x : F). We write3F for
¬2¬F and3〈A〉v for ¬2[¬A]v. Other derived connec-
tives includeleadstoformulasF ; G≡2(F⇒3G) and
the weak and strong fairness conditions

WFv(A) ≡ 32ENABLED 〈A〉v⇒23〈A〉v
SFv(A) ≡ 23ENABLED 〈A〉v⇒23〈A〉v

Temporal formulas are interpreted overbehaviors, i.e.ω-
sequencesσ = s0s1 . . . of states [6].
System specifications are usually written as formulas of
the form Init∧2[Next]v∧L whereInit is a state predicate
that characterizes the system’s initial state,Nextis an ac-
tion formula representing the next-state relation,v is a tu-
ple of state variables, andL is a conjunction of formulas
WFv(A) or SFv(A).
We assume that the underlying assertion language con-
tains a setO of binary relation symbols≺ that are inter-
preted by well-founded orderings. For≺ ∈ O, we denote
by� its reflexive closure. We writeO= to denote the set
of relation symbols≺ and�, for≺ in O.

2.2 Predicate Diagrams

A predicate diagram [1, 2] is a finite graph whose nodes
are labelled with sets of (possibly negated) state predi-
cates, and whose edges are labelled with action names
and may carry annotations that assert certain expressions
to decrease with respect to an ordering inO=. Intuitively,
a node of a predicate diagram represents the set of system
states that satisfy the formulas contained in the node. (We
indifferently writen for the set and the conjunction of its
elements.) An edge(n,m) is labelled with actionA if A
may cause a transition from a state represented byn to a
state represented bym. An actionA may have an asso-
ciated fairness condition, which applies to all transitions
labelled byA. We let edges be labelled with action names
instead of action formulas because, in a top-down devel-
opment, the action formula that defines an action is not
known until the final specification has been derived.
Formally, the definition of predicate diagrams is relative
to finite setsP andA that contain the state predicates and

the (names of) actions. We writeP to denote the set con-
taining the predicates inP and their negations.

Definition 1 A predicate diagramG = (N, I ,δ,o,ζ) over
P andA consists of

• a finite set N⊆ 2P of nodes,

• a finite set I⊆ N of initial nodes,

• a familyδ = (δA)A∈A of relationsδA⊆ N×N (byδ=
we denote the reflexive closure of the union of these
relations),

• an edge labelling function o that associates pairs
(t1,≺1), . . . ,(tk,≺k) of terms ti and relation symbols
≺i ∈ O= with the edges(n,m) ∈ δ, and

• a mappingζ : A → {NF,WF,SF} that associates a
fairness condition with every action inA ; the possi-
ble values represent no fairness, weak fairness, and
strong fairness.

We say that the action A∈A can be takenat node n∈N iff
(n,m)∈ δA holds for some m∈N, and denote by En(A)⊆
N the set of nodes where A can be taken.

A behaviorσ = s0s1 . . . is a trace through diagramG if

there exists a corresponding runn0
A0→ n1

A1→ . . . such that
all node and edge labels are satisfied. To evaluate the fair-
ness conditions, we identify the enabling condition of an
actionA∈ A with the existence ofA-labelled edges at a
given node. Besides the transitions that are explicitly rep-
resented by edges of the diagram, we allow for stuttering
transitions that loop at the source node. The precise defi-
nition has been given in [2].
We say that a predicate diagramG conformsto a TLA
specificationSpecif every behavior that satisfiesSpecis
a trace throughG. In general, proving conformance re-
quires reasoning about entire behaviors. The following
proposition [1] states a set of “local” proof obligations
sufficient for proving conformance.

Proposition 2 Let G= (N, I ,δ,o,ζ) be a predicate dia-
gram overP and A , and Spec≡ Init∧2[Next]v∧L be a
system specification. If all of the following conditions
hold then G conforms to Spec.

1. |= Init⇒
∨
n∈I

n

2. for every node n∈ N,
|= n∧[Next]v⇒ n′∨

∨
{(A,m):(n,m)∈δA}

〈A〉v∧m′

3. For all n,m∈ N and all(t,≺) ∈ o(n,m):

(a) |= n∧m′∧
∨

{A:(n,m)∈δA}
〈A〉v ⇒ t′ ≺ t and

(b) |= n∧[Next]v∧n′⇒ t′ � t.

