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Abstract. We consider the interpretations of notions of access control (permis-
sions, interdictions, obligations, and user rights) as run-time propeftiafoo-
mation systems specified as event systems with fairness. We give noilesf

for verifying that an access control policy is enforced in a system candider
preservation of access control by refinement of event systenmarticular, re-
finement of user rights is non-trivial; we propose to combine low-leset uights

and system obligations to implement high-level user rights.

1 Introduction

The specification of access control policies for informatiystems is a fundamental
building block of a methodology for describing and asses#ie security of informa-
tion infrastructure. Existing languages for describingess control such as RBAC [22]
and OrBAC [17] focus on the static structure of informatigrstems. They identify
the actors (abstractly represented as roles), objectérdabted as views), and activi-
ties that intervene in an information system, and then iramasstraints on activities,
in the form of permissions and prohibitions. Certain forisrak also encompass more
advanced security properties such as rights or obligatibastors to perform certain
activities. OrBAC makes a step toward specifying accessrabpolicies that may de-
pend on run-time information by associating rights with tesits. However, it is not
possible within OrBAC to verify that a system enforces a giaecess control policy,
because the dynamic behavior of the system is not modeled.

In this paper, we propose to relate the specification of &cceatrol policies to
formal models of dynamic system behavior, and we give prolefsrto demonstrate that
a system implements an access control policy. Changingwbat¢he perspective, one
can also pose the problem of deriving a security monitor émédrces a policy for a
fixed, underlying system.

We describe information systems within the well-known pégen of event systems,
see e.g. [2, 3, 7]. Run-time properties of event systems easpébcified as formulas of
temporal logic, and there are well-established verificatigdes to derive properties of
event systems. We are therefore led to interpret accestprimitives as properties of
runs of event systems: permissions and prohibitions aiity expressed as constraints
on the enabling condition of events. Dually, the right of atato perform a certain
activity can be expressed as a lower bound on the enablirgjtcmn The interpretation

* This work was partly supported by the project Desirs of A€t&ie Informatique.



of obligations is less obvious, and we propose to interprett as liveness properties,
expressible in temporal logic.

Event systems have traditionally been associated withmagbidevelopment method
based on stepwise refinement. We therefore consider howscoatrol annotations are
preserved under system refinement. Because permissiohditions, and obligations
are interpreted as safety and liveness properties of rtensgard results about refine-
ment of event systems ensure that they are preserved bymefimiePreservation of
user rights requires extra conditions, and the preciseutation is non-trivial when the
“grain of atomicity” of a system description changes duniafinement. We propose a
condition that relies on a combination of concrete-levelrugghts and obligations. We
illustrate our proposals with a running example of a simplnl management system
on which different access control requirements can be ieghos

Related work.The existing literature on formalisms for the specificatibaccess con-
trol considers mainly static methods of analysis. For eXanipertino et al. [10] and
Cuppens et al. [11], among others, analyze security pslifiie inconsistencies, and
Benferhat et al. [9] consider techniques to resolve sucbrisistencies based on strati-
fication of rules.

Closer to our concerns is work by Ryan et al. [13, 23] on theaisaodel check-
ing for verifying access-control policies. However, we Wwor a deductive framework,
and we are mainly interested in verifying refinement ret&hdps. Koch et al. [18] sug-
gest a UML notation for specifying access control, togethign a semantics based on
graph transformation and corresponding analysis teclesiguore distantly related is
the work around UMLSec [16], which is mainly concerned widlticy properties. In
particular, dirfjens [15] considers the preservation of secrecy progeliy the refine-
ment concepts of the specification language Focus.

2 Fair Event Systems

We use the well-known paradigm of event systems [2, 3, 7gredeéd by weak fair-
ness conditions, to express system modélsis section gives a brief overview over
the syntax we use to describe systems and their propertidspnaoduces associated
verification rules.

2.1 Event systems and their runs

A system specification lists the constant parameters, dimafuany underlying sets,
functions, and relations that describe the data over whietsystem operates. dn-
stant assumption Hyponstrains the values of these constants; it is syntalgtieat
pressed as a first-order logic formula over the constantypstexs.

