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Speech technologies

Most speech technologies process and (under certain circumstances) store speech data
remotely for inference and training purposes.
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Which information is conveyed?

Speech conveys several pieces of information:

• verbal content:
words, possibly including identifiers and private (phone
number, preferences, etc.) or business information

• speaker:
identity, age, gender, ethnic origin, etc.

• nonverbal content:
emotions, health status, etc.

• acoustic environment:
acoustics, ambient noise, other speakers
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What are the risks?

• Personal or even sensitive data.

• Collection and processing governed by privacy laws
such as the General Data Protection Regulation
(GDPR) in Europe or the Privacy Act in the USA.

• Legal bases: user consent for one or more specific
purposes, contractual or legal obligations, protection
of vital interests, and public or legitimate interest.

• In practice, users cannot always choose the purposes they accept or not.
• In some situations, risks may include

> user profiling
> user identification
> voice cloning or information leakage in case of security breach
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How to protect privacy?
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Speech anonymization — Overall principle

• Anonymization:
> Transform speech to hide speaker identity
> Leave other information unchanged, so that it’s useful for downstream tasks

• Defines the goal, even when it’s not achieved (6= strict legal definition)

• Achieving this goal requires:
> voice transformation or conversion (a.k.a. voice anonymization) preserving

non-identifiable nonverbal attributes (ASR+TTS not enough),
> verbal content anonymization,
> possibly, hiding some identifiable nonverbal attributes.

• Only approach compatible with privacy preservation at both training and test
time. Can be complemented by encryption & decentralized learning.

• Assumption: no metadata (often does not hold in practice).
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Threat model
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From now on, focus on voice anonymization by voice transformation or conversion.
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Privacy assessment

• The success or failure of voice
anonymization can be evaluated
via speaker verification.

• In practice, speaker embeddings
= x-vectors.

• Higher score ⇒ greater chance
of being from the same speaker
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Attacker’s knowledge
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Privacy metrics

Compare same- and different-speaker score
distributions with a threshold.
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Voice transformation — Approaches

Simple transformation approaches such as

• pitch shifting (often used on TV/radio)

Original -3 tone shift Multiple shifts

• spectral envelope warping
> Baseline-2 of the VoicePrivacy

2020 and 2022 Challenges

> VoiceMask
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Voice transformation — Results

EER (Librispeech)

Attacker Baseline-2 VoiceMask VTLN
Original speech 4.3%

Ignorant 26.2% 28.7% 27.4%
Semi-Informed (utt-level) 5.3% 5.0% 6.3%

Simple transformations fail against non-ignorant attackers.
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Voice conversion — Approach

• Idea: replace user’s voice by that of a target speaker
• Baseline-1 of the VoicePrivacy 2020 Challenge

Input speech

Phonetic features = bottleneck (BN)
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Voice conversion — Design choices

• Target selection procedure:

• Retained choice: random gender + dense

Original Modified
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Voice conversion — Privacy results

Top-20 PLDA-based identification accuracy (CommonVoice)

Re-identification risk → 0 with 2,000+ speakers with best (Semi-Informed) attack.
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Voice conversion — Privacy results

Besides identity, voice conversion can hide (or not) speaker traits such as gender.
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Voice conversion — Utility results

Speech recognition
(LibriSpeech)

Emotion recognition
(IEMOCAP)

Small or negligible loss of
utility after retraining on
anonymized data (A-A).
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Voice conversion — Subjective results
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Voice conversion — Limitation

• Key limitations:
> insufficient protection when the attacker can narrow down the search to few

speakers based on side information
> pitch and phonetic features contain residual speaker information, which remains

after resynthesis
> it can be captured by a more powerful attacker

• Solutions explored:
> adversarial representation learning
> noise-based local differential privacy
> slicing into shorter signals
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Adversarial learning — Approach

Adversarial learning of phonetic features for speech recognition
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Adversarial learning — Results

Accuracy, EER and WER (Librispeech)

Spec. feat. λ = 0 λ = 0.5 λ = 2
Speaker identification accuracy 93.1% 46.3% 6.4% 2.5%

Speaker verification EER 5.7% 23.1% 22.0% 19.6%
Speech recognition WER – 10.9% 12.5% 12.5%

