
IRISA/D5 Thematic Seminar

Source separation

Emmanuel Vincent

Inria Nancy { Grand Est

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 1 / 50



Source separation

Source separation is the problem ofrecovering the source signals
underlying a given mixture.
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Overview

Hundreds of source separation systems were designed in the last 20
years. . .

. . . but few are yet applicable to real-world audio, as illustrated by the
recent Signal Separation Evaluation Campaigns (SiSEC).

The wide variety of techniques boils down to four modeling paradigms:

computational auditory scene analysis(CASA),

beamforming and post-�ltering,

probabilistic linear modeling, including independent component
analysis (ICA) and sparse component analysis (SCA),

probabilistic variance modeling, including hidden Markov models
(HMM) and nonnegative matrix factorization (NMF).

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 3 / 50



1 Beamforming and post-�ltering
2 Probabilistic linear modeling
3 Probabilistic variance modeling
4 Summary

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 4 / 50



Beamforming and post-�ltering

Paradigm 1: separation of a target source in ambient noise
Early studies on array processing focused on the extractionof a target
point sourcein ambient noise.

In eachtime-frequencybin (n; f ), the model used for source localization is
assumed here again

Xnf = Snf D f + Bnf

Xnf : mixture STFT coe�.
Snf : target STFT coe�.
D f : steering vector
Bnf : ambient noise

where the steering vectorD f encode the ITDs� i and the IIDsgi between
the I microphones
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Beamforming and post-�ltering

Beamforming and post-�ltering
The optimal linear estimator in the minimum mean square error (MMSE)
sense is themultichannel Wiener �lter

bSnf = V S
nf DH

f (� X
nf ) � 1Xnf

whereV S
nf is the variance ofSnf and � X

nf the covariance ofXnf .

This estimator is in fact the combination of
a multichannel spatial �lterknown as the minimum variance
distortionless response (MVDR)beamformer

Ynf =
DH

f (� X
nf ) � 1Xnf

DH
f (� X

nf ) � 1D f

a single-channe spectral �lterknown as the Wienerpost-�lter

bSnf =
V S

nf

V Y
nf

Ynf

whereV Y
nf is the variance ofYnf and V S

nf =V Y
nf is the SNR.
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Beamforming and post-�ltering

Estimation algorithms

The steering vectorD f is derived from the spatial position of the target
obtained via asource localizationalgorithm.

The covariance of the mixture �Xnf is computed empirically by local
averaging of squared STFT coe�cients in the time-frequencyplane.

The variance of the target is often estimated byspectral subtraction

V S
nf = maxf 0; V Y

nf � V B
nf g

whereV B
nf is the assumed noise variance inV Y

nf .

V B
nf is estimated for example by the MCRA method forsilence detection.
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Beamforming and post-�ltering

Summary of beamforming and post-�ltering

The algorithms stemming from paradigm 1 exhibit two main limitations:

performance is very sensitive tolocalization accuracy,

the MCRA algorithm assumesquasi-stationary noiseand fails in a
multi-source context whereV B

nf varies a lot from one time frame to
the next.

In order to overcome the latter limitation, multiple sources must be
explicitly modeled.
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Beamforming and post-�ltering

1 Beamforming and post-�ltering
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Probabilistic linear modeling

Paradigm 2: linear modeling

The established linear modeling paradigm relies on two assumptions:
1 point sources
2 low reverberation

Under assumption 1, the sources and the mixing process can bemodeled
as single-channel source signalsand alinear �ltering process.

Under assumption 2, this �ltering process is equivalent to complex-valued
multiplication in the time-frequency domainvia the short-time Fourier
transform (STFT).

In each time-frequency bin (n; f )

Xnf =
JX

j =1

Sjnf A jf

Xnf : vector of mixture STFT coe�.
J: number of sources
Sjnf : j th source STFT coe�.
A jf : j th mixing vector
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Probabilistic linear modeling

Modeling of the mixing vectors

The mixing vectorsA jf encode the ITD and IID of each source at each
frequency.

For anechoic mixtures,A jf is equal to the steering vectorD jf .

