Truly On-The-Fly LTL Model Checking

Moritz Hammet, Alexander Knapp, and Stephan Mefz

1 Institut fur Informatik, Ludwig-Maximilians-Universit Minchen
{Moritz.Hammer,Alexander.Knapp}@pst.ifi.lmu.de
2 INRIA Lorraine, LORIA, Nancy
Stephan.Merz@loria.fr

Abstract. We propose a novel algorithm for automata-based LTL model check-
ing that interleaves the construction of the generaliz&édrBautomaton for the
negation of the formula and the emptiness check. Our algorithm first converts the
LTL formula into a linear weak alternating automaton; configurations of the alter-
nating automaton correspond to the locations of a generaligetiiButomaton,

and a variant of Tarjan’s algorithm is used to decide the existence of an accept-
ing run of the product of the transition system and the automaton. Because we
avoid an explicit construction of thetBhi automaton, our approach can yield
significant improvements in runtime and memory, for large LTL formulas. The
algorithm has been implemented within thei® model checker, and we present
experimental results for some benchmark examples.

1 Introduction

The automata-based approach to linear-time temporal logic (LTL) model checking re-
duces the problem of deciding whether a formdildolds of a transition systerfi’

into two subproblems: first, one constructs an automaflop that accepts precisely

the models of-¢. Second, one uses graph-theoretical algorithms to decide whether the
product of T and 44 admits an accepting run; this is the case if and only does

not hold of 7. On-the-fly algorithms [2] avoid an explicit construction of the product
and are commonly used to decide the second problem. However, the construction of a
non-deterministic Bchi (or generalized 8chi) automatomd- is already of complex-

ity exponential in the length af, and several algorithms have been suggested [3-5, 7,
18, 20] that improve on the classical method for computiighs automata [9]. Still,
there are applications, for example when verifying liveness properties over predicate
abstractions [13], where the construction®f, takes a significant fraction of the over-

all verification time. The relative cost of computicfy.y is particularly high wherd

does not hold of7, because acceptance cycles are often found rather quickly when
they exist.

In this paper we suggest an algorithm for LTL model checking that interleaves the
construction of (a structure equivalent to) the automaton and the test for non-emptiness.
Technically, the input to our algorithm is a transition systénand a linear weak alter-
nating automaton (LWAA, alternatively known as a very weak alternating automaton)
corresponding ten¢. The size of the LWAA is linear in the length of the LTL formula,
and the time for its generation is insignificant. It can be considered as a symbolic repre-
sentation of the corresponding generalizéccB automaton (GBA). LWAA have also

been employed as an intermediate format in the algorithms suggested by Gastin and
Oddoux [7], Fritz [5], and Schneider [17]. Our main contribution is the identification of

a class of “simple” LWAA whose acceptance criterion is defined in terms of the sets of
locations activated during a run, rather than the standard criterion in terms of automa-
ton transitions. To explore the product of the transition system and the configuration
graph of the LWAA, we employ a variant of Tarjan’s algorithm to search for a strongly
connected component that satisfies the automaton’s acceptance condition.

We have implemented the proposed algorithm as an alternative verification method
in the S 1IN model checker [12], and we discuss some implementation options and report
on experimental results. Our implementation is available for downloactat: / /www.
pst.ifi.lmu.de/projekte/lwaaspin/.

2 LTL and linear weak alternating automata

We define alternatingr-automata, especially LWAA, and present the translation from
propositional linear-time temporal logic LTL to LWAA. Throughout, we assume a fixed
finite set?’ of atomic propositions.

2.1 Linear weak alternating automata

We consider automata that operate on temporal structuresy-sequences of valu-
ations of 7. Alternating automata combine the existential branching mode of non-
deterministic automata (i.e., choice) with its dual, universal branching, where several
successor locations are activated simultaneously. We present the transitions of alternat-
ing automata by associating with every locatipa Q a propositional formul&(q) over

7/ andQ. For example, we interpret

() = (VAQRA(Q1Va3))V (-WAQL) VW

as asserting that if locatiogy is currently active and the current input satisfiethen

the automaton should simultaneously activate the locatipasd eitheiy; or gs. If the

input satisfies-w thenq; should be activated. If the input satisfigshen no successor
locations need to be activated fragn Otherwise (i.e., if the input satisfies/), the au-
tomaton blocks because the transition formula can not be satisfied. At any point during
a run, a set of automaton locationso@nfiguratior) will be active, and transitions are
required to satisfy the transition formulas of all active locations. Locatipp€) may

only occur positively in transition formulas: locations cannot be inhibited. We use the
following generic definition of alternating-automata:

Definition 1. Analternatingw-automatoris a tuple4 = (Q, qo, 8, Acc) where

— Qs afinite set (of locations) wherer@l’ = 0,

— (o € Q is the initial location,

— 0:Q— B(QUY) is the transition function that associates a propositional formula
0(qg) with every location ¢ Q; locations in Q can only occur positively &(q),

— and AccC QW is the acceptance condition.

{v}

(a) Transition graph. (b) Prefix of run dag with configurations.

Fig. 1. Visualization of alternating automata and run dags.

