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1 Faculté des Sciences, Tunis, Tunisia, Mouna.Saad@fst.rnu.tn
2 CNRS & LIX, Palaiseau, France, charron@lix.polytechnique.fr
3 INRIA Nancy & LORIA, Nancy, France, Stephan.Merz@loria.fr

Abstract. We consider the verification of algorithms expressed in the
Heard-Of Model, a round-based computational model for fault-tolerant
distributed computing. Rounds in this model are communication-closed,
and we show that every execution recording individual events corre-
sponds to a coarser-grained execution based on global rounds such that
the local views of all processes are identical in the two executions. This
result helps us to substantially mitigate state-space explosion and verify
Consensus algorithms using standard model checking techniques.

1 Introduction

Distributed algorithms are often quite subtle, both in the way they operate and in
the assumptions they make. Formal verification is therefore crucial in distributed
computing. Unfortunately, due to their asynchronous nature, distributed algo-
rithms almost invariably give rise to state-space explosion, severely limiting the
applicability of model checking techniques. This is particularly true for fault-
tolerant algorithms whose correctness relies on elaborate failure hypotheses.

The key to overcome this problem is to make use of the inherently non-
sequential nature of distributed executions and to exploit the causality rela-
tion [4] between events of the execution in order to reduce the number of exe-
cutions that have to be analyzed. In this paper we study reductions that hold
for distributed algorithms that are structured in rounds: each process first sends
messages and receives messages sent for the round, and finally makes a local
state transition. More specifically, Charron-Bost and Schiper [1] recently pro-
posed the Heard-Of (HO) model, a round-based model for fault-tolerant dis-
tributed computing. We formally prove that for verifying interesting properties
for algorithms in this model, it suffices to model executions as infinite sequences
of global rounds. Moreover, rounds in the HO model are communication closed,
hence the medium of communication can be considered as empty at the end of
each round, and the overall state can be represented just by the collection of
local states for each process. These two observations induce reductions that go
beyond well-known techniques of partial-order reduction [3, 11], and that can
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indeed justify reductions from infinite-state to finite-state models. We validate
our approach by verifying finite instances of some of the Consensus algorithms
proposed in [1], using a standard explicit-state model checker.

The paper is organised as follows: Section 2 provides a short introduction to
the HO model and defines executions. Section 3 proves the reduction theorem
that establishes a close correspondence between the two representations of exe-
cutions. We present in Section 4 some experiments on model checking Consensus
algorithms in the HO model. Section 5 discusses related work and concludes.

2 The Heard-Of Model for Distributed Algorithms

Computations in the HO model are organized in rounds, in which each pro-
cess exchanges messages, takes a step, and then proceeds to the next round.
Without any specific synchronization assumptions, processes execute rounds at
their own pace. In particular, the difference between the numbers of rounds that
two different processes are executing at any given moment may be arbitrar-
ily large. Rounds are communication-closed layers in the terminology of Elrad
and Francez [2]: messages are valid only for the round they were sent in. Thus
the model generalizes the classical notion of synchronized rounds developed for
synchronous systems [7].4

2.1 A Round-Based Computational Model

We suppose that we have a finite, non-empty set Π of process identifiers5 and a
set of messages M . By including a designated empty message in M that processes
use to indicate absence of useful information, we may assume w.l.o.g. that each
process sends some message to every process in Π, in each round. We denote
the cardinality of Π by N > 0, let ⊥ /∈ M be a placeholder indicating that no
message has (yet) been received, and write M⊥ = M ∪ {⊥}. To each p in Π,
we associate a process specification Procp = (Σp , s0,p ,Sp ,Tp) whose components
are the following:

– Σp is the set of p’s states, and s0,p ∈ Σp is the initial state of process p,
– Sp : N×Σp ×Π → M is the message sending function such that Sp(r , s, q)

denotes the message that p sends to q at round r , given the state s of p, and
– Tp : N × Σp × M Π

⊥ → Σp is the next-state function: Tp(r , s, µ) yields the
successor state of process p at round r , given its current state s and the
partial vector µ = (µq)q∈Π of messages where µq indicates the message that
p received from q at round r , or ⊥ if no message was received.

