

Speech anonymization

Emmanuel Vincent Inria Nancy – Grand Est

Acknowledgments

Joint work with

- Inria: B. M. L. Srivastava, M. Maouche, N. Vauquier, H. Nourtel, A. Bellet, M. Tommasi, D. Jouvet
- LIA: N. Tomashenko, J.-F. Bonastre, P.-G. Noé
- EURECOM: A. Nautsch, N. Evans, M. Todisco, J. Patino
- LIUM: P. Champion
- NII: X. Wang, X. Miao, J. Yamagishi
- Saarland University: D. Adelani, A. Davody, T. Kleinbauer, D. Klakow
- Vector Institute: A. S. Shamsabadi

Speech technologies

Most speech technologies process and (under certain circumstances) store speech data remotely for inference and training purposes.

Which information is conveyed?

Speech conveys several pieces of information:

• verbal content:

words, possibly including identifiers and private (phone number, preferences, etc.) or business information

• speaker:

identity, age, gender, ethnic origin, etc.

• nonverbal content:

emotions, health status, etc.

• acoustic environment:

acoustics, ambient noise, other speakers

What are the risks?

- Personal or even sensitive data.
- Collection and processing governed by privacy laws such as the General Data Protection Regulation (GDPR) in Europe or the Privacy Act in the USA.
- Legal bases: **user consent** for one or more specific purposes, contractual or legal obligations, protection of vital interests, and public or legitimate interest.
- In practice, users cannot always choose the purposes they accept or not.
- In some situations, risks may include
 - > user profiling
 - > user identification
 - > voice cloning or information leakage in case of security breach

How to protect privacy?

Embedded implementation Secure

Cryptography

n Secure multiparty computation Searchable encryption

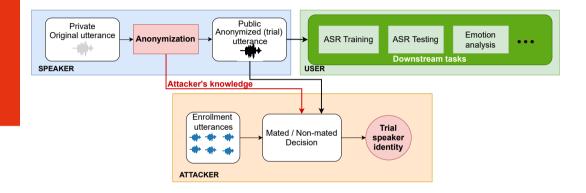
AI

Physical obfuscation / deletion Decentralized learning Speech/text anonymization

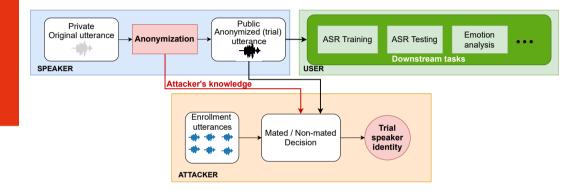
Speech anonymization — Overall principle

- Anonymization:
 - > Transform speech to hide speaker identity
 - > Leave other information unchanged, so that it's useful for downstream tasks
- Defines the goal, even when it's not achieved (\neq strict legal definition)
- Achieving this goal requires:
 - > voice transformation or conversion (a.k.a. voice anonymization) preserving non-identifiable nonverbal attributes (ASR+TTS not enough),
 - > verbal content anonymization,
 - > possibly, hiding some identifiable nonverbal attributes.
- Only approach compatible with privacy preservation at both training and test time. Can be complemented by encryption & decentralized learning.
- Assumption: no metadata (often does not hold in practice).

Threat model

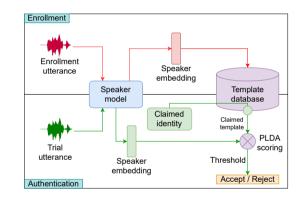


Threat model

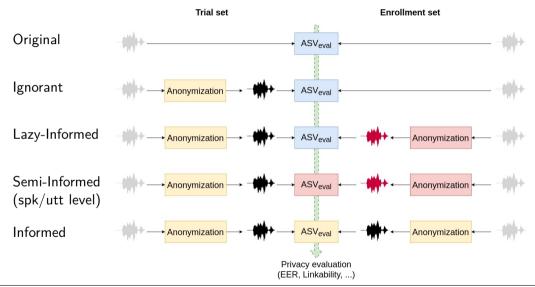


From now on, focus on voice anonymization by voice transformation or conversion.