When the transition formulaX(q) are written in disjunctive normal form, the alter-
nating automaton can be visualized as a hypergraph. For example, Fig. 1(a) shows an
alternatingw-automaton and illustrates the above transition formula. We write o
if g may activatey, i.e. if ' appears id(q).

Runs of an alternating>-automaton over a temporal structuwre= 55s; ... are not
just sequences of locations but give rise to trees, due to universal branching. However,
different copies of the same target location can be identified, and we obtain a more
economical dag representation as illustrated in Fig. 1(b): the vertical “slices” of the dag
represent configurations that are active before reading the next input state.

We identify a set and the Boolean valuation that makes true precisely the elements
of the set. For example, we say that the detsv, 02, g3} and{w} satisfy the formula
0(qgp) above. For a relationC Sx T, we denote its domain by ddim. We denote the
image of a seA C Sunderr by r(A); for x € Swe sometimes write(x) for r({x}).

Definition 2. Let 4 = (Q,qo, 0, Acc) be an alternatingo-automaton and = ss; .. .,
where $ C 7, be a temporal structure. Aun dagof 4 over o is represented by the
w-sequencé = epe; ... of its edgeseC Q x Q. The configurationsge; ... of A, where
¢i C Q, are inductively defined byye= {go} and ;1 = &(c;). We require that for all
i € N, dom(g) C ¢ and that for all ge ¢;, the valuation sUe (q) satisfiesd(q). Afinite
run dagis a finite prefix of a run dag.

Apathin arun dagAis a (finite or infinite) sequenae= pop; . .. of locations pe Q
such that p = qo and (i, pi+1) € & for all i. A run dagA is acceptingff te Acc holds
for all infinite pathsttin A. Thelanguage£(4) is the set of words that admit some
accepting run dag.

Because locations do not occur negatively in transition formd(gs it is easy to
see that whenevey U X satisfiesd(q) for some seX of locations, then so doesUY
for any superseY of X. However, the dag resulting from replaciXgby Y will have
more paths, making the acceptance condition harder to satisfy. It is therefore enough to
consider only run dags that arise from minimal models of the transition formulas w.r.t.
the states of the temporal structure, activating as few successor locations as possible.

LWAA are alternatingo-automata whose accessibility relation determines a partial
order:q is reachable frong only if ' is smaller or at most equal tp We are interested
in LWAA with a co-Biichi acceptance condition:

Definition 3. A (co-Bichi) linear weak alternating automatofl = (Q,qp,0,F) is a
tuple where Q, g, andd are as in Def. 1 and KZ Q is a set of locations, such that

— the relation=< 4 defined by =<4 q iff g —* ¢ is a partial order on Q and
— the acceptance condition is given by

Acc= {pop1... € Q“: pi € F for only finitely many E N}.

In particular, the hypergraph of the transitions of an LWAA does not contain cy-
cles other than self-loops, and run dags of LWAA do not contain “rising edges” as
in Fig. 1. It follows that every infinite path eventually remains stable at some loca-
tion g, and the acceptance condition requires thdtF holds for that “limit location”.
LWAA characterize precisely the class of star-fregegular languages, which corre-
spond to first-order definabte-languages and therefore also to the languages definable
by propositional LTL formulas [16, 22].

2.2 From LTL to LWAA

Formulas of LTL (over atomic propositions 1) are built using the connectives of
propositional logic and the temporal operatargnext) andU (until). They are inter-
preted over a temporal structure= 55 . .. € (27) as follows; we writes|; to denote
the suffixss.s ... of o from states:

oEp iff pes ocEoAY iff oE¢ andoky
ol-¢ iff oo oEXo iff oliE¢
oE=¢oUY iff forsomeieN, ol =yandforallj<i,alj =¢

We freely use the standard derived operators of propositional logic and the following
derived temporal connectives:

Foé = trueU ¢ (eventuallyd)
Go = -F—¢ (alwaysd)
VY =-(-0U-p) (¢ releases)

An LTL formula ¢ can be understood as defining the language

L) = {oe(@)*: 0= ¢},

and the automata-theoretic approach to model checking builds on this identification of
formulas and languages, via an effective construction of autorigtaccepting the
languageL (¢). The definition of an LWAA4, is particularly simple [15]: without loss

of generality, we assume that LTL formulas are given in negation normal form (i.e.,
negation is applied only to propositions), and therefore include clauses for the dual op-
eratorsv andV. The automaton iy = (Q,dy,d,F) whereQ contains a locatiomwyy

] locationq \ 4(q) ‘

gy (Y a literal) U
Oynx 3(ay) A d(ax)
Qyvx 3(ay) Vv &(ay)
Ox g Ay
Qyuy S(ay) Vv (3(ay) A dyux)
Qv S(ay) A (3(ay) V dyvy)
(a) Transition formulas ofly (b) Ak p (€) Apu(qur)

Fig. 2. Translation of LTL formulas into LWAA.

for every subformulap of ¢, with gy being the initial location. The transition formu-
lasd(qy) are defined in Fig. 2(a); in particular, LTL operators are simply decomposed
according to their fixpoint characterizations. TheBeif co-final locations consists of

all locationsgyuy € Q that correspond to “until” subformulas ¢f It is easy to verify

that the resulting automatofl, is an LWAA: for any locationsyy, anday, the defini-

tion of 3(qy) ensures thatyy — gy holds only if is a subformula ofp. Correctness
proofs for the construction can be found in [15, 23]; conversely, Rohde [16] adithg

and Thomas [14] prove that for every LWAA there is an LTL formulap 4 such that
L(§a) = L(A).