For echoic mixtures, ITDs and IIDs follow asmeared distributionP(A jf j� j )
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Probabilistic linear modeling

Sparsity of the source STFT coe�cients

Let us suppose for the moment that the source STFT coe�cientsSjnf are
independent and identically distributed (i.i.d.).

These coe�cients aresparse: at each frequency, a few coe�cients are
large and most are close to zero.

Speech source S
1nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

0

20

40

60
Distribution of magnitude STFT coeff.

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 12 / 50



Probabilistic linear modeling

Sparse i.i.d. modeling of the sources
This property can be modeled in several ways:

binary masking: single active sourcej act
nf in each time-frequency bin

with, e.g., uniformP(j act
nf ),

generalized exponential distribution

P(jSjnf jjp; � f ) =
p

� f �(1 =p)
e

�
�
�
�

Sjnf
� f

�
�
�
p

p: shape parameter
� j : scale parameter
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Probabilistic linear modeling

Inference algorithms

Given the above priors, source separation is typically achieved by joint
MAP estimation of the source STFT coe�cientsSjnf and other latent
variables (A jf , gj , � j , p, � j ) via alternating nonlinear optimization.

This objective is called sparse component analysis (SCA).

For typical values ofp, the MAP source STFT coe�cients arenonzero for
at most I sources.

When the number of sources isJ = I , SCA is renamed nongaussianity-
based frequency-domain independent component analysis (FDICA).
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Probabilistic linear modeling

Practical illustration of separation using i.i.d. linear priors
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Time-frequency bins dominated by the center source are often erroneously
associated with the two other sources.
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Probabilistic linear modeling

SiSEC results on music mixtures
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Probabilistic linear modeling

SiSEC results on speech mixtures
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Probabilistic linear modeling

Summary of probabilistic linear modeling

Advantages:

explicitly models multiple sources

Limitations:

restricted to mixtures of non-reverberated point sources

the sources must have di�erent spatial cues (ITD, IID)

at most two sources can be separated in each time-frequency bin, and
their are often badly identi�ed due to the ambiguities of spatial cues
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Probabilistic linear modeling

1 Beamforming and post-�ltering
2 Probabilistic linear modeling
3 Probabilistic variance modeling
4 Summary
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Probabilistic variance modeling

Idea 1: from sources to source spatial images

Di�use or semi-di�use sources cannot be modeled as single-channel signals
and not even as �nite dimensional signals.

Instead of considering the signal produced by each source, one may
consider its contribution to the mixture, a.k.a. itsspatial image.

Background noise becomes a source as any other.

Source separation becomes the problem of estimating the spatial images of
all sources.

In each time-frequency bin (n; f )

Xnf =
JX

j =1

Cjnf

Xnf : vector of mixture STFT coe�.
J: number of sources
Cjnf : j th source spatial image
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Probabilistic variance modeling

Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, additional spectral
cues are needed as shown by CASA.

Most audio sources aretranslation- and phase-invariant: a given sound
may be produced at any time with any relative phase across frequency.
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Probabilistic variance modeling

Paradigm 3: variance modeling

Variance modeling combines these two ideas by modeling the STFT
coe�cients of individual source spatial images by acircular multivariate
distribution whose parameters vary over time and frequency.

The non-sparsity of source STFT coe�cients over small time-frequency
regions suggests the use of anon-sparse distribution.
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Probabilistic variance modeling

Choice of the distribution

For historical reasons, several distributions have been preferred in a mono
context, which can equivalently be expressed asdivergencefunctions over
the source magnitude/power STFT coe�cients:

Poisson$ Kullback-Leibler divergence aka I-divergence

tied-variance Gaussian$ Euclidean distance

log-Gaussian$ weighted log-Euclidean distance

These distributions do not easily generalize to multichannel data.
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Probabilistic variance modeling

The multichannel Gaussian model

The zero-mean Gaussian distributionis a simple multichannel model.