More importantly, a specification declares a tuyde of state variables that repre-
sent the current state of the system. The runs of a systenharaaterized by amitial

1 Adding strong fairness would not pose any conceptual problemst, would complicate the
presentation because we would have to introduce more elaborate tétogaraperators.



condition which is a state predicatait over the variablesar, and a list ofeventshat
describe the possible system transitions. We write theitiefirof an event, with list
of parameters, as

evente(x) = BAg(x,var,var')
fairnessfairg(x, var)

In such a definitionBAg is the before-after predicate for the eventhis is a first-order
formula built from the constants declared for the systentifipation, the event's pa-
rameters, as well as primed and unprimed occurrences of the systdablesvar. As
is conventional, a primed occurrend¢ef a state variablg denotes the value ofin the
state following the transition described By, while an unprimed occurrence denotes
the value ofv in the state before the transition. Each event is associeitad fairness
condition, expressed by a predicéd@ (X, var). Intuitively, the fairness condition rules
out traces where the predicd#gre(x, var) remains true but the eveefx) never occurs.
For an eveng(x), we define its feasibility condition

fise(x) = 3var : BAe(x,var,var) (1)

by existentially quantifying over the primed occurrencéthe state variables; thus, the
state predicatéise(x) is true of those states that have a successor state relata by
occurrence of the evertx).

Finally, a system specification should provideimrmariant that constrains the set of
reachable states, syntactically specified by a state @diie over the system variables
var.

A system specification is well-formed if all of the followirggnditions hold:

— The initial condition implies the invariant:

Hyp = Init(var) = Inv(var) (2
— The invariant is preserved by any evenfor any instantiation of the parameters:

Hyp [= Inv(var) A BAe(x,var,var’) = Inv(var’) (3)
— For any event, the fairness condition implies the feasjbdf the event:

Hyp = Inv(var) Afaire(x,var) = fise(x) 4)

Observe that we allow the fairness condition to be stridilgrgyer than the feasi-
bility predicate. For example, an event without fairnessiagotion can be modeled
by declaring the fairness condition to fase

In the following, we simplify the notation by writinB andP’ for P(var) andP(var’)
whenP is a state predicate am&(x) for A(x,var,var’) whenA is a formula that con-
tains both primed and unprimed occurrences of state vasalklch as a before-after
predicate.



systemBank
constantsClient, Loan maxDebt
assumptionClient £ 0 A Loan 0 A maxDebte Q
variables clt, loans due rate, maxExtraextra
invariant A loansC Loan
A clt € [loans— Clienf A duec [loans— Q] Arate € [loans— Q]
A maxExtrac [loans— Q] A extrac [loans— Q)]
AVce Client: (3 {dugll) : Il € loansAclt(ll) = c}) < maxDebt
initial loans= 0 A clt = 0 Adue= 0 Arate = 0 A maxExtra= 0 A extra= 0
eventnewLoarfc,|,amt dur,mx) =
A c € ClientAl € Loan\ loanshamte Q Adur e N
A amt+ (3 {dugll) : II € loansAclt(ll) = c}) < maxDebt
Aloang =loansu {I} Aclt’ =cltU {l — c}
A dué = dueU {I — sum} Arate’ = rateU {I — sunydur}
A maxExtrd = maxExtraU {| — mx} A extrd = extraJ {I — 0}
fairness false
eventpayRat¢l) =
Al € loans
A dué = dued {l — dug(l) —rate(l)}
A loang = loansA clt’ = clt Arate' = rate A maxExtrd = maxExtran extrd = extra
fairnessl € loansAdugl) > 0
eventextraPayBacl,amt) =
Al € loanshamte Q
A dué = dued {l — dug(l) —amt} Aextrd = extra® {| — extra(l) + amt}
A loang = loansA clt’ = clt A rate/ = rate A maxExtrd = maxExtra
fairness false
end system

Fig. 1. Sample system specification.

Figure 1 shows a specification of a simple event system tHbs@vive as a running
example for this papér It models a simple management system for loans: clients can
take out loans provided they are not overly indebted, ang sheuld pay them back,
either by paying the rates due or via extra payments. Thafggion is written in a
language of set theory where functions are sets of pairsy and whered denotes
function override. It is easy to verify that this specificatis well-formed according to
the above criteria. At this point, we only give the model af tiase information system,
it will later be extended with annotations corresponding¢oess control primitives.