The number of subformulas of an LTL formujais linear in the length ob, and
therefore so is the size of,. However, in practice the automaton should be minimized
further. Clearly, unreachable locations can be eliminated. Moreover, whenever there is
a choice between activating s&®rY of locations wher&X C'Y from some locatiomj,
the smaller seX should be preferred, anfishould be activated only K cannot be. As
a simple example, we can defid@rp) = pV (-PAQrp) instead 0B(grp) = PV Orp.

Figure 2 shows two linear weak alternating automata obtained from LTL formulas
by applying this construction (the locationsknare indicated by double circles).

Further minimizations are less straightforward. Because the automaton structure
closely resembles the structure of the LTL formula, heuristics to minimize the LTL
formula [4, 18] are important. Fritz and Wilke [6] discuss more elaborate optimizations
based on simulation relations on the Qeatf locations.

3 Deciding language emptiness for LWAA

In general, it is nontrivial to decide language emptiness for alternatiagtomata, due

to their intricate combinatorial structure: a configuration consists of a set of automaton
locations that have to “synchronize” on the current input state during a transition to a
successor configuration. The standard approach is therefore based on a translation to
non-deterministic Bchi automata, for which emptiness can be decided in linear time.
Unfortunately, this translation is of exponential complexity.

Linear weak alternating automata have a simpler combinatorial structure: the tran-
sition graph contains only trivial cycles, and therefore a run dag is hon-accepting only
if it contains a path that ends in a self-loop at some locatjenF. This observation
gives rise to the following non-emptiness criterion for LWAA, which is closely related
to Theorem 2 of [7]:

Theorem 4. Assume tha#l = (Q,qo,d,F) is an LWAA. TherL(A4) # 0 if and only if
there exists a finite run dafy = epe; . . . €, with configurations gc; . . . ¢h1 over a finite
sequencess . . s, of states and some<k n such that

1. ¢k =Chy1 and
2. for every ge F, one hagq,q) ¢ e; for some jwhere kK j <n.

Proof. “If": Consider the infinite dag\ = ey...e_1(&...en)®. Becausey = Cn, 1, it
is obvious thatY' is a run dag oveo = ... & 1(S- .- Sn)®; we now show thaty' is
accepting. Assume, to the contrary, thet pops ... is some infinite path ik such
that p; € F holds for infinitely manyi € N. Becauseq is an LWAA, there exists some
me N and some € Q such thatp; = g for all i > m. It follows that(q,q) € g holds for
alli > m, which is impossible by assumption (2) and the constructioll of herefore,
A" must be accepting, andl(.2) # 0.

“Only if": Assume thato = 5ps3.... € £(4), and letA’ = epe; ... be some accepting
run dag of4 over o. SinceQ is finite, A’ can contain only finitely many different
configurationscy, ¢y, . .., and there is some configuratienC Q such thatc; = c for
infinitely manyi € N. Denote byig < i1 < ... the w-sequence of indexes such that
ci; = c. Ifthere were somg € F such thatj € ej(q) for all j > io (implying in particular
thatq e c; for all j > ig by Def. 2) thenA would contain an infinite path ending in a
self-loop atg, contradicting the assumption that is accepting. Therefore, for every
q € F there must be somg, > i such thatq,q) ¢ €j,. Choosingk =i andn=im—1
for somem such thaiy, > jq for all (finitely many)q € F, we obtain a finite run dag
as required. ad

Observe that Thm. 4 requires to inspect tfansitionsof the dag and not just the
configurations. In fact, a run dag may well be accepting although some locptidhn
is contained in all (or almost all) configurations. For example, consider the LWAA for
the formulaG XF p: the locationgr , will be active in every run dag from the second
configuration onward, even if the run dag is accepting. We now introduce a class of
LWAA for which it is enough to inspect the configurations.

Definition 5. An LWAAZ = (Q,qo,d,F) issimpleif forall g € F, all ¢’ € Q, all states
sC ¥, and all XY C Q not containing q, if & XU {q} = 6(q') and sUY = &(q) then
sUXUY E3(q).

In other words, if a co-final locatiog can be activated from some locatighfor
some stats while it can be exited during the same transition, thehas an alternative
transition that avoids activatirgy and this alternative transitions activates only locations
that would anyway have been activated by the joint transitions ffamdq’. For simple
LWAA, non-emptiness can be decided on the basis of the visited configurations alone,
without memorizing the graph structure of the run dag.

{pr {p} 0 .{m .{m 0 {p}

> — PO

Pp e e e T

{p} {p} 0 {rr {p} 0 {p}

GF P e———>e————ro——re—— e ro——>0——» .-

fo \\ \,&.\

Fig. 3. lllustration of the construction of Thm. 6.

Theorem 6. Assume that? = (Q,qo,0,F) is a simple LWAA. Ther(4) # 0 if and
only if there exists a finite run daly= epe; . .. €, with configurations ¢c; ... ch1 Over
a finite sequenceys. . s, of states and some<k n such that

1. ¢k =cpy1 and
2. for every ge F, one has ¢ c; for some jwhere kK j <n.