4. For every action A∈ A such thatζ(A) 6= NF:

(a) If ζ(A) = WF then|= Spec⇒WFv(A).
(b) If ζ(A) = SF then|= Spec⇒ SFv(A).
(c) |= n⇒ ENABLED 〈A〉v holds whenever A can

be taken at node n.

(d) |= n∧〈A〉v⇒ ¬m′ holds for all n,m∈ N such
that (n,m) /∈ δA.

2.3 Model Checking Predicate Diagrams

Viewing predicate diagrams as finite-state transition sys-
tems, temporal properties of their traces can be estab-
lished using LTL model checking. We encode predicate
diagrams inPROMELA, the modelling language of the
model checker SPIN [5], as follows: two variablesnode
andactionkeep track of the current node and the last ac-
tion taken; they are updated nondeterministically accord-
ing to the transition relationδ=. The predicatesP in P are
represented by Boolean variables that are updated accord-
ing to the label of the current node—nondeterministically,
if the label contains neitherP nor¬P. We also introduce
variablesb(t,<) for every pair(t,<) that appears in some
ordering annotation. These variables are set to 2 if the
last transition taken was labelled by(t,<), to 1 if it was
labelled by(t,≤) or if a stuttering transition was taken,
and to 0 otherwise.
The fairness conditions associated with the actions of a
predicate diagram give rise to assumptions for the veri-
fication by SPIN, which are expressed as LTL formulas.
We again consider an actionA to be enabled whenever
the current node has an outgoing edge inδA; this assump-
tion is warranted by condition 4(c) of Proposition 2. Sim-
ilarly, the effect of ordering annotations is expressed by
assumptions of the form

23(b(t,<) = 2)⇒23(b(t,<) = 0)

that assert that any run during whicht is known to have
decreased infinitely often must also contain infinitely
many transitions that may have increasedt. An equiva-
lent formulation is

32((b(t,<) = 2)⇒3(b(t,<) = 0))

Because formulas of type32F are conjunctive, the lat-
ter formulation gives rise to LTL assumptions with fewer
temporal operators; this can be an advantage when SPIN

generates the corresponding Büchi automaton during ver-
ification.

2.4 Refinement of Predicate Diagrams

In [2] we have studied concepts of refinement between
predicate diagrams. This can be useful if diagrams are to
be used during top-down development of protocols or, as
in the present case study, to decompose a complex verifi-
cation effort into smaller parts. Working in a linear-time
setting, a diagramsG1 refines a diagramG2 if every trace
throughG1 is also a trace throughG2. However, as in the
case of Proposition 2, we are looking for a notion of re-
finement that can be checked “locally”, avoiding temporal
logic reasoning at the level of behaviors. The following
definition, reproduced from [2], introduces a “structural”
refinement concept. For simplicity, it assumes that the
sets of predicates, action names, and ordering annotations
that occur in the refining diagram are supersets of the re-
spective sets in the refined diagram. A more general def-
inition that allows for a change of representation has also
been considered in [2].

Definition 3 Assume given two predicate diagrams G1 =
(N1, I1,δ1,o1,ζ1) over predicatesP 1 and actionsA1 and
G2 = (N2, I2,δ2,o2,ζ2) over P 2 and A2 whereP 1 ⊇ P 2

andA1 ⊇ A2, and let f : N1→ N2. We say that G1 struc-
turally refinesG2 w.r.t. f iff all the following conditions
hold:

1. f (I1)⊆ I2

2. |= n⇒ f (n) holds for every node n∈ N1.

3. For all A ∈ A1 and all (n,m) ∈ δ1
A:

(a) if A ∈ A2 then(f (n), f (m)) ∈ δ2
A, and

(b) if A ∈ A1\A2 then(f (n), f (m)) ∈ δ2
=.

4. For all A ∈ A1, all (n,m) ∈ δ1
A(n,m), all terms t and

relations≺ ∈ O=:

(a) if (t,≺)∈ o2(f (n), f (m)) then(t,≺)∈ o1(n,m),

(b) if f (n) = f (m) and (t,≺) ∈ o2(f (n),m′) for
some m′ ∈ N2 then(t,�) ∈ o1(n,m).