Runs of a system specification avesequences = ss; ... of states (i.e., valuations
of variables) that satisfy the following conditions:

— the initial statesy satisfies the initial condition,

— any two successive statés, s 1) either satisfy the before-after predic&8¢(X)
for some evené and some parameter valugsor agree on the values of all system
variablesvar (so-called stuttering steps), and

2 We adopt the convention of writing long conjunctions and disjunctions as™bsigeted with
A andvV, relying on indentation to save parentheses.



PABAg(x) = P’ for all eventse(x)
stableP

(stable)

Init = P stableP . invP P=
———  (induct) 7(2
invP invQ

P ABAa(X) A—BAg(t) = P'vQ' for all eventsa(x)
P = faire(t)
P~ QV (PAe(t))
Vxe S:F(x)~ GV (Iye S:y<xAF(y)) (§=) well-founded
(Ixe S:F(x)) ~ G

(inv-weaken)

(fair)

(wfo)

W (effect) F=6G (refl) vl 1AF~G (inv-leadsto)
PAet)~Q F~ G F~ GAI
F s H FVG~H (I F(x) ~ (3x: G(x))

Fig. 2. Verification rules for fair event systems.

— o satisfies all fairness conditions: for each eveand all parameter valuesthere
are infinitely many positionse N such that either the fairness conditiiair(x) is
false ats or (s,S+1) satisfyBAg(x).

The well-formedness conditions (2) and (3) above ensuredheh states of a
system run satisfies the system invariant. If only countaidiny event instances are
feasible at each state of a system run, the condition (4)i@mphat the specification
is machine-closed [1], but this observation will not playoterin the remainder of this
paper.

2.2 Properties of runs

We can reason about the runs of fair event systems using etarggemporal logic.
For the purposes of this paper, we consider safety propetédleP andinv P where
P is a state predicate, and liveness propeffies G (“F leads toG”) where F andG

are Boolean combinations of state predicates and evenufas®(x) for eventse of

the underlying event system. These formulas are intemgp@ter a runc = sz ... as
follows:

o |=stableP iff forall neN, if o], = Ptheno|m = Pforallm>n
cEinvP iff olnEPforallneN
oE=F~G iff forall neN,if o], = F theno|y, = G for somem>n

In these definitionsg|, = F means that formul& holds of the suffix ofo from point
n onwards: ifF is a state predicate then it should be satisfied at stateF is an event
formulae(x) then the defining action formuBA(x) should hold of the pair of states

(Sn;Snt1)-



Figure 2 contains proof rules for deriving properties of ®ient systems; simi-
lar proof rules can be found, for example, in papers on theéyJgil] or TLA [19]
formalisms. As beforelnit denotes the initial condition of the system specification,
BAc(t) denotes the before-after predicate defining the eventriosg(t), andfaire(t)
represents the fairness condition associated with thait éwstance. The variabbein
rules (stable) and (fair) is assumed to be different fromftee variables of, Q or
BA(t).

The rule (fair) is the basic proof rule for establishing Istadproperties; its sound-
ness relies on the underlying assumption of weak fairnesie @/fo) allows us to de-
rive liveness properties by induction over some well-faeshdrdering. The remaining
rules can be used to combine elementary leadsto formulasolting the non-temporal
hypotheses of these rules, we may of course use any assasptidche constants ap-
pearing in a system specification.

3 Specifying Access Control

Access control policies describe the conditions under wieieents may occur. Typi-
cally, one first specifies the actors (roles), objects (vjeeusd activities of an informa-

tion system, and then describes which actors are alloweat toot allowed to) perform

which activities on which objects. The OrBAC formalism [¥&fines this general idea:
first, access control policies are described within orgditas (e.g., a hospital or a
bank). Second, and more significantly, one can specify ¢iondi under which an ac-
cess is allowed by defining a “context” of access. Moreowdes;, views, and activities
are arranged in hierarchies, with access rules for instasygstematically derived with
the help of inheritance rules [12].