Proof. “If": The assumptionq ¢ c; and the requirement that d¢ej) C c; imply that
(0,q) ¢ ej, and thereforeL(4) # 0 follows using Thm. 4.

“Only if”: Assume that£(4) # 0, obtain a finite run dag satisfying the conditions
of Thm. 4, and let = n—k+ 1 denote the length of the loop. “Unwindingt, we
obtain an infinite run dagpe; ... over the temporal structus; ... whose edges are
& = € ((i—k) modl) fOr i >n, and similarly for the states and the configurations.
W.l.o.g. we assume that the dag contains no unnecessary edges, i.e. thag far/gll
(9,q) € & holds only ifq — ¢.

We inductively construct an infinite run dag= €€ . . . with configurationssyc ...
such thatc] C ¢ as follows: letc;, = co and fori <k, let€ = g andc; = ¢j;1. For
i >k, assume that/ has already been defined. Ligtdenote the set af € ¢ NF such
that (q,q) ¢ & butq € e(c), and for anyq € F let Q; denote the set of locations
q € ¢ such that(q,q) € & and letYy = e(q). Becauseq is simple, it follows that
sU(e(d)\{a})UYq = 8(d), forallg € F andq’ € Q;. We letel be obtained from the
restriction ofe to ¢/ by deleting all edge&y', q) for g € K and adding edges/,q") for
all g € Q, andq” € Y, for q € F. Clearly, this ensures thaf,; C ¢i;1 holds for the
resulting configuration and thet, ; NF = 0.

For anyq € F;, the definition of an LWAA and the assumption tlip# Yy ensure
thatq” <4 g holds for allg” € Yg, as well aqy <4 d for all g € Q;,. In particular, we
must havey” # ¢ for all " € Yq andq € Q, and therefore does not contain more
self loops tharg: for all p € Q, we have(p, p) € € only if (p, p) € &.

Consequentlyp’ is an accepting infinite run dag such that for evgrg F there
exists someg > k such thatg ¢ c’J It now suffices to pick soma > k satisfying the
conditions of the theorem; such arexists becausE is finite andA’ can contain only
finitely many different configurations. ad

Fig. 3 illustrates two accepting run dags for a simple LWAA: the dag shown above
satisfies the criterion of Thm. 4 although the co-final location correspondirfigpto

remains active from the second configuration onward. The dag shown below is the result
of the transformation described in the proof, and indeed the loc&tjis infinitely
often inactive.

We now show that the LWAAAG, for an LTL formula¢ is simple provided) does
not contain subformulaX (x U X’). Such subformulas are easily avoided becaXise
distributes ovetd. Actually, our implementation exploits the commutativityXfwith
all LTL connectives to rewrite formulas such that no other temporal operators are in the
scope ofX; this is useful for preliminary simplifications at the formula level. Also, the
transformations described at the end of Sect. 2.2 ensure that the LWAA remains simple.

Theorem 7. For any LTL formulad that does not contain any subformutdy U x'),
the automatordy is a simple LWAA.

Proof. Let 4y = (Q,0y,8,F) and assume thatc F, g € Q, andX,Y C Q are as in
Def. 5, in particulasu X U {g} = d(d') andsUY = 8(q). The proof is by induction on
Y whereq' = qy.

W= (-)v: dd) =, sowe must have= d(q'), and the assertiosU X UY | 5(q)
follows trivially.

p=x@x, ®e{AV}: 8(d)=23(ay) ®5(ay), and the assertion follows easily from
the induction hypothesis.

P =Xx: 0(q) =ay, and by assumptioxis not anU formula, sogy ¢ F. In particular,
ay # 0, and so the assumptiau X U {q} = &(q') implies thatsU X |= &(q), and
the assertiosUXUY = 6(q') follows by monotonicity.

P=xUx":3(d)=20(ay)V (d(ay) Ad). In casesuXU{q} = d(qy), the induction
hypothesis impliesUXUY = 3(qy/), hence alssUXUY |=8().

If suXu{a} = d(ay) Ad, we consider two cases: if = thensUY = d(q)
holds by assumption. Moreovest) X UY = 8(qy) holds by induction hypothesis,
and the assertion follows.

Otherwise, we must haw € X. Again,sUXUY = 8(qy) follows from the induc-
tion hypothesis, and sinag € X it follows thatsUXUY = d(qy) Adf.

P=xVX: dd)=23(ay)A(S(ay) V). In particular,su X U {q} = 8(qy), and we
obtainsUX UY k= &(qy) by induction hypothesis.

