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I
Source separation

Source separation is the problem w@fcovering the source signals
underlying a given mixture.
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I
Overview

Hundreds of source separation systems were designed iragte20
years. ..

... but few are yet applicable to real-world audio, as illkeged by the
recent Signal Separation Evaluation Campaigns (SiSEC).

The wide variety of techniques boils down to four modelinggohgms:
o computational auditory scene analyiGASA),
@ beamforming and post- Itering

o probabilistic linear modelingncluding independent component
analysis (ICA) and sparse component analysis (SCA),

@ probabilistic variance modelingncluding hidden Markov models
(HMM) and nonnegative matrix factorization (NMF).
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@ Beamforming and post- Itering
@ Probabilistic linear modeling

® Probabilistic variance modeling
© Summary
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Beamforming and post- ltering

Paradigm 1: separation of a target source in ambient ni

Early studies on array processing focused on the extractiba target
point sourcein ambient noise

In eachtime-frequencybin (n; f), the model used for source localization is
assumed here again

Xnt: Mixture STFT coe.
Sqi: target STFT coe.
Xnf = Snf Dt + By D;: steering vector
Bni: ambient noise

where the steering vectdd; encode the ITDs; and the IIDsg; between
the I microphones
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Beamforming and post- ltering

Beamforming and post- Itering

The optimal linear estimator in the minimum mean square erfIMSE)

sense is thenultichannel Wiener Iter
- ySpH( Xy 1
an - an Df ( nf) Xnf
whereV 3 is the variance oy and % the covariance oiy.

This estimator is in fact the combination of
o a multichannel spatial Iterknown as the minimum variance
distortionless response (MVDR)eamformer
DfH( %(f) 1Dy
@ asingle-channe spectral lteknown as the Wienepost- Iter
V3
8 = VY LA

WhereVn is the variance ofY andV Y is the SNR.
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Estimation algorithms

The steering vectoDs is derived from the spatial position of the target
obtained via asource localizatioralgorithm.

The covariance of the mixture ?](f is computed empirically by local
averaging of squared STFT coe cients in the time-frequenplane.

The variance of the target is often estimated lspectral subtraction
V3 =maxfo; vyl VEg
whereV}2 is the assumed noise variance\iy; .

V3 is estimated for example by the MCRA method feitence detection
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Summary of beamforming and post- ltering

The algorithms stemming from paradigm 1 exhibit two main itations:
o performance is very sensitive tocalization accuracy

o the MCRA algorithm assumeguasi-stationary noisand fails in a
multi-source context wher®& 2 varies a lot from one time frame to

the next.

In order to overcome the latter limitation, multiple sourgenust be
explicitly modeled.
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Beamforming and post- ltering

@ Beamforming and post- ltering
@ Probabilistic linear modeling

® Probabilistic variance modeling
© Summary
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Paradigm 2: linear modeling

The established linear modeling paradigm relies on two ag#ions:
© point sources
Q@ low reverberation

Under assumption 1, the sources and the mixing process cambaeled
as single-channel source signalad alinear Itering process

Under assumption 2, this ltering process is equivalent tongplex-valued
multiplication in the time-frequency domaiwia the short-time Fourier
transform (STFT).

In each time-frequency binn(f)
Xne o vector of mixture STFT coe .
X J: number of sources
Xnf = Sint Ajf Spe© jth source STFT coe .
j=1 Ajr : jth mixing vector
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Modeling of the mixing vectors

The mixing vectorsAjs encode the ITD and 11D of each source at each
frequency.
For anechoic mixturesAjs is equal to the steering vectdDis .

For echoic mixtures, ITDs and IIDs followsaneared distributiorP (Aj | )

Empirical distribution of ITD Empirical distribution of IID
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Sparsity of the source STFT coe cients

Let us suppose for the moment that the source STFT coe cierfls are
independent and identically distributed (i.i.d.)

These coe cients aresparse at each frequency, a few coe cients are
large and most are close to zero.