The collection of process specifications Procp is called an algorithm on Π.

4 Communication-closedness can be ensured in asynchronous settings by buffering
messages which are early, and by discarding messages which are late.

5 When there is no risk of confusion, we simply speak of processes in Π.



2.2 Executions of HO Algorithms

Each process of an HO algorithm executes an infinite sequence of rounds, which
are numbered consecutively, starting with round 0. At the beginning of each
round r , process p first emits messages to all processes, computed according to
the message sending function Sp . It then waits for messages to arrive for round
r before it executes a state transition according to the next-state function Tp ,
based on its current state and the vector of messages received, and starts a new
round. The heard-of set HO(p, r) for p at round r is the set of processes from
which p receives a message at round r .

Formally, we define executions with respect to a given HO collection

HO : Π × N → 2Π

that specifies, for each p ∈ Π and round r ∈ N, the heard-of set HO(p, r). Pro-
cess p proceeds to round r+1 when it has received messages from the processes in
HO(p, r). We make HO collections an explicit parameter of the definition of exe-
cutions because algorithms are unlikely to work under completely arbitrary HO
collections. Assumptions on the underlying system model and communication
network, such as the degree of synchronism and the failure model, are formally
expressed by communication predicates P ⊆ (Π×N → 2Π), and the correctness
of an algorithm is asserted relative to a certain communication predicate P. As
discussed in [1], standard failure models with various degrees of synchronism
can be represented in this way. The weaker the communication predicate is, the
more freedom the system has to provide heard-of sets, and the harder it will be
to achieve coordination among processes in the corresponding failure model.

Fine-grained executions. We define two models of execution, whose relation-
ship will be explored in Section 3. The fine-grained model represents events of
individual processes and the way they interleave, and so faithfully models the
asynchronous execution of distributed algorithms. A configuration of an algo-
rithm is a tuple (rd , st , sent , rcv ,msgs):

– rd , st , sent and rcv are arrays indexed by processes where rd(p) ∈ N, st(p) ∈
Σp , sent ⊆ Π, and rcv(p) ∈ M Π

⊥ denote, for process p, its current round, its
local state, the set of processes to which p has sent messages in the current
round, and the partial vector of messages received;

– msgs ⊆ Π×N×Π×M represents the messages in transit: (p, r , q ,m) ∈ msgs
if p sent message m at round r to q , but q has not yet received m.

The algorithm starts in the initial configuration c where c.rd(p) = 0, c.st(p) =
s0,p , sent(p) = ∅, and c.rcv(p) = (q ∈ Π 7→ ⊥) for all p ∈ Π, and where no
messages are in transit, i.e. c.msgs = ∅.

Configuration c′ is a successor configuration of c if one of the following cases
holds:



– Transition (c, c′) represents process p sending a message to process q :

q ∈ Π \ c.sent(p), c′.sent = c.sent
(
p := c.sent(p) ∪ {q}

)
,

c′.rd = c.rd , c′.st = c.st , c′.rcv = c.rcv ,

c′.msgs = c.msgs ∪
{(

p, c.rd(p), q ,Sp(c.rd(p), c.st(p), q)
)}

The transition is enabled if p has not yet sent a message to q during its
current round. The effect of the transition is to add the message (computed
according to function Sp) to the set of messages in transit and to record the
fact that the message has been sent in the sent field of configuration c′ for
process p.

– Transition (c, c′) represents a message reception: there exist p, q ∈ Π and
m ∈ M such that

q ∈ HO(p, c.rd(p)), (q , c.rd(p), p,m) ∈ c.msgs,
c′.msgs = c.msgs \ {(q , c.rd(p), p,m)}, c′.rd = c.rd , c′.st = c.st ,
c′.rcv = c.rcv

(
p := c.rcv(p)(q := m)

)
, c′.sent = c.sent .

The transition is enabled if q is a member of p’s heard-of set for p’s current
round and message m is in transit from q to p for that round. The effect of
the transition is to transfer the message from the set of messages in transit
to the vector of messages received by p, while the rounds, process states,
and sent fields remain unchanged.