If suXu{a} = 8(ay), we similarly obtairsUXUY = 8(qy). Otherwise, note that
g# d becauseg € F andq ¢ F (since it is not ariJ formula). Therefore, we must
havesUX = ¢/, and a fortiorisUX UY = ¢, completing the proof. O

Let us note in passing that simple LWAA are as expressive as LWAA, i.e. they
also characterize the class of star-feeeegular languages: from [14, 16] we know that
for every LWAA 4 there is an LTL formulap z such thatL($4) = £(A4). SinceX
distributes ovelJ, ¢ 4 can be transformed into an equivalent formdlaof the form
required in Thm. 7, andly is a simple LWAA accepting the same languagedas

4 Model checking algorithm

We describe a model checking algorithm based on the nonemptiness criterion of Thm. 6,
and we discuss some design decisions encountered in our implementation. The algo-
rithm has been integrated within the LTL model checkers and we present some
results that have been obtained on benchmark examples.

procedure Visit(s, C):

let ¢ = (s,C) Iin
inComp([c] := false ; root[c] := c; labels[c] := O0;
cnt[c] := cnt; cnt := cnt+l; seen := seen U {c};
push(c, stack);
forall ¢’ = (s',C’) in Succ(c) do

if ¢’ ¢ seen then Visit(s’,c’) end if ;
if —inComp([c’] then
if cntlroot[c’]] < cnt[root[c]] then
labels[root([c’]] := labels[root[c’]] U labels[root[c]];
root[c] := root[c’]
end if ;
labels[root[c]] := labels[root[c]]
U (f_lwaa \ C); // f_lwaa = co-final locations
if labels[root([c]] = f_lwaa then raise Good_Cycle end if ;
end if ;
end forall ;
if root[c]=c then

repeat
d := pop(stack);
inComp[d] := true ;
until d=c;
end if ;
end let ;
end Visit;

procedure Check:

stack := empty; seen := 0; cnt := 0;
Visit (init_ts, {init_lwaa}); // start with initial location
end Check;

Fig. 4. LWAA-based model checking algorithm.

4.1 Adapting Tarjan’s algorithm

Theorem 6 contains the core of our model checking algorithm: given the simple LWAA
A-¢ corresponding to the negatiefp of the property to be verified, we explore the
product of the transition systef and the graph of configurations ¢t ¢, search-
ing for a strongly connected component that satisfies the acceptance condition. In fact,
in the light of Thm. 6 a simple LWAA4Z can alternatively be viewed as a symbolic
representation of a GBA whose locations are sets of locationg, @nd that has an
acceptance condition per co-final locationaf

The traditional CVWY algorithm [2] for LTL model checking based oidBi au-
tomata has been generalized for GBA by Tauriainen [21], but we find it easier to adapt
Tarjan’s algorithm [19] for finding strongly connected components in graphs. Figure 4
gives a pseudo-code representation of our algorithm. The depth-first search operates
on pairs(s,C) wheres s a state of the transition system adds a configuration of the
LWAA. Given a pairc = (s,C), the call tosucc computes the ssuiccy(S) x sucg (s,C)
containing all paire’ = (s/,C’) of successor statessof the transition system and suc-
cessor configuration@' of the LWAA, i.e. thoseC’ which satisfysUC' = 8(q) for all
g € C. Tarjan’s algorithm assigns a so-called root candidate: to each node of the
graph, which is the oldest node on the stack known to belong to the same SCC.

In model checking, we are not so much interested in actually computing SCCs: it is
sufficient to verify that the acceptance criterion of Thm. 6 is met for some strongly con-
nected subgraph (SCS). To do so, we associatedal s field with the root candidate of
each SCC that accumulates the locatigrsF that have been found absent in some pair
(s,C) contained in the SCC. Whenevetbels is found to contain all co-final states of
the LWAA (denoted byf_1waa), the SCS must be accepting and the search is aborted.
Note that we need to maintain two stacks: one for the depth-first search recursion, and
one for identifying SCCs.

If an accepting SCS is found, we also want to produce a counter-example, and Tar-
jan’s algorithm is less convenient for this purpose than the CVWY algorithm whose re-
cursion stack contains the counter-example once a cycle has been detected. In our case,
neither the recursion stack nor the SCC stack represent a complete counter-example.
A counter-example can still be obtained by traversing the nodes of an accepting SCS
that have already been visited, without re-considering the transition system. We add
two pointers to our node representation in the SCC stack, representing “backward” and
“forward” links that point to the pair from which the current node was reached and to
the oldest pair on the stack that is a successor of the current pair. Indeed, one can show
that the subgraph of nodes on the SCC stack with neighborhood relation

{(c,c) : ¢ = forward(c) or c = backwardc’)}

also forms an SCS of the product graph. A counter-example can now be produced by
enforcing a visit to all the pairs that satisfy some acceptance condition.

4.2 Computation of successor configurations

The efficient generation of successor configurationsuicg (s,C) is a crucial part of

our algorithm. Given a configuratid® C Q of the LWAA and a stats of the transition
system (which we identify with a valuation of the propositional variables), we need to
compute the set of all’ such thasUC' |= 8(q) holds for allq € C. Moreover, we are
mainly interested in finding minimal successor configurations.

An elegant approach towards computing successor configurations makes use of
BDDs [1]. In fact, the transitions of an LWAA can be represented by a single BDD.
The set of minimal successor configurations is obtained by conjoining this BDD with
the BDD representations of the stat@nd the source configuratid®, and then ex-
tracting the set of all satisfying valuations of the resulting BDD. Some experimentation
convinced us, however, that the resulting BDDs become too big for large LTL formulas.
Alternatively, one can store BDDs representd{q) for each locatiorg and form the
conjunction of alld(q) for g € C. Again, this approach turned out to consume too much
memory.