- The success or failure of voice anonymization can be evaluated via **speaker verification**.
- In practice, speaker embeddings = x-vectors.
- Higher score ⇒ greater chance of being from the same speaker



Attacker's knowledge



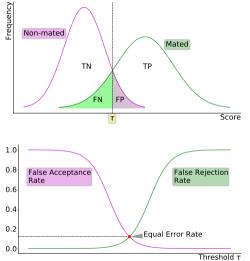
Ínría_

Privacy metrics

Compare same- and different-speaker score distributions with a threshold.

Derive the **equal error rate** (EER). Varies from 0 to 50%, higher is better.

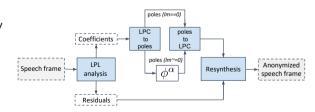
Other metrics include **linkability** (varies from 0 to 1, lower is better) and ZEBRA.



Voice transformation — Approaches

Simple transformation approaches such as

- pitch shifting (often used on TV/radio)
 - Original 📢) -3 tone shift 📢) Multiple shifts 📢)
- spectral envelope warping
 - > Baseline-2 of the VoicePrivacy 2020 and 2022 Challenges
 - > VoiceMask
 - > VTLN



Voice transformation — Results

EER (Librispeech)

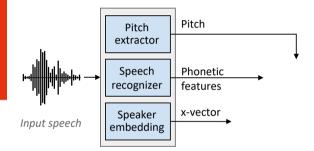
Attacker	Baseline-2	VoiceMask	VTLN
Original speech		4.3%	
lgnorant	26.2%	28.7%	27.4%
Semi-Informed (utt-level)	5.3%	5.0%	6.3%

Simple transformations fail against non-ignorant attackers.

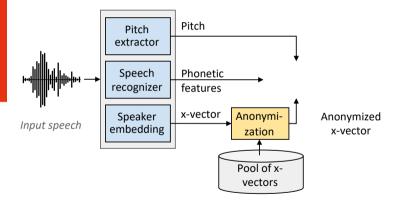
- Idea: replace user's voice by that of a target speaker
- Baseline-1 of the VoicePrivacy 2020 Challenge

Input speech

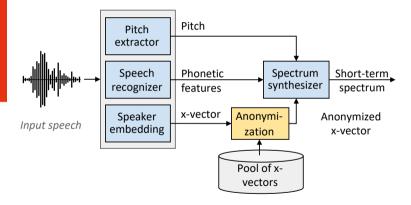
- Idea: replace user's voice by that of a target speaker
- Baseline-1 of the VoicePrivacy 2020 Challenge



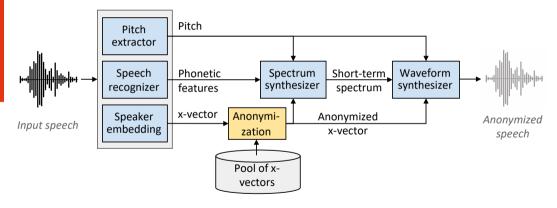
- Idea: replace user's voice by that of a target speaker
- Baseline-1 of the VoicePrivacy 2020 Challenge



- Idea: replace user's voice by that of a target speaker
- Baseline-1 of the VoicePrivacy 2020 Challenge

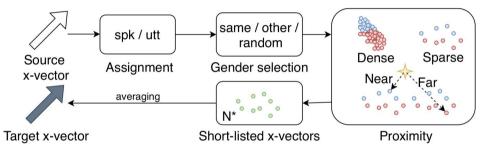


- Idea: replace user's voice by that of a target speaker
- Baseline-1 of the VoicePrivacy 2020 Challenge