OrBAC thus provides a declarative, PROLOG-like languagiefine access control
policies. The dynamic aspect of a system is captured by tiemof context, which
can be defined in terms of the system state. It is straigh#faiho translate an OrBAC
model into an event system: the static structure of rolesvéawis is represented by the
constant parameters of a system, activities corresporieeteyistem’s events, and con-
texts are defined as state predicates. Without completetydiizing this translation, we
now consider how event systems can be extended to descdbssacontrol policied.
The interest in doing so can be twofold: first, an event systambe developed in order
to verify that it satisfies a given policy. Second, one mayriterested in enforcing an
access control policy over a fixed underlying system by inmgpa security monitor.
We will consider both of these views for different accesstamprimitives: permissions
and prohibitions, user rights, and obligations.

3.1 Permissions and prohibitions

At its base, an access control policy describes when anitgdgypermitted and when
it is forbidden Whereas permissions and prohibitions should be mutualijusive,

3 The running example of Fig. 1 does not mention roles (actors), bubitldtbe obvious how
to include them in the static model.



they need not cover all possible situations in cases wheredlicy is not completely
specified.

We represent permissions and prohibitions by associatingrore predicates (be-
sides the fairness predicate already introduced in Selgtwith event definitions. For
example, a security policy might specify

eventnewLoaric,|,amt dur,mx)
permission| ¢ loansA risk(c,amt) € {low, mediun} A mx< maxPaybackamt dur)
prohibition risk(c,amt) = high

to indicate that a new loan for a client may be approved if 8#aiated risk (evaluated
according to some unspecified risk function) is below a @ettareshold value and if
the maximum amount permitted for extra payback is withinaiarbounds, and that a
new loan must not be approved if the risk is too high.

An event system implements the permissions and prohilsitieclared in a security
policy if the event is feasible only if it is permitted and éafsible when it is forbidden.
Formally, we obtain the proof obligations

Hyp E InvAfise(x) = perm(x) (5)
Hyp = Inv A prohe(x) = —fise(x) (6)

wherepermy(x) andprohg(x) are the permission and prohibition predicates associated
with evente, andinv andHyp are the system invariant and the constant assumptions, as
before.

The event system of Fig. 1 does not implement the above psiomsand prohibi-
tions, as it does not evaluate the risk associated with a ample way of ensuring
that a system implements the permission and prohibitionsela of a security policy
is to conjoinperme(x) A —prohe(X) to the before-after predicate of the event definition.
Alternatively, the access control policy can be ensuredratime by a separate monitor
that allows events to be activated only if the permissiorsm@ohibitions are respected.

Observe, however, that strengthening the guard of an evaypimaalidate the well-
formedness condition (4) that states that the fairnessqaedof an event should imply
its feasibility. We therefore add the following proof oldiipn to the well-formedness
conditions of an event system with permissions and prabitst

Hyp = InvAfaire(x) = perme(x) A —prohe(X). (7)

This condition is trivially satisfied for the evenewlLoanof our running example, be-
cause no fairness is required of that event.

3.2 Userrights

Permissions and prohibitions restrict the feasibilityedmts. Dually, it may be interest-
ing to specifyuser rights conditions that spell out when an activity should be petedit
in a system. User rights can again be represented in evaphsydy associating a cor-
responding predicate with an event. For example, we may twistate explicitly that a
client has the right to make extra payments within the agrgeah limits:

eventextraPayBacK, amt)
right | € loansh amte Q A amt+ extra(l) < maxExtrgl).



An event system implements a user right if the event is féasibenever the pred-
icate specifying the right holds:

Hyp = InvArighte(x) = fise(x) (8)

Because a security monitor can only schedule existing s\arihe underlying system,
user rights will have to be verified over the event systenifita¢her than enforced by
a monitor. However, the monitor will have to observe a similandition to make sure
that an event permitted by a right is never disabled by theitmion

The conditions (5), (6), and (8) show that the right to parfan activity should
imply (assuming the system invariant) that the activity lisveed, and that it is not
forbidden. It is not unreasonable for a user right to be thrigtronger than the cor-
responding permission, or than the feasibility of the evEot example, a bank may
accept extra payments beyond the pre-determined boursidisdretion.