Speech sourcS1n 7
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Probabilistic linear modeling

Sparse i.i.d. modeling of the sources
This property can be modeled in several ways:
e binary masking single active sourcg! in each time-frequency bin
with, e.g., uniformP(ja),
@ generalized exponential distribution

; P _ p St P p: shape parameter
P(Snilip: 1) = me ' i scale parameter
Distribution of magnitude STFT coeff.
1
'% 10
4] empirical
m; 1 Gaussian (p=2)
©F, Laplacian (p=1)
Slo generalized p=0.4
(o]
9902

0 2 3. 4
|Slnf| (1scaled to unit variance)
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Inference algorithms

Given the above priors, source separation is typically et by joint
MAP estimation of the source STFT coe cientsSys and other latent
variables Aj, g, j, p, j) via alternating nonlinear optimization

This objective is called sparse component analysis (SCA).

For typical values of), the MAP source STFT coe cients arenonzero for
at most| sources

When the number of sources &= I, SCA is renamed nongaussianity-
based frequency-domain independent component analy<iBQR).
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Practical illustration of separation using i.i.d. lineaors

Left sourceS
_ Inf
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Predominant source pairs
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Time-frequency bins dominated by the center source arerofteroneously
associated with the two other sources.
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SISEC results on music mixtures

o

S 10 I i.i.d. linear priors

DD: [ ideal CASA mask (upper-bound)
0 []

panned recorded (RT=250ms)

Panned mixture )
Estimated sources using i.i.d. linear prior™)) =) =)

Recorded reverberant mixture )
Estimated sources using i.i.d. linear prior®)) ™)) =)
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SISEC results on speech mixtures
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Summary of probabilistic linear modeling

Advantages:
o explicitly models multiple sources

Limitations:
o restricted to mixtures of non-reverberated point sources
@ the sources must have di erent spatial cues (ITD, IID)

@ at most two sources can be separated in each time-frequenicydnd
their are often badly identi ed due to the ambiguities of djsl cues

E. Vincent IRISA/D5 Thematic Seminar 18/02/2013 18 /50



Probabilistic linear modeling

@ Beamforming and post- ltering
@ Probabilistic linear modeling

@ Probabilistic variance modeling
© Summary
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Idea 1: from sources to source spatial images

Di use or semi-di use sources cannot be modeled as sindglarmel signals
and not even as nite dimensional signals.

Instead of considering the signal produced by each soumse,may
consider its contribution to the mixture, a.k.a. itspatial image

Background noise becomes a source as any other.

Source separation becomes the problem of estimating thdiapenages of
all sources.

In each time-frequency binn(f)

¥ Xnf . vector of mixture STFT coe.
Xni = Cint J: number of sources

i=1 Cint = jth source spatial image
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Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, addiitil spectral
cues are needed as shown by CASA.

Most audio sources arganslation- and phase-invariania given sound
may be produced at any time with any relative phase acrosgueacy.
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Probabilistic variance modeling

Paradigm 3: variance modeling

Variance modeling combines these two ideas by modeling thETS
coe cients of individual source spatial images byccular multivariate
distribution whose parameters vary over time and frequency

The non-sparsity of source STFT coe cients over small tinfiequency
regions suggests the use ofnan-sparse distribution

Spech sourCﬁ1nf Generalized Gaussian shape paranyel

60
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2
=~ ©
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n(s) neighborhood size (Hz's)
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Choice of the distribution

For historical reasons, several distributions have beearigored in a mono
context, which can equivalently be expresseddasrgenceunctions over
the source magnitude/power STFT coe cients:

o Poisson$ Kullback-Leibler divergence aka I-divergence

o tied-variance Gaussiad Euclidean distance

o log-Gaussiar$ weighted log-Euclidean distance

These distributions do not easily generalize to multichahdata.

E. Vincent IRISA/D5 Thematic Seminar 18/02/2013 23 /50



The multichannel Gaussian model

The zero-mean Gaussian distributias a simple multichannel model.