Voice conversion — Design choices

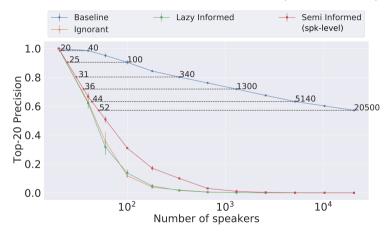
• Target selection procedure:



• Retained choice: random gender + dense

Voice conversion — Privacy results

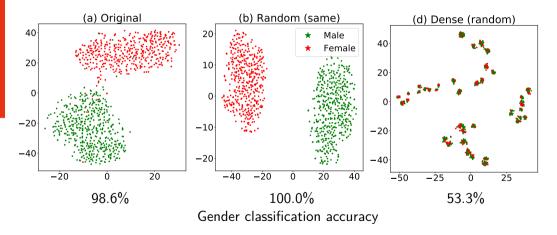
Top-20 PLDA-based identification accuracy (CommonVoice)



Re-identification risk \rightarrow 0 with **2,000+ speakers** with best (Semi-Informed) attack.

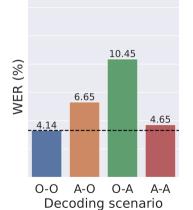
Voice conversion — Privacy results

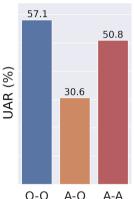
Besides identity, voice conversion can hide (or not) speaker traits such as gender.



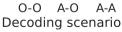
Voice conversion — Utility results

Speech recognition (LibriSpeech) Emotion recognition (IEMOCAP)

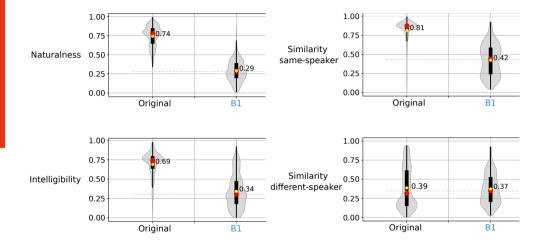




Small or negligible loss of utility after retraining on anonymized data (A-A).



Voice conversion — Subjective results



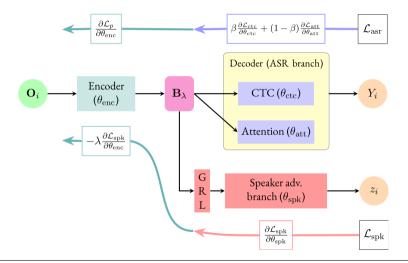
Voice conversion — Limitation

• Key limitations:

- > insufficient protection when the attacker can narrow down the search to few speakers based on side information
- > pitch and phonetic features contain **residual speaker information**, which remains after resynthesis
- > it can be captured by a more powerful attacker
- Solutions explored:
 - > adversarial representation learning
 - > noise-based local differential privacy
 - > slicing into shorter signals

Adversarial learning — Approach

Adversarial learning of phonetic features for speech recognition



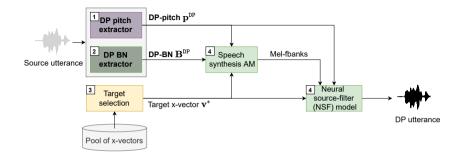
Adversarial learning — Results

Accuracy, EER and WER (Librispeech)

	Spec. feat.	$\lambda = 0$	$\lambda = 0.5$	$\lambda = 2$
Speaker identification accuracy	93.1%	46.3%	6.4%	2.5%
Speaker verification EER	5.7%	23.1%	22.0%	19.6%
Speech recognition WER	-	10.9%	12.5%	12.5%

Adversarial learning generalizes poorly to unseen speakers.