User rights can be understood as branching-time propewtiesnever the predi-
caterightg(t) is true, the system has a possible continuation that begthsthe event
(instancek(t), and we will take up this discussion in Sect. 4.2.

3.3 Obligations

Languages for access control policies such as OrBAC aldodagrimitives for spec-
ifying obligations Intuitively, whereas a user right states when a certaiivigctmay
occur, an obligation asserts that the actiwhouldoccur. The article [17] introducing
the OrBAC notation does not define a formal semantics forgakithbns, but concepts
of permission, rights, and obligations have traditiondlen the domain of deontic
logic [14, 20]. To our knowledge, the interpretation of fartas of deontic logic over
models of information systems such as event systems ha®entdiudied, and we do
not wish to introduce this extra complication.

As before, we associate obligations with events by definuigble predicates. In
our running example, we might want to assert that a user hablggation to pay the
rates as long as they are due by writing

eventpayRatél)
obligation | € loansA dugl) > 0.

What does it formally mean for an event system to implementidigation? A first
idea would be to interpret an obligation to perform a certaitivity as prohibiting the
system from performing any other activity. However, thitenpretation appears to be
unreasonably stringent and prone to contradictions. Famgie, a user of a computer
system may have an obligation to regularly change his pasiswat he can do so only
when logged in. Clearly, the obligation to change the pasdwhould not preclude the
user from logging in, although it is conceivable that oneldabhen prevent the user
from doing anything but changing his password.

We believe instead that obligations can, in a first approtionabe interpreted as
liveness properties, and can be formalized in temporatlofhe two following inter-
pretations appear particularly plausible.

strict obligation: oble(x) ~~ €(x) 9)



weak obligation: oblg(x) ~~ —0ble(X) V &(x) (10)

The strict interpretation of obligations requires that #hent occurs eventually
whenever the obligation arises. Under the weak interpogtathe obligation ceases
as soon as the predicaible becomes false, which need not be due to an occurrence of
e. In our example, the weak interpretation appears more nadie: it is satisfied when
a client pays back the loan via an extra payment. Observaéhbateak interpretation
of an obligation coincides with the interpretation of a wéaikness requirement, with
oblg(x) as the fairness condition.

Whatever interpretation is chosen, the proof rules of Figa® lse used to verify
that a fair event system implements its obligations. Theptanal interpretation of obli-
gations may also be of interest when one is interested ividgra security monitor
that enforces obligations for a given system, at least fatrotiable events. To do so,
one could apply recent work on controller synthesis baseglamme-theoretic interpre-
tations [6], but we do not pursue this idea any further here.

In some applications, the interpretation of obligationfiveness properties may be
too abstract, and it would be more natural to indicate riead-tleadlines for obligations
(“the payment should be received before the end of the cumemth”). We do not
consider real-time specifications in this paper.

4 Refinement of System Specifications

Stepwise methods of system development insist that systbmsdd be developed in
a succession of models that gradually add representatiail dad that introduce new
correctness properties. The key requirement for a sensdilen of refinement is that
system properties that have been established at highés teéhabstraction are preserved
by construction so that they do not have to be reproven. Reéinébased approaches
help to discover potential problems early on. They alsaibtiste the overhead of for-
mal verification over the entire development process. WEfingt consider verification
conditions for proving refinement of fair event systems thaserve temporal logic
properties. In a second step, we will study how refinememrauts with the access
control primitives considered in Sect. 3.

4.1 Refinement of fair event systems

Standard refinement notions for event systems are knowresepre safety properties,
and extensions for liveness and fairness properties haeebalen considered, for ex-
ample in [5, 8]. In the following, we make use of the languafeemporal logic of
Sect. 2.2 to state verification conditions for preservingiiess properties at a higher
level of abstraction than in traditional formulations.