– Transition (c, c′) is a local transition of some process p ∈ Π:

c.sent(p) = Π, dom c.rcv(p) = HO(p, c.rd(p)),
c′.rd = c.rd

(
p := c.rd(p) + 1

)
,

c′.st = c.st
(
p := Tp(c.rd(p), c.st(p), c.rcv(p))

)
,

c′.sent = c.sent(p := ∅), c′.rcv = c.rcv
(
p := (q ∈ Π 7→ ⊥)

)
,

c′.msgs = c.msgs

where dom c.rcv(p) denotes the set {q ∈ Π : c.rcv(p, q) 6= ⊥}.6 A local
transition of p is enabled when p has sent messages for the current round to
all processes and has received messages from precisely the processes specified
by the HO collection for its current round. The configuration c′ is obtained
by incrementing the round number of process p, updating its local state
according to the next-state function Tp , and resetting the sent and rcv
fields for process p.

A fine-grained execution is an ω-sequence c0c1 . . . of configurations such that
c0 is the initial configuration, ci+1 is a successor configuration of ci for all i ∈ N,
and for each p ∈ Π there are infinitely many i ∈ N such that (ci , ci+1) is a local
transition of p. The last condition specifies a condition of (local) progress for
each process; since p can execute a local transition ending round r only if it has
sent messages to all processes and has received messages from all q ∈ HO(p, r),
this condition also implies the existence of sufficiently many transitions of type
message sending and reception.
6 We identify a function f : A× B → C and its “curried” version fc : A → (B → C ).



Coarse-grained executions. We now define an execution model of HO algorithms
that is based on the much coarser abstraction where entire rounds are the unit
of atomicity. Thus, a coarse-grained execution is an ω-sequence σ0σ1 . . . where
each σi is an array of local states σi(p) ∈ Σp indexed by p ∈ Π, such that

– σ0(p) = s0,p is the initial state of p, for all p ∈ Π, and
– at every step, all processes make a transition according to their next-state

function and the HO collection: for all p ∈ Π and all r ∈ N,

σr+1(p) = Tp

(
r , σr (p), rcvd(p, r)

)
where rcvd(p, r) =

(
q ∈ Π 7→

{
Sq(r , σr (q), p) if q ∈ HO(p, r)
⊥ otherwise

} )
.

In words, the state σr+1(p) is computed according to the next-state function
Tp (at the current round r) from the state σr (p), and the vector of messages
that p receives at round r according to the HO collection. A step of a coarse-
grained execution encapsulates a move by each process; because messages can
be received only in the rounds for which they have been sent, there is no
need to represent messages in transit.

Variations. We made some choices in the above definitions. For example, all
message sending transitions for a process in a given round could be grouped
into a single transition, and possibly even combined with the local transitions,
yielding an intermediate granularity of executions. Another alternative would be
to define executions without fixing the HO collection in advance. Instead, a local
transition in the fine-grained model could occur at any point after the process
has sent all messages for the current round. In the coarse-grained model, the HO
sets HO(p, r) would be chosen non-deterministically. Indeed, the representation
of HO algorithms in TLA+ presented in Section 4 is defined in such a way.

Charron-Bost and Schiper [1] define a variant of HO algorithms called co-
ordinated HO algorithms, whose message-sending functions Sp and transition
relations Tp depend on an additional parameter indicating the process that p
believes to be the coordinator of the current round. Correspondingly, execu-
tions are defined in this variant with respect to a HO collection as well as an
assignment of coordinators Coord(p, r) ∈ Π per process and round.

The reduction theorem presented in the following section can be adapted to
any of these alternative definitions. It also extends to non-deterministic settings
where each process has a set of possible initial states and a next-state relation
instead of a next-state function. The only essential requirement is that processes
react only to messages intended for the round they are currently executing.

3 A Reduction Theorem for HO Algorithms

We now present our main theorem, which asserts, informally, that in the HO
model, the fine-grained and coarse-grained execution semantics are indistinguish-
able from the point of view of any process.