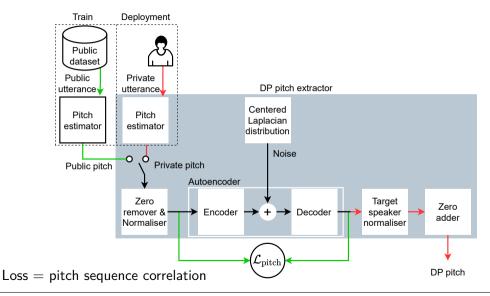
DP anonymization — Overall approach



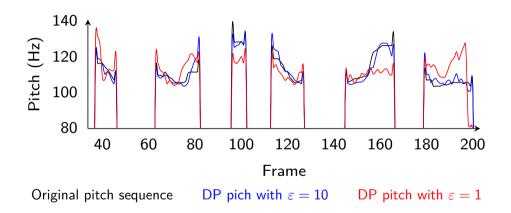
Local differential privacy (DP) principle:

- add Laplacian noise to pitch and phonetic features
- noise scale $\propto \Delta/\epsilon$ with Δ maximum absolute difference between two data points
- if $\epsilon \ll 1$, formal privacy guarantees against any attack
- popular for tabular data (e.g., Apple uses 2 $\leq \epsilon \leq$ 8)

DP anonymization — DP pitch

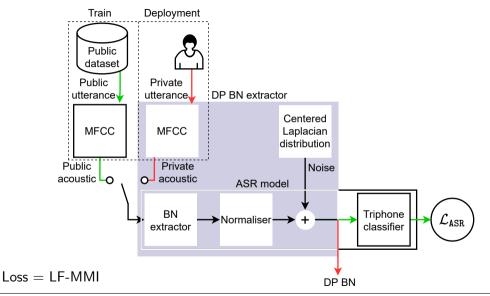


DP anonymization — DP pitch



25 - Speech anonymization - E. Vincent

DP anonymization — DP phonetic features



DP anonymization — Results

Phonetic ϵ	Pitch ϵ	EER	WER
∞	∞	14.6%	5.4%
100	100	24.2%	6.0%
10	10	27.7%	7.0%
1	1	30.0%	7.8%

Semi-Informed (utt-level) EER and WER (Librispeech)

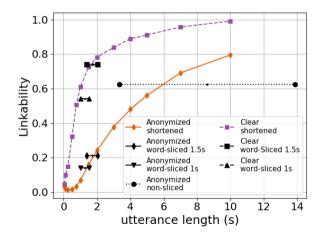
Laplacian noise improves privacy.

No formal guarantee though, because ϵ not small enough.

(Side note: utt-level Semi-Informed attacker stronger than spk-level one.)

Slicing — Results

Semi-Informed (utt-level) linkability (Librispeech)



Slicing into 1 or 1.5 s segments improves privacy with no loss of utility.

Slicing — Successive segment re-identification

Successive segment re-identification (Librispeech, 1.5 s segments)

	from text	from speech
Number of segments	11,330	364
Average normalized rank (%)	28.3	43.5
Median normalized rank (%)	17.9	19.8
Precision at top-1 (%)	1.4	2.5
Precision at top-10% (%)	37.8	38.3

A Semi-Informed attacker **cannot reliably re-identify successive segments**. Reassembling entire utterances would be even harder. Verbal content anonymization for AM training

- When running automatic speech recognition (ASR) on the data, the verbal content cannot be changed.
- When using the data to train an acoustic model (AM), identify **named entities** carrying personal information and **discard** them from the speech signal.

Replacement strategy	Transformed text				
No Replacement	Hi Mister Miller, the Lufthansa flight from				
	Frankfurt Airport to Rome is leaving by six pm				
Redact	Hi Mister IIIII, the IIIII flight from IIIII to IIIII is leav-				
	ing by IIIII				

- Private named entities are **domain-dependent**: person, age, ethnic category, email, licence plate number, occupation, organisation, address, date, calendar event, amount, URL, etc.
- There exists commercial software for legal, health, etc.