Refined models describe the system at a finer level of gratyuéard typically in-
troduce new events that have no observable effect at th@peelevels of abstraction.
Formally, we assume (without loss of generality) that tHeesnent is described with
the help of a tuplear.s of variables disjoint from the variablesr,ps used in the orig-
inal model. The two state spaces are related lgjuang invariant J a state predicate



built from the variablewvar,,s andvares, and the constant parameters of both models.
We may assume thdtimplies both the abstract-level and the concrete-levedriants
Invaps andInvees. An eventea(x) of the abstract model may be refined by a number of
low-level eventser;(x,y1), ..., (X Yn); for technical simplicity, we assume that all
parameters ofaare also parameters ef;, although this assumption could easily be
removed. Also, new evenesyz) may be introduced in the refined model.

An event systenRef is a refinement of an event systehns with respect to the
gluing invariant] if Refis itself well-formed according to the conditions (2), (&8hd
(4), and if moreover all the following conditions hold (agaive drop the variables that
occur in the respective predicates; besitiygy denotes the conjunction of the abstract-
and concrete-level constant assumptions).

— Every initial state of the refinement can be mapped to a gooreding initial state
of the abstract specification:

Hyp = Inites = 3varaps: INitgpsAJd (12)

— Events of the refinement can be mapped to events or to shgjteansitions of the
abstract specification. There are two cases:
o If eventer(x,y) refines an abstract evesd(x) then its effect can be mapped to
an occurrence aga

Hyp = JABAe(X,y) = Fvargps: BAea(x) A (12)
e If eventen(z) is a new event then its effect is invisible at the abstraatifev
Hyp = JABAen(2) = 3var,,s: Var,= vVarapsAJ (13)

— The refinement preserves the fairness constraints of theaabtevel. Formally,
assume that the abstract evenfx) is refined by low-level eventsri(X,y1), ...,

(X, Yn):

Ref |= JAfaireq(x) (14)
~ ea(X) V... Vea(X) V-Ivargs: I Afairea(x)

where the “abstract trac&g (x) of eri(x, ;) is defined as

ea(x) £ Jyi: Aen(xy)
A Waraps vary . JIAJ = ea(x)

Intuitively, condition (14) requires to prove that any stat a run of the refinement
that corresponds to a state satisfying the abstract faro@sdition of evenea(x)

is followed either by the occurrence of one of the refiningaas or by a state that

no longer satisfies the fairness condition. Although thenfdrstatement is some-
what technical, the abstract-level fairness conditioroisveniently represented as
a concrete-level “leads to” formula that can be establisksidg the proof system

4 As suggested in [4], this requirement could be weakened by requiraigventen(z) merely
preserves the high-level invariant.



of Fig. 2. In particular, any fairness conditions of the ieplentation may be used,
as well as induction over well-founded orderings. In thigveaspecifier has much
more freedom in justifying a refinement than with the morditranal verification
conditions of [5, 8].

Using a standard simulation argument that critically setie the possibility of stut-
tering in the definition of runs of event systems, one obttiesfollowing correctness
theorem: every run of the refined event systeaf corresponds to a run of the abstract
event systend\bs modulo the gluing invariant.

Theorem 1. Assume that Ref is a refinement of Abs with respect to thegglumariant
J and thato = 595; ... is arun of Ref. Then there is a ran= tgt; ... of Abs such that J
holds at the joint valuations obtained fromesd ¢, for all i € N.

As a consequence, temporal logic properties can be traedfétom an abstract
event systenAbsto its refinemenRef modulo the gluing invarianl. Formally, this is
asserted by the following corollary.

Corollary 2. Assume that Ref is a refinement of Abs with respect to thegghuariant
J and thato = 5ps; ... is arun of Ref. If Abg= ¢ then Refi=$ where$ is obtained from
¢ by replacing every positive occurrence of a non-temponahfda A by3vargys: IAA

and every negative occurrence Yyaraps: J = A.

4.2 Refinement preserving access control

Let us now consider how refinement interacts with accessr@opblicies. Assume
that event systeRefis a refinement ofbswith respect to the gluing invariadt Also,
assume thahbswas known to implement certain permissions, prohibitiaigations
or user rights concerning an abstract eweafk).