3.1 Relating the Two Models of Execution

Given a (fine-grained or coarse-grained) execution ρ and a process q ∈ Π, we
define the q-view ρq of ρ for process q as the sequence of local states that q
assumes in ρ. More precisely, for a fine-grained execution ξ = c0c1 . . ., we define

ξq = c0.st(q) c1.st(q) . . . .

For a coarse-grained execution σ = σ0σ1 . . ., the q-view is simply

σq = σ0(q) σ1(q) . . .

Any two executions ρ1 and ρ2 can be compared with respect to the views that
they generate for the processes in Π. We say that two executions ρ1 and ρ2 are
q-equivalent (for q ∈ Π) if ρq

1 ' ρq
2 where ' denotes stuttering equivalence [5],

i.e. if their q-views agree up to finite repetitions of states. We call ρ1 and ρ2

locally equivalent, written ρ1 ≈ ρ2, if they are q-equivalent for all q ∈ Π.
The following theorem asserts that fine-grained executions do not generate

any more local views of an algorithm than coarse-grained ones.

Theorem 1. For any fine-grained execution ξ = c0c1 . . . of an HO algorithm for
some HO collection

(
HO(p, r)

)
p∈Π,r∈N, there exists a coarse-grained execution

σ of the same algorithm for the same HO collection such that σ ≈ ξ.

Proof (sketch). Given execution ξ = c0c1 . . . and some process p ∈ Π, let `p0 = 0
and for n > 0, `pn = k + 1 if (ck , ck+1) is the n-th local transition of p in
ξ; remember that every process p performs infinitely many local transitions
in a fine-grained execution. By the definition of fine-grained executions, round
numbers and local states of p change only during local transitions. It follows
that ci .rd(p) = c`p

n
.rd(p) = n and ci .st(p) = c`p

n
.st(p) for all n ∈ N and all

`pn ≤ i < `pn+1.
We will now show that the sequence σ = σ0σ1 . . . defined by

σn =
(
p ∈ Π 7→ c`p

n
.st(p)

)
is a coarse-grained execution of the same algorithm for the given HO collection
HO . By the observations above, this definition of σ ensures that σp ' ξp for all
p ∈ Π, and therefore σ ≈ ξ.

To show the initialization condition, it suffices to observe that

σ0(p) = c`p
0
.st(p) = c0.st(p) = s0,p

is the initial state for all p ∈ Π. It remains to show that for all p ∈ Π and n ∈ N,
we have σn+1(p) = Tp

(
n, σn(p), rcvd(p,n)

)
.

By induction on the definition of fine-grained executions, it is easy to verify
the following invariants, for all n, r ∈ N, m ∈ M , and p, q ∈ Π:

– If (p, r , q ,m) ∈ cn .msgs then m = Sp(r , c`p
r
.st(p), q): any message for round

r in transit from p to q was computed according to p’s send function for
round r , based on p’s local state at (the beginning of) round r .



– If r = cn .rd(q) and ⊥ 6= m = cn .rcv(q , p) then m = Sp(r , c`p
r
.st(p), q): any

message received by q from p for round r was computed according to p’s
send function for round r , based on p’s local state at (the beginning of)
round r .

For n ∈ N, consider now the transition of process p from round n to round
n+1 in execution ξ, i.e. the transition (c`p

n+1−1, c`p
n+1

). For simplicity of notation,
we write c = c`p

n+1−1 and c′ = c`p
n+1

. From the observations about round numbers
and local states we know that c.rd(p) = n, c.st(p) = c`p

n
.st(p), and c′.rd(p) =

n + 1. Since (c, c′) is a local transition of p, we have dom c.rcv(p) = HO(p,n),
and in particular c.rcv(p, q) = ⊥ iff q ∈ Π \ HO(p,n). Moreover, the second
invariant above implies that

c.rcv(p, q) = Sq(n, c`q
n
.st(q), p)

for all q ∈ HO(p,n). Altogether this means c.rcv(p) = rcvd(p,n).
Using the fact that c′.st(p) = Tp

(
c.rd(p), c.st(p), c.rcv(p)

)
and rewriting

with the above equalities, we obtain that

σn+1(p) = c′.st(p) = Tp

(
n, σn(p), rcvd(p,n)

)
,

which completes the proof. ut

We note in passing that the converse of Theorem 1 is true almost trivially.