P(Cintj inf) = #e Ch jnflcjm jnf - jth source:
) J det( jnf) covariance matrix

The covariance matrix j,x of each source can be factored as the produc
of a scalar nonnegative variandgns and aspatial covariance matriRjs
respectively modeling spectral and spatial properties

inf = Vijnf Rt

Under this model, the mixture STFT coe cients also follow aaBssian
distribution whose covariance is the sum of the source cewvaes

1
P J
det j=1 anf ij

XH P J Vi R lX
P(anjvjnf;ij) = e 7ntl j=1 Vinf jf) nf
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General inference algorithm

Independently of the priors ovéfj,; and Rj, source separation is typically
achieved in two steps:
@ joint MAP estimation of all model parameters using tlexpectation
maximization(EM) algorithm,
o MAP estimation of the source STFT coe cients conditional tthe
model parameters bynultichannel Wiener ltering

0 1
] 1

éjnf = Vit Rt @ Vjor Rig A Xing:

j%=1
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Probabilistic variance modeling

Rank-1 spatial covariance

The spatial covarianceRjs encode the apparent spatial direction and
spatial spread of sound in terms of

e |ITD,
o |ID,

e normalized interchannel correlation a.k.aterchannel coherence
For non-reverberated point sources, the interchannel eehee is equal to

1,i.e, Ry hasrank 1
ij = Ajf AF

In this case, the prior distribution® (Aj j j) used with linear modeling can
be reused.
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Full-rank spatial covariance

For reverberated or di use sources, the interchannel camee is smaller
than 1,i.e. R hasfull rank.

The theory of statistical room acoustics suggests tiieect+di use model

" j: direct-to-reverberant ratio
Rif I jAj Ajf + Bs Ajs : direct mixing vector
B:: diuse noise covariance

with
A = 2 1 i ITD of direct sound
= 1F gjz ge 2t g;: 11D of direct sound
B, = 1 sinc(2 fd=c) d: microphone spacing
f sinc(2 fd=c) 1 c: sound speed

Modeling ofRj; as anunconstrained full-rankmatrix is also possible.
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l.i.d. modeling of the source variances

Baseline systems rely model the source varianggs asi.i.d. and locally
constantwithin small time-frequency regions again.

It can then be shown that the MAP variances anenzero for up tol
sources

Discrete priors constraining the number of nonzero varesto a smaller
number have also been employed.

When the number of sources &= |, this model is also called
nonstationarity-based FDICA.
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Bene t of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguifi¢$® and 11D
and identify the predominant sources more accurately.

Linear model Covariance model
As S, Ay
S o oX
3 - - 71
7/
Y i
/ /
7 |
7/
/ Sl Al
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Probabilistic variance modeling

Practical illustration of separation using i.i.d. vari@nc
priors
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Probabilistic variance modeling

Spectral modeling using template spectra

Variance modeling enables the design of phase-invariaatspl priors.

The Gaussian mixture model (GMM) represents the variahgg of each

source at a given time by one of emplate spectrawj indexed by a
discrete stategjn

Vint = Wig,,t With P(qjn = k) =

Di erent strategies have been proposed to learn these spect
o speaker-independent training on separate single-sougta,d
@ speaker-dependent training on separate single-sourca,dat
o MAP adaptation to the mixture using model selection or inpedation,
o MAP inference from a coarse initial separation.
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Practical illustration of separation using template speect

Violin sourceC Mixture X
2nf nf

Piano sourc€
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Probabilistic variance modeling

Spectral modeling using basis spectra
The GMM does not e ciently model polyphonic sound sources.

The varianceVjys of each source can be modeled instead as the linear

combination of Kbasis spectravys multiplied bytime activation
coe cients hyn

X
Vint = Pijkn Wikf
k=1

This model is also called nonnegative matrix factorizatiddMF).

A range of strategies have been used to learn these spectra:
@ instrument-dependent training on separate single-souwtaéa,
o MAP adaptation to the mixture using uniform priors,
e MAP adaptation to the mixture using trained priors.
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Probabilistic variance modeling

Practical illustration of separation using basis spectra

Violin sourceC Mixture X
2nf nf 60

Piano sourc€
Lt

1.2 3
k (violin)
Estimated violin variancs2

1k(p\an0)3
Estimated mixture varianc® +S
int " ont

Esnmated piano vanan&1
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SISEC results on music mixtures

15
o
10 I adapted basis spectt
x . [ i.i.d. linear priors
%)
0 | [m

panned recorded (RT=250ms)

Panned mixture )
Estimated sources using adapted basis spect®)) ™)) =)
Estimated sources using i.i.d. linear priors ™) ™)) )

Recorded reverberant mixture )
Estimated sources using adapted basis spect®)) ™)) =)
Estimated sources using i.i.d. linear priors ™)) =) =)
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Constrained template/basis spectra

MAP adaptation or inference of the template/basis spectsadften needed
due to

o the lack of training data,
o the mismatch between training and test data.