5. For every runρ1 = n0
A0→ n1

A1→ . . . of G1 and every
action A∈ A2 such thatζ2(A) = WF, either Ai = A
or f (ni) /∈ En2(A) holds for infinitely many i∈ N.

6. For every runρ1 = n0
A0→ n1

A1→ . . . of G1 and every
action A∈ A2 such thatζ2(A) = SF, either Ai = A
for infinitely many i∈ N or f (ni) ∈ En2(A) for only
finitely many i∈ N.

During refinement, nodes of the “abstract” diagramG2

will be split into several nodes (distinguished by newly
introduced predicates) in the “concrete” diagramG1; the

0

2

1N

(a) Initial configuration.

0

2

1N

(b) Later configuration.

Figure 1: Evolution of Dijkstra’s protocol.

association between nodes of the two diagrams is given by
the refinement mappingf : N1→ N2. Conditions (1)–(4)
of Definition 3 are “structural” in that they can either be
checked from the graph structure or can be verified using
non-temporal reasoning. On the other hand, conditions
(5) and (6) ensure that the refinement notion is flexible. In
particular, they allow high-level fairness conditions to be
implemented by any combination of fairness conditions
and ordering annotations at the lower level. Because they
are formulated at the level of runs, these conditions can be
established by model checking along the lines explained
in section 2.3.
Correctness of structural refinement is asserted by the fol-
lowing proposition [2]. It ensures that all temporal prop-
erties shown ofG2 remain valid forG1.

Proposition 4 If G1 structurally refines G2 then every
trace through G1 is a trace through G2.

3 Proving Self-Stabilization

3.1 Dijkstra’s Protocol

A system is self-stabilizing if it will reach some “stable”
state (and then remain “stable”), no matter what state it is
started in. Self-stabilizing protocols are useful for initial-
ization and for error-recovery after faults. Dijkstra [3] in-
troduced the problem at the hand of a ring ofN+1 proces-
sors numbered 0 toN. Each processori is equipped with
a registerv[i] that can hold values in the range 0, . . . ,M
whereM ≥ N. Figure 1(a) illustrates a possible configu-
ration where different shades of grey represent different
register values.
The processors operate according to the following rules:
processor 0 can make a move whenever its register holds
the same value as that of its left-hand neighbor, processor
N. It then increments its register (moduloM+1). Any
other processori+1 can make a move when the value in
its register is different from the value held by its left-hand

MODULE DIJKSTRA

EXTENDS Naturals
CONSTANTSN,M
VARIABLES v

ASSUMPTIONSM ≥ N

SITES, { x ∈ Nat : 0 ≤ x ∧ x ≤ N }
NUM , { x ∈ Nat : 0 ≤ x ∧ x ≤ M }

Zero , ∧ v[0] = v[N]
∧ v′ = [v EXCEPT ![0] = @+1 mod(M+1)]

NonZero(i) , ∧ v[i+1] 6= v[i]
∧ v′ = [v EXCEPT ![i+1] = v[i]]

Init , v∈ [SITES→ NUM]
Next , ∨ Zero

∨ ∃ i ∈ SITES\{N} : NonZero(i)

Spec, Init ∧ 2 [Next]v ∧ WFv(Next)

Figure 2: A TLA+ specification of Dijkstra’s protocol.

neighbor, processori. Processori+1 then copies the value
of v[i] into its own register. The ability to make a move is
interpreted as the possession of a token; the system is in a
stable state when exactly one processor has a token.
A pseudo-code representation of the system is shown be-
low; a TLA+ specification of the protocol appears in fig-
ure 2.

var v : array [0..N] of [0..M]

v[0] = v[N] −→ v[0] := (v[0]+1) mod(M+1)

i<N v[i+1] 6= v[i] −→ v[i+1] := v[i]

Fig. 1(b) shows a configuration that can be reached from
the configuration of Fig. 1(a) after a few steps. Observe
that at least one processor is enabled (i.e., has a token) in
any configuration: for if all non-zero processors are dis-
abled thenv[i] = v[i+1] holds for all 0≤ i <N. Therefore,
v[0] = v[N], implying that processor 0 is enabled. Stable
configurations are those in which exactly one processor
can move, which is true precisely if for somei, all pro-
cessorsj ≤ i hold the valuev[0] while all processorsj > i
hold the valuev[N]. In particular, configurations where
all registers hold the same value are stable. It is also easy
to see that whenever a stable state has been reached, the
token will circulate counter-clockwise through the ring,
and that all subsequent configurations will also be stable.