Theorem 2. For any coarse-grained execution σ of an HO algorithm for some
HO collection

(
HO(p, r)

)
p∈Π,r∈N, there exists a fine-grained execution ξ of the

same algorithm for the same HO collection such that ξ ≈ σ.

Proof (sketch). Given a coarse-grained execution σ, it is easy to construct a
corresponding fine-grained execution where processes execute rounds in lock-
step, first sending all messages, then receiving the messages according to the
HO sets HO(p, r) and finally performing their respective local transitions. ut

3.2 Application: Verification of Local Properties

Theorem 1 can be used to verify linear-time properties of HO algorithms that
are expressed in terms of local views of processes, and that are insensitive to
specific interleavings. More formally, we say that a property P is local if for any
(coarse- or fine-grained) executions ρ1 and ρ2 such that ρ1 ≈ ρ2 we have ρ1 |= P
iff ρ2 |= P .7

Corollary 3. If P is a local property and σ |= P holds for all coarse-grained ex-
ecutions σ of an algorithm, then ξ |= P also holds for all fine-grained executions
ξ of the same algorithm.
7 As usual, ρ |= P means that P is satisfied by execution ρ.



Proof. Let ξ be some fine-grained execution (over some HO collection), then
Theorem 1 yields a coarse-grained execution σ (over the same HO collection)
such that σ ≈ ξ. By assumption, we must have σ |= P , and since P is local, this
implies ξ |= P . ut

Having to verify a given property just for all coarse-grained executions repre-
sents a significant reduction because coarse-grained executions afford a simpler
representation of the system state, and because fewer (types of) transitions must
be considered.

Corollary 3 is useful in practice if typical correctness properties are indeed
local. Observe that local properties must be stuttering invariant [8], by the defini-
tion of local equivalence ≈ of executions. Moreover, their satisfaction should not
depend on the specific interleaving of process transitions. As a trivial example
for a non-local property, suppose that each process p ∈ Π maintains a counter
of its current round in the variable rndp . Then any coarse-grained execution by
definition satisfies the LTL formula∧

p,q∈Π

�(rndp = rndq) (1)

asserting that all processes execute the same round at any moment; this formula
obviously does not hold for fine-grained executions.

In the following we indicate a sufficient syntactic criterion for determining
when a formula of LTL-X, i.e. linear-time temporal logic without the next-time
operator expresses a local property.8 We assume that the set of (flexible) state
variables that appear in formulas is of the form V =

⋃
p∈Π Vp where Vp ∩Vq = ∅

for different processes p 6= q , and such that any state s ∈ Σp of a process p ∈ Π
uniquely determines the values of Vp .

We say that a formula ϕ is a p-formula, for p ∈ Π, if it contains only state
variables from Vp . It is easy to see that p-formulas are local properties, as are
first-order combinations of p-formulas, for possibly different processes p ∈ Π.
However, temporal combinations of p-formulas are in general not local because
they can express the simulaneity of local states of different processes, or assert
temporal relations between states of processes, and the formula (1) is a typical
example since variables of different processes appear in the scope of a temporal
operator.

3.3 Consensus as a Local Property

We argue that local properties express many interesting correctness properties
of distributed algorithms. As a concrete and important example, consider the
specification of the Consensus problem [7]. We assume that the state variables
Vp include variables xp and decidep . The intuitive idea is that at the beginning
of an execution the variable xp holds the initial value of process p. Variable

8 LTL-X formulas are stuttering invariant [8]; our criterion carries over to the logic
TLA considered in Section 4 because LTL-X is a sublogic of TLA.



decidep , initially null , represents the decision taken by process p in the sense
that decidep is updated to the value v 6= null when process p decides value v .

The Consensus problem is specified by the conjunction of the following for-
mulas of LTL-X, which are all local according to the criterion introduced in
Section 3.2.