We finally resorted to using BDDs only as a representation of configurations. To do
so, we examine the hyperedges of the transition graph of the LWAA, which correspond
to the clauses of the disjunctive normal formafy). For every locatiomy € C, we
compute the disjunction of its enabled transitions, and then take the conjunction over
all locations inC. We thus obtain

suci;(sC) = A (V (t\9)

geC teenableds,q)

as the BDD representing the set of successor configurations, whateeds, q) de-

notes the set of enabled transitionscpfor states, i.e. those transitions for which

sUQ [=t. Although this requires pre-computing a potentially exponentially large set of
transitions, this approach appears to be fastest for BDD-based calculation of successor
nodes.

We compare this approach to a direct calculation of successor configurations that
stores them as a sorted list, which is pruned to remove non-minimal successors. Al-
though the pruning step is of quadratic complexity in our implementation (it could be
improved toO(nlogn) time), experiments showed that it pays off handsomely because
fewer nodes need to be explored in the graph search.

4.3 Adapting Spin

Either approach to computing successors works best if we can efficiently determine
the set of enabled transitions of an LWAA location. One way to do this is to generate
C source code for a given LWAA and then use the CPU arithmetics. Fine 8odel
checker employs a similar approach, albeit farcBi automata, and this is one of rea-
sons why we adapted it to use our algorithm.

SPIN [10, 12], is generally considered as one of the fastest and most complete tools
for protocol verification. For a given model (written in Promela) anttli automa-
ton (called “never-claim”), it generates C sources that are then compiled to produce a
model-specific model checkerp®\ also includes a translation from LTL formulas to
Biichi automata, but for our comparisons we usedLthe?BA tool due to Gastin and
Oddoux [7], which is faster by orders of magnitude for large LTL formulas.

Our adaptation, calledwaa SpiN, adds the generation of LWAA torsN, and mod-
ifies the code generation to use Tarjan’s algorithm and on-the-fly calculation of succes-
sor configurations. This involved about 150 code changes, and added about 2600 lines
of code. $IN includes elaborate optimizations, such as partial-order reduction, that
are independent of the use of non-deterministic or alternating automata and that can
therefore be used with our implementation as well. We have not yet adapte S
optimizations of memory usage such as bitstate hashing to our algorithm, although we
see no obstacle in principle to do so.

4.4 Experimental results

Geldenhuys and Valmari [8] have recently proposed to use Tarjan’s algorithm, but for
non-deterministic Bchi automata, and we have implemented their algorithm for com-
parison. We have not been able to reproduce their results indicating that Tarjan’s al-
gorithm outperforms the CVWY algorithm on nondeterministiacBi automata (their
paper does not indicate which implementation of CVWY was used). In our experiments,
both algorithms perform head-to-head on most examples. We now describe the results
for the implementation based on LWAA.

For most examples, the search for an accepting SCS in the product graph is slower
than the runtime of the model checker produced bynSafter LTL2BA has generated
the Bichi automaton. However, our algorithm can be considerably faster than gener-
ating the Bichi automaton and then checking the emptiness of the product automaton,

for large LTL formulas. However, note that bottPi® and our implementation use
unguided search, and we can thus not exactly compare single instances of satisfiable
problems.
Large LTL formulas are not as common as one might expeat’'Simplementation
of the CVWY algorithm can handle weak fairness of processes directly; such conditions
do not have to be added to the LTL formula to be verified. We present two simple and
scalable examples: the dining philosophers problem and a binary semaphore protocol.
For the dining philosophers example, we want to verify that if every philosopher
holds exactly one fork infinitely often, then philosopher 1 will eventually eat:

GFhasFork A ... A\GFhasFork, = GFeat

The modekinphiln denotes the situation where alphilosophers start with their
right-hand fork, which may lead to a deadlock. The madelphilni avoids the dead-
lock by letting then-th philosopher start with his left-hand fork.

For the binary semaphore example we claim that if strong fairness is ensured for
each process, all processes will eventually have been in their critical section:

(GFcanentef = GFenten) A... A (GFcanentef = GFenter,) = Fallcrit

By sfgoodn, we denote a constellation withh processes and strong fairness as-
sumed for each of them, whilefbadn denotes the same constellation, except with
weak fairness for process, which will allow the process to starve.

Table 1 contains timings (in seconds) for the different steps of the verification pro-
cess for IN 4.1.1 and for our WAA SPIN implementation. 8IN requires successive
invocations oflt12ba, spin, gcc andpan; LWAASPIN combines the first two stages.

The times were measured on an Intel Penffus) 3.0 GHz computer with 1GB main
memory running Linux and without other significant process activity. Entries “0.0.t.”
indicate that the computation did not finish within 2 hours, while “0.0.m.” means “out
of memory”.

We can see that most of the time required BiNSis spent on preparing thean
model checker, either by calculating the non-deterministicts automata for the din-
ing philosophers, or by handling the large automata sources for the binary semaphore
example. WAA SPIN significantly reduces the time taken for pre-processing.