It was only a decade after the publication of the proto-

�
�
�
�Stable

�
�
�
�¬Stable

@@R

@@R ?
Stabilize

�
�
�
�

ζ(Stabilize) = WF

(a) Abstract viewDabs.

�
�
�
�Stable

�
�

�
�¬Stable

¬SingularPrefix

�
�

�
�¬Stable

SingularPrefix

ζ(Next) = WF

@@R @@R

-

-

@
@
@R

�
�
�	 �
�

� �
�
(t2,<2)? (t1,<1) � �
�

(t1,<1)

(b) RefinementDconc for Dijkstra’s protocol.

Figure 3: Predicate diagrams to express self-stabilization.

col [4] that Dijkstra published a proof demonstrating its
correctness, acknowledging that it was not entirely trivial.
In 1998, Qadeer and Shankar [9] published a machine-
checked verification of the algorithm using the interac-
tive theorem prover PVS. They reported considerable dif-
ficulty both in constructing a convincing informal proof
and in its formalization. One of us [7] has formalized
a somewhat more economical proof in Isabelle/HOL [8].
We now reexamine the latter proof in terms of predi-
cate diagrams. The benefits of such an exposition are
twofold: first, the structure of the proof becomes clearer
and second, part of the verification effort can be auto-
mated through the use of model checking.

3.2 Verification of Self-Stabilization

The property of self-stabilization can be abstractly repre-
sented by the predicate diagramDabs of figure 3(a): ini-
tially, the system can either be in a stable or unstable state.
Transitions from a stable to an unstable state are not al-
lowed; eventual stabilization is enforced by placing a fair-
ness condition on an action namedStabilizethat causes a
transition from unstable to stable states. (By convention,
we suppress the labelNextfor transitions that correspond
to the system’s next-state relation.) Running SPIN on the
encoding of the diagram confirms:

Theorem 5 Every trace throughDabssatisfies32Stable.

DiagramDabs concisely represents the desired property,
but it is too simple. Formally, it does not conform to the
formula Specof figure 2 that represents Dijkstra’s pro-
tocol: there is no action corresponding toStabilizethat
would be enabled in all unstable states and lead to imme-
diate stabilization. We have to find a refinement ofDabs

that conforms toSpec.

Informally, the correctness of Dijkstra’s protocol can be
explained as follows. Consider first a configuration where
processor 0 holds a value that does not occur in any other
register (such a configuration is depicted in figure 1(a))
or, more generally, a configuration wherev[0] = v[1] =
. . .= v[i] holds for somei ≤N, butv[j] 6= v[0] holds for all
j wherei < j ≤ N. We say that such a configuration has a
singular prefix. In such a configuration, processor 0 can-
not move unlessv[0] = v[N], which means that the prefix
extends around the entire ring and the system has stabi-
lized. The non-zero processors in the prefix are disabled
in such a configuration. On the other hand, moves of pro-
cessors outside the prefix do not introduce fresh values
and will eventually extend the singular prefix around the
ring.
It is therefore enough to show that some configuration
with a singular prefix will be reached from any initial
configuration, unless a stable configuration is reached be-
fore. Now, observe that the numberM+1 of possible reg-
ister values has been assumed to be at least the number
of processors. By the pigeonhole principle it follows that
some valuer ∈ {0, . . . ,M} does not initially occur among
v[1], . . . ,v[N]. Assuming that processor 0 moves infinitely
often, thereby incrementing its register, there will be a
first subsequent configuration wherev[0] = r. In that con-
figuration it must still be the case thatv[i+1] 6= r for all
i because only moves of processor 0 introduce fresh val-
ues; thus we have reached a configuration with a singular
prefix. It thus remains to show that processor 0 is guaran-
teed to move infinitely often. But assume that processor 0
does not move from some state on: then the actions of the
non-zero processors will ensure thatv[0] spreads around
the ring, and thus a stable configuration will be reached.
This idea can be formally represented by the predicate
diagramDconc shown in figure 3(b). Like the previous
diagramDabs, it does not allow transitions from stable