Integrity. The integrity property asserts that decision values must be among
the initial values (possibly of some other process). This property is expressed
by the following first-order combination of p-formulas:

∀v : v 6= null ∧
( ∨

p∈Π

♦(decidep = v)
)
⇒

∨
q∈Π

xq = v .

Irrevocability. A process that has decided must never change its decision value.
This property is expressed by the following p-formula, for all p ∈ Π:

∀v : v 6= null ⇒ �
(
decidep = v ⇒ �(decidep = v)

)
Agreement. The core correctness property of Consensus algorithms requires

that if any two processes decide, they decide on the same value. Again, this
can be expressed as a first-order combination of p-formulas:

∀v ,w : v 6= null ∧ w 6= null
∧

∨
p,q∈Π

(
♦(decidep = v) ∧ ♦(decideq = w)

)
⇒ v = w .

Termination. The preceding properties are all safety properties. The final
property required by Consensus is that all (non-faulty) processes eventually
decide. Because the HO model does not flag processes as being faulty [1],
this property is simply expressed by the following p-formula, for all p ∈ Π:

♦(decidep 6= null).

4 Model Checking HO Algorithms

We validate the effectiveness of our reduction-based approach to verification by
verifying finite instances of Consensus algorithms in the HO model.

Exploiting Corollary 3, we model coarse-grained executions of HO algorithms
in TLA+ [6]. We instantiate this generic model for some of the Consensus algo-
rithms that are discussed in [1], and use the TLA+ model checker tlc [12] for
verification. In this work, we do not aim at utmost efficiency, but prefer the high
level of abstraction offered by TLA+ that lets us obtain readable models, close
to the mathematical description of HO algorithms in Section 2.

However, model checking even finite instances of these algorithms would be
impossible in the fine-grained execution model: the model would have to include
round numbers and therefore be infinite-state. Even if we artificially imposed
bounds on round numbers (abandoning the verification of liveness properties),
state explosion would make verification impractical.



module HeardOf

extends Naturals
constants Proc,State,Msg , roundsPerPhase,Start( ),Send( , , , ),Trans( , , , )
variables round, state, heardof

Init
4
= ∧ round = 0

∧ state = [p ∈ Proc 7→ Start(p)]
∧ heardof = [p ∈ Proc 7→ {}]

Step(HO)
4
= let rcvd(p)

4
= {〈q ,Send(q , round , state[q ], p)〉 : q ∈ HO [p]}

in ∧ round ′ = (round + 1)%roundsPerPhase
∧ state ′ = [p ∈ Proc 7→ Trans(p, round , state[p], rcvd(p))]
∧ heardof ′ = HO

Next
4
= ∃HO ∈ [Proc → subset Proc] : Step(HO)

vars
4
= 〈round , state, heardof 〉

NoSplit(HO)
4
= ∀p, q ∈ Proc : HO [p] ∩HO [q ] 6= {}

NextNoSplit
4
= ∃HO ∈ [Proc → subset Proc] : NoSplit(HO) ∧ Step(HO)

Uniform(HO)
4
= ∃S ∈ subset Proc : S 6= {} ∧HO = [q ∈ Proc 7→ S ]

Fig. 1. Generic TLA+ module for HO algorithms.

4.1 A Generic TLA+ Model for HO Algorithms

We begin by introducing a generic representation of coarse-grained executions
of HO algorithms in TLA+. It is similar to the semantic presentation in Sec-
tion 2.2, except for two differences that help us obtain finite-state models. The
first difference concerns round numbers, which are formally a parameter of the
functions Sp and Tp . Many actual algorithms do not refer to the absolute round
number, but are organized in phases, where a phase consists of a fixed finite
number of rounds. Therefore, the functions Sp and Tp only depend on the cur-
rent round number relative to the phase number, and it suffices to count rounds
modulo the number of rounds per phase. The second difference, already indi-
cated at the end of Section 2.2, is to choose assignments of HO sets to processes
non-deterministically for each step of the algorithm instead of fixing them in
advance.