Adversarial learning generalizes poorly to unseen speakers.
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DP anonymization — Overall approach
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Local differential privacy (DP) principle:
• add Laplacian noise to pitch and phonetic features
• noise scale ∝ ∆/ε with ∆ maximum absolute difference between two data points
• if ε� 1, formal privacy guarantees against any attack
• popular for tabular data (e.g., Apple uses 2 ≤ ε ≤ 8)
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DP anonymization — DP pitch
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DP anonymization — DP pitch
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DP anonymization — DP phonetic features
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DP anonymization — Results

Semi-Informed (utt-level) EER and WER (Librispeech)

Phonetic ε Pitch ε EER WER
∞ ∞ 14.6% 5.4%

100 100 24.2% 6.0%
10 10 27.7% 7.0%
1 1 30.0% 7.8%

Laplacian noise improves privacy.

No formal guarantee though, because ε not small enough.

(Side note: utt-level Semi-Informed attacker stronger than spk-level one.)
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Slicing — Results

Semi-Informed (utt-level) linkability (Librispeech)

Slicing into 1 or 1.5 s seg-
ments improves privacy
with no loss of utility.
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Slicing — Successive segment re-identification

Successive segment re-identification (Librispeech, 1.5 s segments)

from text from speech
Number of segments 11,330 364
Average normalized rank (%) 28.3 43.5
Median normalized rank (%) 17.9 19.8
Precision at top-1 (%) 1.4 2.5
Precision at top-10% (%) 37.8 38.3

A Semi-Informed attacker cannot reliably re-identify successive segments.
Reassembling entire utterances would be even harder.
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Verbal content anonymization for AM training

• When running automatic speech recognition (ASR) on the data, the verbal
content cannot be changed.
• When using the data to train an acoustic model (AM), identify named entities

carrying personal information and discard them from the speech signal.

• Private named entities are domain-dependent: person, age, ethnic category,
email, licence plate number, occupation, organisation, address, date, calendar
event, amount, URL, etc.
• There exists commercial software for legal, health, etc.
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Verbal content anonymization for text processing

• When using the data to train a language model (LM), replace words instead

• This also applies to NLP tasks such as named entity recognition (NER), intent
detection (ID), or dialog act classification (DAC).
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Verbal content anonymization for text processing

• Full entity replacement preserves utility.

• However, it does not fully prevent speaker re-identification. Hiding age, gender,
etc., is a lot more difficult.
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Was anonymization successful?

• Is an EER of xx% enough? What’s the threshold?

• The reduction in re-identification accuracy after anonymization is more easily
interpretable.

• Experiments so far suggest that, if there are many speakers in the dataset,
accurate text anonymization, no metadata, the answer is probably yes.

• This remains to be legally validated using, e.g., the three legally admitted
criteria of the Article 29 Working Party (European Data Protection Board)
> linkability: ability to link records related to an individual → we measured this
> singling out: ability to single out an individual → TBD
> inference: ability to re-identify an individual based on observed traits → TBD
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Perspectives

• Anonymization:
> Improved disentanglement
> Improved feature decorrelation / non-i.i.d. noise for DP
> Word replacement inside speech signals (not only text)

• Selective attribute manipulation:
> Privacy w.r.t. other attributes, e.g., gender, age, accent
> Utility for other tasks than ASR, e.g., medical
> User-friendly interface

• Evaluation
> Stronger attackers, perhaps more realistic too (metadata, etc.)

• Watermarking to avoid avoid anonymized voice sounding like another real
speaker’s voice
• Efficient embedded implementation
• Combination with encryption & decentralized learning
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VoicePrivacy 2022 Challenge

• Task: develop a voice anonymization system.
• Resources:

> Train, devel, test datasets
> 3 baseline systems
> Evaluation scripts

• Updates w.r.t. VoicePrivacy 2020 Challenge:
> Stronger, Semi-Informed (utt-level) attack model
> New ranking based on WER for multiple EER levels
> Complementary pitch correlation and voice

distinctiveness utility metrics

Submission deadline: July 31, 2022
Workshop at Interspeech: September 23–24, 2022

35 - Speech anonymization - E. Vincent