The sizes of the generated automata are indicated in Tab. 2. “States seen” denotes
the number of distinct states (of the product automaton) encounteredvbhy $PIN
using the direct successor configuration calculation approach. It should be noted that
the Biichi automata for the dining philosophers example are very small compared to
the size of the formula, and are in fact linear; even fordhephil10i case, the au-
tomaton contains only 12 locations. This is not true for the semaphore example: the
Biichi automaton fosfgood7 contains 3025 locations and 23391 transitions. Still, one
advantage of usingTL2BA is that a Bichi automaton that has been computed once
can be stored and reused; this could reduce the overall verification time for the dining
philosophers example where the same formula is used for both the valid and the invalid
model.

We can draw two conclusions from our data: first, the preprocessingdyspin
uses very little time because we do not have to calculate tichiEautomaton (although

Problem|Counter SPIN LWAASPIN
example| 1t12ba [spin [gcc [pan lwaaspin[gcc [pan
dinphil6 yes 0.431 0.019 0.601 0.079 0.019 0.579 0.163
dinphil8 yes 35946 0.02 0.671 0.133 0.027 0.818 0.166
dinphill0| vyes ||3611724 0.025 0.767] 1.642 0.057 1.899 0.170

dinphill2| yes 0.0.t, 0.141| 6.644 0.206
dinphill4| vyes 0.499| 28082 0.431
dinphill5| vyes 0.972| o0.0.m

dinphil6i no 0.431| 0.024 0639 0.244 0.020| 0.616 0.569

dinphil8i no 35946 0.021 0.711 7.309 0.028| 0.861 20.177
dinphill0if no ||3611724| 0.025 0.807| 722874 0.070| 2.623 623760

dinphil1lii no 0.0.t. 0.099| 3438 o0.0.m
sfbad6 yes 1.904| 00912 7.284 0.025 0.066| 2211 1.312
sfbad7 yes 27.674| 42525 o0.0.m 0.179| 7.423 7.848
sfbad8 yes 0.784| 43472 7.000
sfbad9 yes 2.627| o0.0.m

sfgood6 no 2.292| 17329 27608 2.193 0.064| 2227 2540
sfgood? no 36.306| 417.485 0.0.m 0.357| 8.214f 15.940
sfgood8 no 0.718| 42688 140130
sfgood9 no 2.634| o0.0.m

Table 1. Comparison of 8IN and LwAA SPIN (BDD-less successor calculation)

Problem|[Successor calculatifin LWAA Bichi States

BDD [direct [[LocationgTransitionsLocationgTransitions seen
dinphil6 0.834 0.761 10 207 8 36, 105
dinphil8 1.194 1.011 12 787 10 55 119
dinphil10 2.803 2.126 14 3095 12 78 133
dinphil6i 1.291] 1.205 10 207 8 36| 46165
dinphil8i 21.802 21021 12 787 10 55/1.2. 10°
dinphil10i[| 643006 626453 14 3095 12 78/1.5- 107
sfbad6 16.664 3.589 26 4140 252 1757 137887
sfbad7 354.874 15461 30 16435 1292 8252 597686
sfgood6 32.261 4.831 26 4139 972 5872 221497
sfgood7 || 115539 24511 30 16434 3025 23391 872589

Table 2. Comparison of successor calculation, and sizes of the automata.

strictly speaking our implementation is also exponential because it transforms the tran-
sition formulas into disjunctive normal form). This makes up for the usually inferior
performance of oupan version. It also means that we can at least start a model check-
ing run, even for very large LTL formulas, in the hope of finding a counter-example.
Second, we can check larger LTL formulas. Ultimately, we encounter the same diffi-
culties as 8IN during both thegcc and thepan phases; after all, we are confronted
with a PSPACE-complete problem. The pre-processing phase could be further reduced
by avoiding the generation of an exponential number of transitions in the C sources,

postponing more work to thean executable. Besides, the bitstate hashing technique as
implemented in 8IN [11] could also be applied to Tarjan’s algorithm.

Table 2 also compares the two approaches to computing successor configurations
described in Sect. 4.2. The BDD-based approach appears to be less predictable and
never outperforms the direct computation, but further experience is necessary to better
understand the tradeoff.

5 Conclusion and further work

We have presented a novel algorithm for the classical problem of LTL model checking.
It uses an LWAA encoding of the LTL property as a symbolic representation of the
corresponding GBA, which is effectively generated on the fly during the state space
search, and never has to be stored explicitly. By adapting the @odel checker to

our approach, we validate that, for large LTL formulas, the time gained by avoiding the
expensive construction of a non-deterministiecBi automaton more than makes up for
the runtime penalty due to the implicit GBA generation during model checking, and this
advantage does not appear to be offset by the simplifications applied to the intermediate
automata by algorithms such ex. 2BA. However, we do not yet really understand the
relationship between minimizations at the automaton level and the local optimizations
applied in our search.

We believe that our approach opens the way to verifying large LTL formulas by
model checking. Further work should investigate the possibilities that arise from this
opportunity, such as improving techniques for software model checking based on pred-
icate abstraction. Also, our implementation still leaves room for performance improve-
ments. In particular, the LWAA should be further minimized, the representation of tran-
sitions could be reconsidered, and the memory requirements could be reduced by clever
coding techniques.

References

1. R. E. Bryant. Graph-based algorithms for boolean function manipulati&tE Trans.
ComputersC-35(8):677-691, 1986.

2. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms
for the verification of temporal propertiedzormal methods in system desjgh275-288,
1992.