A generic TLA+ module that represents HO algorithms appears in Fig. 1.
It begins by importing the standard TLA+ module for arithmetic over natural
numbers and then declares the constant and variable parameters of the mod-
ule: the sets Proc, State and Msg represent processes, process states, and mes-
sages. Parameter roundsPerPhase indicates the number of rounds per phase.
The parameters Start , Send , and Trans will be instantianted to specify the
behavior of concrete algorithms: for each p ∈ Proc, the predicate Start(p) char-
acterizes the initial state of p, Send(p, r , s, q) yields the message that process
p sends to process q at round r of a phase, given p’s current local state s, and
Trans(p, r , s, rcvd) computes the next state of p at round r , given p’s local state



s and the partial vector rcvd of messages received, which we represent as a set
of pairs 〈q ,m〉 indicating that m was received from q .

A round of the system is represented by three variables: round indicates the
number of the current step modulo roundsPerPhase, state is an array9 of local
states per process, and heardof records the HO assignment of the preceding
transition (its initial value is chosen arbitrarily). This auxiliary variable serves
to express communication predicates.

With this understanding, the initialization and next-state predicates closely
follow the definition of coarse-grained executions in Section 2.2. The predicates
NoSplit and Uniform are two examples of formulas serving to express communi-
cation predicates. Action NextNoSplit defines a variant of the next-state relation
that enforces non-split rounds. The remaining communication predicates appear-
ing in [1] can be defined in a similar way.

4.2 Modeling and Verifying Concrete HO Algorithms in TLA+

Charron-Bost and Schiper [1] propose several Consensus algorithms in the HO
model. As an example of how these can be encoded in our TLA+ framework,
a specification of their OneThirdRule algorithm appears in Fig. 2. The module
declares the constant parameter N (the number of processes) and defines the sets
Proc and Msg : we arbitrarily specify that each process p ∈ 1..N proposes 10 ∗ p
as its initial value. Next, the module defines the remaining constant parameters
of module HeardOf . Phases of OneThirdRule consist of only one round. Process
states are represented as records with two fields x and decide, whose initialization
is obvious. At each round, each process sends its current x field to all processes.
The next-state function is defined as follows: if a process has received messages
from more than 2/3 of all processes, it updates its x field to the smallest most
frequently received value (cf. definition of min). If it has received some value v
from more than 2/3 of all processes, then it also updates its decide field to v .

Charron-Bost and Schiper show that the algorithm OneThirdRule always
achieves the integrity, irrevocability, and agreement properties, and that it guar-
antees termination for runs that eventually execute some uniform round for
“sufficiently large” heard-of sets. We express these properties in TLA and use
tlc to verify these theorems. Observe that we have expressed the correctness
properties in module OneThirdRule using different, but equivalent formulas than
those given in Section 3.3. In particular, tlc checks Validity , Agreement , and
Irrevocability as state and transition invariants while computing the state space,
which is more efficient than verifying arbitrary temporal formulas. Because the
concept of local properties is a semantic one, it is independent of the particular
syntactic formulation of the property, and we can apply Corollary 3 to deduce
that the formulas are also satisfied by fine-grained executions.

Figure 3 gives the number of generated and distinct states and the running
time of tlc for verifying these properties, as well as for the somewhat more
complicated UniformVoting algorithm that is encoded in TLA+ in a similar

9 TLA+ uses square brackets to denote functions.



module OneThirdRule

extends Naturals, FiniteSet
constants N
variables round, state, heardof

roundsPerPhase
4
= 1

Proc
4
= 1 .. N

InitValue(p)
4
= 10 ∗ p

Value
4
= {InitValue(p) : p ∈ Proc}

Msg
4
= Value

null
4
= 0

ValueOrNull
4
= Value ∪ {null}

State
4
= [x : Value, decide : ValueOrNull ]

Init(p)
4
= [x 7→ InitValue(p), decide 7→ null ]

Send(p, r , s, q)
4
= s.x

Trans(p, r , s, rcvd)
4
=

if Cardinality(rcvd) > (2 ∗N )÷ 3

then let Freq(v)
4
= Cardinality({q ∈ Proc : 〈q , v〉 ∈ rcvd})