For permissionperms,(x) and prohibitionsprohes(x), the conditions (5) and (6)
ensure thapermsa(x) and —prohea(x) hold whenever evergax) occurs in a run of
Abs Any concrete-level evergr(x,y) refiningea(x) has to satisfy condition (12). Us-
ing the definition of feasibility (1) and first-order logid, follows thatperm,(x) and
—prohea(X) hold whenever evergr(x) occurs in a run oRef. This is the best preserva-
tion result we can hope for in such a general discussion aferfent modulo a gluing
invariant; for most practical choices dfthese formulas will imply that the abstract-
level permissions and prohibitions are preserved in thaedfsystem.

Similarly, obligations have been interpreted as livenagspgrties, represented by
the temporal logic formulas (9) or (10). Corollary 2 impliget a similar “leads to”
formula is true of the refined model, again modulo transtasilong the gluing invariant.
Therefore, obligations are preserved in the same senseragsp®ns and prohibitions.

These preservation results are not really surprising: we liaterpreted permis-
sions, prohibitions, and obligations as (safety or livehgsoperties of runs, and the
refinement notion of event systems are defined in such a waytbperties of runs
are preserved. However, we have also considered user,ngftitsh were interpreted as
branching properties in Sect. 3.2, and refinement of evestésys does not necessarily
preserve branching behavior.



eventaskPaybacl{,amt) =

Al € loanshamte Q

A askExtrd = askExtraU {| — amt}

A loang = loansA clt’ = clt A du€ = dueArate = rate

A maxExtrd = maxExtra\ extrd = extra
right | € loansnamte Q
eventapprovePaybadk,amt) =

A (I'— amt) € askExtran amt+ extra(l) < maxExtral)

A dué = dued {I — dugl) —amt} Aextrd = extras {I — extra(l) +amt}

A askExtrd = askExtra\ {I — amt}

A loans = loansA clt’ = clt Arate’ = rate A maxExtrd = maxExtra
fairness (I — amt) € askExtran amt+ extra(l) < maxExtrdl)
eventrejectPaybacl,amt) =

A (I — amt) € askExtran amt+ extra(l) > maxExtrgl)

A askExtrd = askExtra\ {l — amt}

A dué = duen extrd = extra

A loans = loansA clt’ = clt Arate’ = rate A maxExtrd = maxExtra

Fig. 3. Refining evenextraPayback

For a concrete example, consider a proposed refinement ef/érgextraPayback
shown in Fig. 3. Instead of an atomic event modeling an exarament, the refine-
ment introduces a protocol: the client has to apply for mgldn extra payment (event
askPayback and this application can be approved or rejected by th&,lapending
on the situation of the loan. The refinement is acceptablerdit to the conditions
(12) and (13) becausspprovePaybackefines the abstract evesttraPaybackvhereas
the eventsaskPaybaclandrejectPaybackare unobservable at the abstract level. How-
ever, the refinement does not literally preserve the usht rig

eventextraPayBacl,amt)
right | € loansA amte Q A amt+ extra(l) < maxExtrdl).

considered in Sect. 3.2: the concrete-level ewagrovePaybackequires the precon-
dition (I — amt) € askExtra which is not implied by the predicate specifying the user
right. Preservation of user rights thus requires extraidenation.

A first idea would be to impose the condition

Hyp [= Invies Arightea(X) = (Jy - fiseri(X,y1)) V...V (3yn : fisem(x,yn)) (15)

where agaireri(X,y1), .. .,em(X,yn) are the concrete-level events corresponding to the
abstract evenea Although condition (15) obviously preserves user riglittsyould

rule out the refinement of Fig. 3. More generally, this canditappears too strong to
us, when the concrete model refines the grain of atomicityalRthat a single abstract-
level eventea can be implemented in the refinement by a sequence of codexete
events all but the last of which are invisible at the absttee¢l. The final evener
refining the abstract eveeaneed not be immediately feasible in the concrete model
wheneveeeais, but it requires preparation by the auxiliary events #ratunobservable



at the abstract level. We therefore believe that a more Llsefdition for refining user
rights is to require a combination of concrete-level usgnts that ensure that the branch
leading toer can be started and concrete-level obligations that enkatertwill then
occur eventually.