3. M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for linear tem-
poral logic. In N. Halbwachs and D. Peled, editdt4th Intl. Conf. Computer Aided Veri-
fication (CAV’99) volume 1633 oL ect. Notes in Comp. Sgpages 249-260, Trento, Italy,
1999. Springer-Verlag.

4. K. Etessami and G. Holzmann. Optimizingiéhi automata. In C. Palamidessi, editor,
CONCUR 2000 - Concurrency Theory: 11th International Conferenaieme 1877 of ect.
Notes in Comp. Scipages 153—-167, University Park, PA, 2000. Springer-Verlag.

5. C. Fritz. Constructing Bchi automata from linear temporal logic using simulation relations
for alternating Bichi automata. In O. Ibarra and Z. Dang, edit@&t, Intl. Conf. Implemen-
tation and Application of Automata (CIAA 2008plume 2759 of_ect. Notes in Comp. S¢i.
pages 35-48, Santa Barbara, CA, USA, 2003. Springer-Verlag.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. C. Fritzand T. Wilke. State space reductions for alternatiigtBautomata: Quotienting by

simulation equivalences. In M. Agrawal and A. Seth, edit@@nd Conf. Found. Software
Tech. and Theor. Comp. Sci. (FSTTCS 20@2)ume 2556 ofLect. Notes in Comp. Sgi.
pages 157-168, Kanpur, India, 2002. Springer-Verlag.

. P. Gastin and D. Oddoux. Fast LTL taiBhi automata translation. In G. Berry, H. Comon,

and A. Finkel, editors13th Intl. Conf. Computer Aided Verification (CAV’QYblume 2102
of Lect. Notes in Comp. S¢pages 53-65, Paris, France, 2001. Springer-Verlag.

. J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes LTL verification more efficient. In

K. Jensen and A. Podelski, editotfth Intl. Conf. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’04)lume 2988 ot.ect. Notes in Comp. Scpages 205—
219, Barcelona, Spain, 2004. Springer-Verlag.

. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of

linear temporal logic. In P. Dembinski and M. Sredniawa, editBrstocol Specification,
Testing, and Verificatigrpages 3-18, Warsaw, Poland, 1995. Chapman & Hall.

G. Holzmann. The Spin model check&EEE Trans. on Software Engineering3(5):279—

295, 1997.

G. Holzmann. An analysis of bitstate hashifgrmal Methods in System Desigir8(3):289—

307, 1998.

G. Holzmann.The SPIN Model CheckeAddison-Wesley, 2003.

Y. Kesten and A. Pnueli. Verifying liveness by augmented abstraction. In J. Flum and
M. Rodriguez-Artalejo, editorsComputer Science Logic (CSL'99)olume 1683 ofLect.
Notes in Comp. Scgipages 141-156, Madrid, Spain, 1999. Springer-Verlag.

C. Loding and W. Thomas. Alternating automata and logics over infinite words. In J. van
Leeuwen et al., editotFIP Intl. Conf. Theor. Comp. Sci. (TCS 2000plume 1872 ot ect.
Notes in Comp. Scipages 521-535, Sendai, Japan, 2000.

D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a simple expla-
nation of why most temporal and dynamic logics are decidable in exponential tingd In
IEEE Symp. Logic in Computer Science (LICS;§8ges 422-427, Edinburgh, Scotland,
1988. IEEE Press.

S. Rohde. Alternating automata and the temporal logic of ordinaBhD thesis, Dept. of
Math., Univ. of lllinois, Urbana-Champaign, IL, 1997.

K. Schneider. Yet another look at LTL model checking. In L. Pierre and T. Kropf, edi-
tors, IFIP Work. Conf. Correct Hardware Design and Verification Methods (CHARME'99)
volume 1703 oL ect. Notes in Comp. Scpages 321-326, Bad Herrenalb, Germany, 1999.
Springer-Verlag.

F. Somenzi and R. Bloem. EfficientiBhi automata from LTL formulae. In E.A. Emerson
and A.P. Sistla, editord,2th Intl. Conf. Computer Aided Verification (CAV 200@lume

1633 ofLect. Notes in Comp. Scpages 257—-263, Chicago, IL, 2000. Springer-Verlag.

R. E. Tarjan. Depth first search and linear graph algorith81&\M Journal of Computing
1:146-160, 1972.

H. Tauriainen. On translating linear temporal logic into alternating and nondeterministic
automata. Research Report A83, Helsinki Univ. of Technology, Lab. Theor. Comp. Sci.,
Espoo, Finland, December 2003.

H. Tauriainen. Nested emptiness search for generalizethiBautomata. In M. Kishnevsky
and Ph. Darondeau, editoth Intl. Conf. Application of Concurrency to System Design
(ACSD 2004)pages 165—-174, Hamilton, Ontario, 2004. IEEE Computer Society.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Language Theomolume Ill, pages 389—-455. Springer-Verlag, 1997.

M. Y. Vardi. Alternating automata and program verification. In J. van Leeuwen, eGibon;

puter Science Todayolume 1000 ofect. Notes in Comp. Scpages 471-485. Springer-
Verlag, 1995.