MODULE STABILITY

EXTENDS DIJKSTRA

stable(i) , ∧ ∀j ∈ SITES : j ≤ i⇒ v[j] = v[0]
∧ ∀j ∈ SITES : j > i⇒ v[j] = v[N]

Stable, ∃i ∈ SITES: stable(i)
SP(i) , ∧ ∀j ∈ SITES : j ≤ i⇒ v[j] = v[0]

∧ ∀j ∈ SITES : j > i⇒ v[j] 6= v[0]
SingularPrefix, ∃i ∈ SITES: SP(i)
t1 , [i ∈ SITES\{N} 7→ IF v[i] = v[i+1] THEN 1 ELSE 0]
t2 , LEAST k : ¬∃i ∈ SITES\{0} : v[i] = (v[0]+k) mod(M+1)

Figure 4: Definitions added for the proof.

to unstable configurations. Similarly, it rules out moves
from unstable configurations with a singular prefix to un-
stable configurations without a singular prefix. However,
the fairness condition ofDabs has been replaced with a
weaker progress assumption: weak fairness of the sys-
tem’s next-state relation asserts that the protocol should
not stop. Also, ordering annotations on transitions have
been introduced whose meaning will be explained below.
Definition 3 of structural refinement turns out to be liberal
enough to allow for such non-local refinement of fairness.
Obviously, the refinement mappingf is defined to map the
two upper-hand nodes ofDconc to the single upper-hand
node ofDabs, and the lower-hand node ofDconc to the
lower-hand node ofDabs.

Theorem 6 Dconc structurally refinesDabs.

Proof. Conditions (1)–(4) of Definition 3 hold trivially.
In particular, condition (3) is true becauseDconc does not
allow any transitions that are disallowed byDabs, and con-
dition (4) holds becauseDabs does not contain any order-
ing annotations that would have to be preserved.
Moreover, there are no actions with strong fairness, and
therefore only condition (5) needs to be verified. Now, the
ordering annotations (for any well-founded orderings<1

and<2) ensure that any run throughDconc must eventu-
ally reach the node labelledStable, and then remain there
forever. In particular, the run contains infinitely many
nodes whose image disables theStabilizeaction, which
implies the fairness condition. In fact, a run of SPIN suf-
fices to prove the condition. Q.E.D.

To conclude the verification of Dijkstra’s protocol, it re-
mains to show thatDconc conforms to the protocol speci-
fication. In particular, we must define the predicates that
appear as node labels ofDconc, and the termst1 and t2
and their associated well-founded orderings<1 and<2.
Figure 4 collects the definitions of these predicates and

terms as a TLA+ module. The definitions ofStableand
SignularPrefixhave been motivated before. The termt1
records progress that can be attributed to moves of the
non-zero processors: it is defined as a bit vector indicating
which of the non-zero processors are enabled. Because it
is obvious that every move of a non-zero processor dis-
ables that processor and does not affect the enabledness of
its neighbors to the left, the corresponding well-founded
ordering<1 is chosen as the lexicographic ordering on bit
vectors of lengthN. The termt2, which records progress
brought about by moves of processor 0, is defined as the
“distance” to the (cyclically) smallest value that does not
occur among the register values of processors that are part
of the singular prefix. As we have motivated before, a
configuration with singular prefix is reached when that
distance becomes zero, and therefore<2 is simply cho-
sen as the standard ordering on natural numbers.

Theorem 7 Dconc conforms to formula Spec of figure 2.

Proof. We consider the conditions of Proposition 2,
working in the context of moduleSTABILITY, which ex-
tends moduleDIJKSTRAby the necessary definitions to
interpret the annotations that appear in diagramDconc.
Condition (1) holds because the disjunction of the labels
of initial states is trivial. For condition (2), it has to be
shown that all actions preserve stability and the existence
of a singular prefix, respectively. This is proven by con-
sidering the possible moves as defined by formulaNext
of moduleDIJKSTRA: every move disables the processor
that made the move, it may enable its right-hand neighbor,
and does not affect the enabledness of any other proces-
sor.
Establishing condition (3) is harder. It follows from the
following observations:

• Every step of a non-zero processori disables itself
but does not affect the enabledness of processorsj

for 0< j < i. Therefore, such steps decreaset1.