Formally, assume that the abstract system specificatioraicsnan eveneax) for
which we wish to ensure a user right via predicagite,(x). Also assume thata(x)
is refined by the concrete-level evers(x,y1), ..., em(X,yn). We then require the
event systeniRef to contain eventgiy(x,z), . .., €im(X, zn) with user rights specified
by righte; (x,7) such that

rightea(X) = (321 : rightej; (X,z1)) V...V (3zm : rightej,(X, Zm)) and (16)
€ij(x,z) ~ —rightea(X) V (Jy1 : €ra(x,y1)) V...V (3yn : €M(X,Yn)) (17)

Condition (17) applies for aJl=1,...,m; the disjunct-rightes(x) on the right-hand
side of (17) corresponds to a weak interpretation of olithgest

The above conditions, together with the interpretationshefuser rights for the
refined specification, imply that whenever the translatestrabt user right holds at
some point during a concrete-level run, the user has a cenleneel right to start a
branch which will eventually lead to the occurrence of annévefining the original
eventea(x) provided the abstract-level right persists. For examie,abstract-level
right may cease due to the concurrent exercise of anothdt rig

Back to the example of Fig. 3, we claim that this refinemenpeets the abstract-
level user right because it satisfies the conditions (16) (@)l We assume that the
gluing invariant contains the conjunct

askExtraC loansx Q

that asserts the “type correctness” of the new variablkdxtra We choosaskPayback
for the auxiliary evenei, and condition (16) boils down to proving

| € loanshnamte Q Aamt+ extra(l) < maxExtrdl) = | € loanshamte Q
which is trivial. On the other hand, condition (17) requitssto show

askPaybaclt,amt) ~ v (I € loansA amte Q A amt+ extra(l) < maxExtrdl))
V grantPaybackl,amt)

and this condition is ensured by the fairness condition feneapprovePaybackNote
that although the abstract user right is preserved, thetad&nnot cheat on the bank by
demanding two extra payments that together would exceealltiveed limit: although a
client may always ask for an extra payment (including in timeetbetween applying for
a payment and the approval or rejection by the bank), the'dablkigation to approve
extra payments ceases when the limit has been reached sdoei¢ito reject a second
application for extra payments. This is just what the alostuser right of Sect. 3.2
required.



5 Conclusion

Event systems are a convenient and widely accepted frarkdaromodeling informa-
tion systems. In particular, properties of their runs cardegved using well-known
rules, and refinement concepts for event systems are wablested. In this paper, we
have considered annotating event systems with clausegtif\spccess control prop-
erties, thereby implementing a given security policy. BEris declarative languages for
describing access control such as OrBAC identify the stditiccture of an information
system, including the subjects, the objects, and the &esyiand then spell out the con-
ditions under which activities may, must, or must not be grenied. In this paper, we
have interpreted such policies within a formal system madsled on event systems,
and have proposed proof rules for verifying that a systentlémpnts a security policy.
We have considered permissions and prohibitions, whichrerenost frequent anno-
tations in practice, and which can be interpreted as safetyepties of system runs.
We have proposed to interpret obligations as liveness ptiepeand have therefore
used a simple temporal logic to formulate these as progeofi@vent systems. As a
fourth category of primitives, we have considered usertsigivhich can be interpreted
as elementary branching properties of systems.

Development methods based on stepwise refinement havednadilly been asso-
ciated with event systems. They allow a developer to justystem as a result of a se-
quence of models that introduce more and more details irefiresentation of systems,
as well as their correctness properties. The cornerstonefiaEment is the preserva-
tion of properties that have been established for abstradets. Standard refinement
concepts preserve traces of models, and this ensuresyatseof permissions, prohi-
bitions, and obligations across refinements. Branchingent@s, including user rights,
are not automatically preserved, and we have proposed@utliconditions that rely
on a combination of concrete-level rights and obligations.

More experience will be necessary to evaluate whether otibnmare useful and
feasibility in practice. It would also be helpful to have aweigrated tool environment
for combining event system descriptions and access cospiadifications. On a more
conceptual level, it will be interesting to study the poagibof synthesizing security
monitors that enforce a security policy (that could pogsésen vary during runtime)
over a fixed underlying information system.
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