However, it is often inaccurate: additional constraintseshe spectra are
needed to further reducever tting .
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Probabilistic variance modeling

Harmonicity and spectral smoothness constraints

For instance, harmonicity and spectral smoothness can bferead by
@ associating each basis spectrum with someriori pitch p

@ modelingwjys as the sum ofxed narrowband spectrdps
representing adjacent partials at harmonic frequencieslesd by
spectral envelope coe cientgyp,

p
Wipf = €jpibpir
1=1

Parameter estimation now amounts to estimating the activikches and
their spectral envelopes instead of their full spectra.
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Probabilistic variance modeling

Practical illustration of harmonicity constraints
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A exible spectral model

We have built upon this idea and proposed a exible frameweriabling
the joint exploitation of a wide range of cues by:

° factorization of the variance assuming thexcitation- Ilter model

Vint = Jnf anf
o further factorization of each partF;nto basis spectra andhg
activation coe cients e.g. Vgt = | higf wigs

o further factorization of the basis spectra and time acpjm series
into ne structure and envelope coe cientse.g. Wi = | effiE

E. Vincent IRISA/D5 Thematic Seminar 18/02/2013 39 /50



Probabilistic variance modeli

Source- lter factorization

(A Source spectral power

(B Moskl sprciral power ¥, = VY3 VE
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Fine structure and envelope factorization
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SISEC results on professional music mixtures

20
s 15 I vocals
a 10 I drums
x [ bass
35 [ guitar
JI-IT = piane
0

Tamy (2 sources)
Estimated sources using the exible framework

Bearlin (10 sources)
Estimated sources using the exible framework
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Results on a speech mixture

Recorded mixture of 4 sources

Estimated sources using rank-1 mixing covariance
full-rank mixing covariance
rank-1 and harmonicity
full-rank and harmonicity
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Separation of single-channel recordings

The separation of single-channel recordings is more ditctilan that of
multichannel recordings since it relies on spectral cuely.on

A speci ¢ model must béearned a priorfor each source.

This makes it possible to separate the sources in each tiragé (using
pitch for instance).

For mixtures of 2 speakers

@ Schmidt & Olsson obtained a SDR of 8 dB with 5 min training
signals,

@ Smaragdis obtained a SDR of 5 dB with 30 s training signals.

Groupingof the separated sources over time remains di cult and recps
more sophisticated temporal evolution models which arerently being
studied.
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Probabilistic variance modeling

Exploitation of visual cues
Two approaches exist to exploit visual cues:

@ activity detectionof each speaker and zeroing of inactive time
intervals,

o lip feature extractionand joint modeling of audio and visual features
by GMMs.

The second approach performs better, but it cannot alwaysapplied.
Most of these algorithms were tested on mixtures with J.

In a single-channel scenario, Llagostera obtained comparperformance
to Smaragdis but with much shorter training signals.
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Summary of probabilistic variance modeling

Advantages:
e virtually applicable to any mixture, including to di use sioces
@ no hard constraint on the number of sources per time-frequyehin

o the predominant sources are more accurately estimated oyt jose of
spatial, spectral and learned cues

@ principled exible framework for the integration of addithal cues

Limitations:
@ remaining musical noise artifacts
@ remaining local optima of the estimation criterion
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Probabilistic variance modeling

® Beamforming and post- Itering
@ Probabilistic linear modeling

® Probabilistic variance modeling
© Summary
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Summary

This state of the art showed that

e variance modelin@lgorithms have a greater potential due to the
fusion of multiple cues,

o the separation quality is satisfactory for instantaneousiseless
mixtures: the handling ofeverberation and noiseemains a major
challenge,

@ single-channel separatiaremains di cult, especially when the
sources have similar spectral cues,

@ visual cuexan improve performance but their use has been little
studied.

Existing systems argradually nding their way into the industry
especially for remixing applications that can accomodateeatain amount
of musical noise artifacts and partial user input/feedback
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Websites and software

FASST: http://bass-db.gforge.inria.fr/fasst/
Software framework for the implementation of source sepiama
algorithms (Matlab)

SISEC http://sisec.wiki.irisa.fr/
Series of evaluation campaigns
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