• Steps of non-zero processors do not increase the
value of t2: the set{v′[1], . . . ,v′[N]} of register val-
ues after the step is a subset of the set{v[1], . . . ,v[N]}
of values before the step. Therefore, if(v[0]+k) mod
(M+1) did not occur in the set of register values be-
fore the step, it still does not occur in the set of reg-
ister values thereafter, and the smallest such valuek
could only have decreased.

• Every action of processor 0 from an unstable state
without a singular prefix decreases the value oft2:
if there is no singular prefix, the valuev[0] must oc-
cur asv[i+1], for somei, and thereforet2 must be
positive. Now, an action of processor 0 increments
v[0] but leaves all other registers unchanged, hence
t2 decreases by one.

Condition (4a) is obvious and condition (4b) is vacu-
ously true. Condition (4c) holds because some pro-
cessor is enabled in all states, as we have argued be-
fore. Condition (4d) is a consequence of condition (2)
that was already proven, because only one action oc-
curs in the diagram. Overall, the conformance proof
has been mechanized in Isabelle/HOL, requiring approx-
imately 300 interactions. We found the proofs that rely
on modulus arithmetic to be the hardest to carry out in
Isabelle, because only little automation was provided.

Q.E.D.

4 Conclusions

We have presented a correctness proof for Dijkstra’s pro-
tocol of self-stabilization in terms of predicate diagrams.
Self-stabilizing algorithms are usually considered quite
challenging for formal verification, and our experience is
no exception. Nevertheless, we have found it helpful to
represent the structure of the proof in the form of predi-
cate diagrams, which give it a comprehensible visual rep-
resentation. From a more technical point of view, pred-
icate diagrams provide an interface between interactive
and automatic verification techniques. We found it partic-
ularly encouraging that the refinement of an abstract-level
fairness condition by an implementation based on well-
founded orderings could be proved entirely by model
checking whereas interactive theorem proving only had
to be applied when reasoning about individual transitions.
In contrast, the “flat” proofs in [7, 9] required rather elab-
orate theorem proving at the temporal level, which made
a significant contribution to the overall effort.
We are currently working on an integrated set of tools to
support verification and development based on predicate

diagrams. These tools include graphical editors as well
as components based on abstract interpretation, model
checking, and automatic and interactive theorem proving
technology. All components share an XML-based format
to represent the intermediate documents in order to give
the user the flexibility to apply whichever style of devel-
opment is appropriate for the problem at hand.

References
[1] D. Cansell, D. Ḿery, and S. Merz. Predicate diagrams for

the verification of reactive systems. In2nd Intl. Conf. on In-
tegrated Formal Methods (IFM 2000), volume 1945 ofLec-
ture Notes in Computer Science, Dagstuhl, Germany, Nov.
2000. Springer-Verlag.

[2] D. Cansell, D. Ḿery, and S. Merz. Diagram refinements
for the design of reactive systems.Journal of Universal
Computer Science, 7(2):159–174, 2001.

[3] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control.Communications of the ACM, 17(11):643–
644, Nov. 1974.

[4] E. W. Dijkstra. A belated proof of self-stabilization.Dis-
tributed Computing, 1:5–6, 1986.

[5] G. Holzmann. The Spin model checker.IEEE Trans. on
Software Engineering, 23(5):279–295, may 1997.

[6] L. Lamport. The Temporal Logic of Actions. ACM
Transactions on Programming Languages and Systems,
16(3):872–923, May 1994.

[7] S. Merz. On the verification of a self-stabilizing al-
gorithm. Available athttp://www.pst.informatik.
uni-muenchen.de/˜merz/papers/dijkstra.ps.gz,
1998.

[8] L. C. Paulson. Isabelle: A Generic Theorem Prover, vol-
ume 828 ofLecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, 1994. See also the Isabelle
home page athttp://isabelle.in.tum.de/.

[9] S. Qadeer and N. Shankar. Verifying a self-stabilizing mu-
tual exclusion algorithm. In D. Gries and W.-P. de Roever,
editors,Programming Concepts and Methods, pages 424–
443, Shelter Island, N.Y., June 1998. Chapman & Hall.