P(Cjnf j� jnf ) =
1

det(� � jnf )
e� CH

jnf � � 1
jnf Cjnf � jnf : jth source

covariance matrix

The covariance matrix� jnf of each source can be factored as the product
of a scalar nonnegative varianceVjnf and aspatial covariance matrixRjf

respectively modeling spectral and spatial properties

� jnf = Vjnf Rjf

Under this model, the mixture STFT coe�cients also follow a Gaussian
distribution whose covariance is the sum of the source covariances

P(Xnf jVjnf ; Rjf ) =
1

det
�

�
P J

j =1 Vjnf Rjf

� e� XH
nf (

P J
j =1 Vjnf Rjf )

� 1
Xnf

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 24 / 50



Probabilistic variance modeling

General inference algorithm

Independently of the priors overVjnf and Rjf , source separation is typically
achieved in two steps:

joint MAP estimation of all model parameters using theexpectation
maximization(EM) algorithm,

MAP estimation of the source STFT coe�cients conditional tothe
model parameters bymultichannel Wiener �ltering

bCjnf = Vjnf Rjf

0

@
JX

j 0=1

Vj 0nf Rj 0f

1

A

� 1

Xnf :
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Probabilistic variance modeling

Rank-1 spatial covariance

The spatial covariancesRjf encode the apparent spatial direction and
spatial spread of sound in terms of

ITD,

IID,

normalized interchannel correlation a.k.a.interchannel coherence.

For non-reverberated point sources, the interchannel coherence is equal to
1, i.e., Rjf hasrank 1

Rjf = A jf AH
jf

In this case, the prior distributionsP(A jf j� j ) used with linear modeling can
be reused.
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Probabilistic variance modeling

Full-rank spatial covariance

For reverberated or di�use sources, the interchannel coherence is smaller
than 1, i.e. Rjf hasfull rank.

The theory of statistical room acoustics suggests thedirect+di�use model

Rjf / � j A jf AH
jf + B f

� j : direct-to-reverberant ratio
A jf : direct mixing vector
B f : di�use noise covariance

with

A jf =

s
2

1 + g2
j

�
1

gj e� 2i � f � j

�
� j : ITD of direct sound
gj : IID of direct sound

B f =
�

1 sinc(2� fd=c)
sinc(2� fd=c) 1

�
d: microphone spacing
c: sound speed

Modeling ofRjf as anunconstrained full-rankmatrix is also possible.
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Probabilistic variance modeling

I.i.d. modeling of the source variances

Baseline systems rely model the source variancesVjnf as i.i.d. and locally
constantwithin small time-frequency regions again.

It can then be shown that the MAP variances arenonzero for up toI 2

sources.

Discrete priors constraining the number of nonzero variances to a smaller
number have also been employed.

When the number of sources isJ = I , this model is also called
nonstationarity-based FDICA.
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Probabilistic variance modeling

Bene�t of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguities of ITD and IID
and identify the predominant sources more accurately.
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Probabilistic variance modeling

Practical illustration of separation using i.i.d. variance
priors
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Probabilistic variance modeling

Spectral modeling using template spectra

Variance modeling enables the design of phase-invariant spectral priors.

The Gaussian mixture model (GMM) represents the varianceVjnf of each
source at a given time by one of Ktemplate spectrawjkf indexed by a
discrete stateqjn

Vjnf = wjq jn f with P(qjn = k) = � jk

Di�erent strategies have been proposed to learn these spectra:

speaker-independent training on separate single-source data,

speaker-dependent training on separate single-source data,

MAP adaptation to the mixture using model selection or interpolation,

MAP inference from a coarse initial separation.
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Probabilistic variance modeling

Practical illustration of separation using template spectra
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Probabilistic variance modeling

Spectral modeling using basis spectra

The GMM does not e�ciently model polyphonic sound sources.

The varianceVjnf of each source can be modeled instead as the linear
combination of Kbasis spectrawjkf multiplied by time activation
coe�cients hjkn

Vjnf =
KX

k=1

hjknwjkf

This model is also called nonnegative matrix factorization(NMF).

A range of strategies have been used to learn these spectra:

instrument-dependent training on separate single-sourcedata,

MAP adaptation to the mixture using uniform priors,

MAP adaptation to the mixture using trained priors.
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Probabilistic variance modeling

Practical illustration of separation using basis spectra
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Probabilistic variance modeling

SiSEC results on music mixtures
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Probabilistic variance modeling

Constrained template/basis spectra

MAP adaptation or inference of the template/basis spectra is often needed
due to

the lack of training data,

the mismatch between training and test data.