MFR(v)
4
= ∀w ∈ Value : Freq(w) ≤ Freq(v)

min
4
= choose v ∈ Value : MFR(v) ∧ (∀w ∈ Value : MFR(w) ⇒ v ≤ w)

willDecide
4
= ∃v ∈ Value : Freq(v) > (2 ∗N )÷ 3

in [x 7→ min,

decide 7→ if willDecide then choose v ∈ Value : Freq(v) > (2 ∗N )÷ 3

else s.decide]

else s

instance HeardOf

Safety
4
= Init ∧�[Next ]vars

Liveness
4
= ♦(Uniform(heardof ) ∧ Cardinality(heardof ) > (2 ∗N )÷ 3)

Integrity
4
= ∀p ∈ Proc : �

`
state[p].decide ∈ {null} ∪ {InitValue(p) : p ∈ Proc}

´
Irrevocability

4
= ∀p ∈ Proc : �[state[p].decide = null ]state[p].decide

Agreement
4
= ∀p, q ∈ Proc : �(state[p].decide 6= null ∧ state[q ].decide 6= null

⇒ state[p].decide = state[q ].decide)

Termination
4
= ∀p ∈ Proc : ♦(state[p].decide 6= null)

theorem Safety ⇒ Integrity ∧ Irrevocability ∧Agreement

theorem Safety ∧ Liveness ⇒ Termination

Fig. 2. TLA+ specification of the algorithm OneThirdRule.



OneThirdRule UniformVoting

N = 3 N = 4 N = 3 N = 4

states 5633 9,830,401 21351 15,865,770

distinct 11 150 122 887

time (s) 1.87 939 13.8 1330

Fig. 3. Results of verification with tlc.

way. Measurements were taken on an Intel R© 2.16GHz Core Duo R© laptop with
2GB RAM running Mac OSX 10.5. It is apparent that the non-deterministic
choice of a collection of heard-of sets at every transition induces a combinatorial
explosion in the number of successor states that are generated, although many of
them are identical (cf. the low number of distinct states generated by the model
checker). As mentioned above, we regard these results just as an indication of the
feasibility of the approach; there is ample room for improvement using standard
optimization techniques or symbolic model checking. In particular, we did not
apply symmetry reduction, except for identifying states that differ only in the
value of the auxiliary variable heardof .

5 Conclusion

The main contribution of this paper is the precise statement and the proof of
a reduction theorem for algorithms expressed in the HO model. The key ingre-
dient for obtaining the reduction theorem is the fact that the HO model relies
on communication-closed rounds. For this reason, the local transition (of a fine-
grained execution) in which process p passes from round r to round r + 1 is
causally independent of all transitions of processes at rounds r ′ > r . Hence, exe-
cutions can be rearranged into coarse-grained executions whose unit of atomicity
is that of global rounds of all processes, without changing the local observations
of any process.

As a corollary to the reduction theorem, we obtain a method for applying
standard model checking algorithms for the verification of local properties of
distributed algorithms, that is, properties whose satisfaction only depends on
local views of processes. We have shown that this class of properties contains the
correctness properties of Consensus algorithms. Specifically, we have been able
to verify (finite instance of) some Consensus algorithms proposed in [1], which
would be impossible in a standard, fine-grained representation of executions.

Tsuchiya and Schiper [9, 10] applied symbolic and bounded model checkers to
verify Consensus algorithms in the HO model over coarse-grained runs. However,
they do not explain why the verification of coarse-grained models is sufficient.
Our contribution can be understood as a formal justification of their models; we
also delimit the applicability of the approach by introducing the notion of local
properties.

In future work, we intend to further validate this approach by verifying more
distributed algorithms. We are also interested in syntactic criteria (beyond the



basic one presented in Section 3.3) for determining if a temporal formula ex-
presses a local property. A longer-term goal would be to have model checkers
apply this kind of reduction automatically whenever the user attempts to verify
a local property of a distributed algorithm.
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