Verbal content anonymization for text processing

• When using the data to train a language model (LM), replace words instead

Replacement strategy	Transformed text					
No Replacement	Hi Mister Miller, the Lufthansa flight from					
	Frankfurt Airport to Rome is leaving by six pm					
Typed-Placeholder	Hi Mister PER , the ORG flight from LOC to LOC is					
	leaving by TIME					
Named-Placeholder	Hi Mister Smith, the SAP flight from London to					
	London is leaving by afternoon					
Word by word	Hi Mister John , the BOSCH flight from New Boston to					
	Berlin is leaving by eleven morning					
Full entity	Hi Mister John , the BOSCH flight from New York to					
	Berlin is leaving by twelve pm					

• This also applies to NLP tasks such as named entity recognition (NER), intent detection (ID), or dialog act classification (DAC).

Replacement strategy	VerbMobil NER F1-score	ATIS ID Accuracy	SNIPS ID Accuracy	en-TOD ID Accuracy	Restaurant DAC Accuracy	Taxi DAC Accuracy
No replacement	88.3 ± 0.2	98.4 ± 0.2	98.0 ± 0.2	99.4 ± 0.0	78.9 ± 0.1	90.0 ± 0.1
Redact	0.2 ± 0.2	94.8 ± 0.2	89.7 ± 0.8	97.4 ± 0.6	75.9 ± 0.3	88.1 ± 0.2
Typed-Placeholder	0.0 ± 0.0	95.7 ± 0.3	54.1 ± 3.8	97.2 ± 0.7	76.5 ± 0.2	87.9 ± 0.5
Named Placeholder	13.5 ± 1.4	95.9 ± 0.3	76.2 ± 2.9	98.2 ± 0.1	77.3 ± 0.2	89.3 ± 0.1
Word-by-Word	72.6 ± 0.3	$98.6 \pm \mathbf{0.2^*}$	$97.5\pm0.3^*$	$99.2\pm0.1^*$	78.4 ± 0.2	$89.9\pm0.2^*$
Full Entity	$85.9\pm0.3^*$	$98.5 \pm \mathbf{0.2^{*}}$	$97.4\pm0.3^*$	$99.2\pm0.1^*$	$78.5\pm0.1^*$	$89.9\pm0.1^*$

- Full entity replacement preserves utility.
- However, it does not fully prevent speaker re-identification. Hiding age, gender, etc., is a lot more difficult.

- Is an EER of xx% enough? What's the threshold?
- The reduction in re-identification accuracy after anonymization is more easily interpretable.
- Experiments so far suggest that, if there are many speakers in the dataset, accurate text anonymization, no metadata, the answer is probably yes.
- This remains to be legally validated using, e.g., the three legally admitted criteria of the Article 29 Working Party (European Data Protection Board)
 - $\,>\,$ linkability: ability to link records related to an individual \rightarrow we measured this
 - $\,>\,$ singling out: ability to single out an individual $\rightarrow\,$ TBD
 - > inference: ability to re-identify an individual based on observed traits \rightarrow TBD

Perspectives

• Anonymization:

- > Improved disentanglement
- > Improved feature decorrelation / non-i.i.d. noise for DP
- > Word replacement inside speech signals (not only text)
- Selective attribute manipulation:
 - > Privacy w.r.t. other attributes, e.g., gender, age, accent
 - > Utility for other tasks than ASR, e.g., medical
 - > User-friendly interface

• Evaluation

- > Stronger attackers, perhaps more realistic too (metadata, etc.)
- Watermarking to avoid avoid anonymized voice sounding like another real speaker's voice
- Efficient embedded implementation
- Combination with encryption & decentralized learning

VoicePrivacy 2022 Challenge

• Task: develop a voice anonymization system.

• Resources:

- > Train, devel, test datasets
- > 3 baseline systems
- > Evaluation scripts
- Updates w.r.t. VoicePrivacy 2020 Challenge:
 - > Stronger, Semi-Informed (utt-level) attack model
 - > New ranking based on WER for multiple EER levels
 - Complementary pitch correlation and voice distinctiveness utility metrics

Submission deadline: July 31, 2022 Workshop at Interspeech: September 23–24, 2022