However, it is often inaccurate: additional constraints over the spectra are
needed to further reduceover�tting .
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Probabilistic variance modeling

Harmonicity and spectral smoothness constraints

For instance, harmonicity and spectral smoothness can be enforced by

associating each basis spectrum with somea priori pitch p

modelingwjpf as the sum of�xed narrowband spectrabplf

representing adjacent partials at harmonic frequencies scaled by
spectral envelope coe�cientsejpl

wjpf =
LpX

l =1

ejpl bplf :

Parameter estimation now amounts to estimating the active pitches and
their spectral envelopes instead of their full spectra.
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Probabilistic variance modeling

Practical illustration of harmonicity constraints
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Probabilistic variance modeling

A 
exible spectral model

We have built upon this idea and proposed a 
exible frameworkenabling
the joint exploitation of a wide range of cues by:

factorization of the variance assuming theexcitation-�lter model
Vjnf = V ex

jnf V ft
jnf

further factorization of each part into basis spectra and time
activation coe�cients e.g. Vex

jnf =
P

k hex
jknwex

jkf

further factorization of the basis spectra and time activation series
into �ne structure and envelope coe�cientse.g. wex

jkf =
P

l eex
jlk f ex

jlf
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Probabilistic variance modeling

Source-�lter factorization
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Probabilistic variance modeling

Fine structure and envelope factorization
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Probabilistic variance modeling

SiSEC results on professional music mixtures
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Probabilistic variance modeling

Results on a speech mixture

Recorded mixture of 4 sources
Estimated sources using rank-1 mixing covariance

full-rank mixing covariance
rank-1 and harmonicity
full-rank and harmonicity
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Probabilistic variance modeling

Separation of single-channel recordings

The separation of single-channel recordings is more di�cult than that of
multichannel recordings since it relies on spectral cues only.

A speci�c model must belearned a priorifor each source.

This makes it possible to separate the sources in each time frame (using
pitch for instance).

For mixtures of 2 speakers

Schmidt & Olsson obtained a SDR of 8 dB with 5 min training
signals,

Smaragdis obtained a SDR of 5 dB with 30 s training signals.

Groupingof the separated sources over time remains di�cult and requires
more sophisticated temporal evolution models which are currently being
studied.
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Probabilistic variance modeling

Exploitation of visual cues
Two approaches exist to exploit visual cues:

activity detectionof each speaker and zeroing of inactive time
intervals,

lip feature extractionand joint modeling of audio and visual features
by GMMs.

The second approach performs better, but it cannot always beapplied.

Most of these algorithms were tested on mixtures withI � J.

In a single-channel scenario, Llagostera obtained comparable performance
to Smaragdis but with much shorter training signals.
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Probabilistic variance modeling

Summary of probabilistic variance modeling

Advantages:

virtually applicable to any mixture, including to di�use sources

no hard constraint on the number of sources per time-frequency bin

the predominant sources are more accurately estimated by joint use of
spatial, spectral and learned cues

principled 
exible framework for the integration of additional cues

Limitations:

remaining musical noise artifacts

remaining local optima of the estimation criterion
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Probabilistic variance modeling

1 Beamforming and post-�ltering
2 Probabilistic linear modeling
3 Probabilistic variance modeling
4 Summary
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Summary

Summary

This state of the art showed that

variance modelingalgorithms have a greater potential due to the
fusion of multiple cues,

the separation quality is satisfactory for instantaneous noiseless
mixtures: the handling ofreverberation and noiseremains a major
challenge,

single-channel separationremains di�cult, especially when the
sources have similar spectral cues,

visual cuescan improve performance but their use has been little
studied.

Existing systems aregradually �nding their way into the industry,
especially for remixing applications that can accomodate acertain amount
of musical noise artifacts and partial user input/feedback.
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Summary
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Summary

Websites and software

FASST: http://bass-db.gforge.inria.fr/fasst/
Software framework for the implementation of source separation
algorithms (Matlab)

SiSEC: http://sisec.wiki.irisa.fr/
Series of evaluation campaigns
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