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Source separation

Source separation is the problem of recovering the source signals
underlying a given mixture.
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Overview

Hundreds of source separation systems were designed in the last 20
years. . .

. . . but few are yet applicable to real-world audio, as illustrated by the
recent Signal Separation Evaluation Campaigns (SiSEC).

The wide variety of techniques boils down to four modeling paradigms:

computational auditory scene analysis (CASA),

beamforming and post-filtering,

probabilistic linear modeling, including independent component
analysis (ICA) and sparse component analysis (SCA),

probabilistic variance modeling, including hidden Markov models
(HMM) and nonnegative matrix factorization (NMF).
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Beamforming and post-filtering

Paradigm 1: separation of a target source in ambient noise

Early studies on array processing focused on the extraction of a target
point source in ambient noise.

In each time-frequency bin (n, f ), the model used for source localization is
assumed here again

Xnf = SnfDf + Bnf

Xnf : mixture STFT coeff.
Snf : target STFT coeff.
Df : steering vector
Bnf : ambient noise

where the steering vector Df encode the ITDs τi and the IIDs gi between
the I microphones

Df ∝




1
g2e

−2iπf τ2

...
gI e

−2iπf τI
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Beamforming and post-filtering

Beamforming and post-filtering
The optimal linear estimator in the minimum mean square error (MMSE)
sense is the multichannel Wiener filter

Ŝnf = V S
nfD

H
f (Σ

X

nf )
−1

Xnf

where V S
nf is the variance of Snf and ΣX

nf the covariance of Xnf .

This estimator is in fact the combination of

a multichannel spatial filter known as the minimum variance
distortionless response (MVDR) beamformer

Ynf =
D

H
f (Σ

X

nf )
−1

Xnf

DH
f (Σ

X

nf )
−1Df

a single-channe spectral filter known as the Wiener post-filter

Ŝnf =
V S
nf

V Y
nf

Ynf

where V Y
nf is the variance of Ynf and V S

nf /V
Y
nf is the SNR.
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Beamforming and post-filtering

Estimation algorithms

The steering vector Df is derived from the spatial position of the target
obtained via a source localization algorithm.

The covariance of the mixture ΣX

nf is computed empirically by local
averaging of squared STFT coefficients in the time-frequency plane.

The variance of the target is often estimated by spectral subtraction

V S
nf = max{0,V Y

nf − V B
nf }

where V B
nf is the assumed noise variance in V Y

nf .

V B
nf is estimated for example by the MCRA method for silence detection.
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Beamforming and post-filtering

Summary of beamforming and post-filtering

The algorithms stemming from paradigm 1 exhibit two main limitations:

performance is very sensitive to localization accuracy,

the MCRA algorithm assumes quasi-stationary noise and fails in a
multi-source context where V B

nf varies a lot from one time frame to
the next.

In order to overcome the latter limitation, multiple sources must be
explicitly modeled.
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Beamforming and post-filtering

1 Beamforming and post-filtering

2 Probabilistic linear modeling

3 Probabilistic variance modeling

4 Summary
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Probabilistic linear modeling

Paradigm 2: linear modeling

The established linear modeling paradigm relies on two assumptions:
1 point sources
2 low reverberation

Under assumption 1, the sources and the mixing process can be modeled
as single-channel source signals and a linear filtering process.

Under assumption 2, this filtering process is equivalent to complex-valued
multiplication in the time-frequency domain via the short-time Fourier
transform (STFT).

In each time-frequency bin (n, f )

Xnf =
J∑

j=1

SjnfAjf

Xnf : vector of mixture STFT coeff.
J: number of sources
Sjnf : jth source STFT coeff.
Ajf : jth mixing vector
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Probabilistic linear modeling

Modeling of the mixing vectors

The mixing vectors Ajf encode the ITD and IID of each source at each
frequency.

For anechoic mixtures, Ajf is equal to the steering vector Djf .

For echoic mixtures, ITDs and IIDs follow a smeared distribution P(Ajf |θj)
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Probabilistic linear modeling

Sparsity of the source STFT coefficients

Let us suppose for the moment that the source STFT coefficients Sjnf are
independent and identically distributed (i.i.d.).

These coefficients are sparse: at each frequency, a few coefficients are
large and most are close to zero.
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Probabilistic linear modeling

Sparse i.i.d. modeling of the sources
This property can be modeled in several ways:

binary masking: single active source jactnf in each time-frequency bin
with, e.g., uniform P(jactnf ),

generalized exponential distribution

P(|Sjnf ||p, βf ) =
p

βf Γ(1/p)
e
−

∣

∣

∣

Sjnf
βf

∣

∣

∣

p

p: shape parameter
βj : scale parameter
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Probabilistic linear modeling

Inference algorithms

Given the above priors, source separation is typically achieved by joint
MAP estimation of the source STFT coefficients Sjnf and other latent
variables (Ajf , gj , τj , p, βj) via alternating nonlinear optimization.

This objective is called sparse component analysis (SCA).

For typical values of p, the MAP source STFT coefficients are nonzero for
at most I sources.

When the number of sources is J = I , SCA is renamed nongaussianity-
based frequency-domain independent component analysis (FDICA).
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Probabilistic linear modeling

Practical illustration of separation using i.i.d. linear priors
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Time-frequency bins dominated by the center source are often erroneously
associated with the two other sources.
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Probabilistic linear modeling

SiSEC results on music mixtures
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Probabilistic linear modeling

SiSEC results on speech mixtures
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Probabilistic linear modeling

Summary of probabilistic linear modeling

Advantages:

explicitly models multiple sources

Limitations:

restricted to mixtures of non-reverberated point sources

the sources must have different spatial cues (ITD, IID)

at most two sources can be separated in each time-frequency bin, and
their are often badly identified due to the ambiguities of spatial cues
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Probabilistic linear modeling

1 Beamforming and post-filtering

2 Probabilistic linear modeling

3 Probabilistic variance modeling

4 Summary
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Probabilistic variance modeling

Idea 1: from sources to source spatial images

Diffuse or semi-diffuse sources cannot be modeled as single-channel signals
and not even as finite dimensional signals.

Instead of considering the signal produced by each source, one may
consider its contribution to the mixture, a.k.a. its spatial image.

Background noise becomes a source as any other.

Source separation becomes the problem of estimating the spatial images of
all sources.

In each time-frequency bin (n, f )

Xnf =
J∑

j=1

Cjnf

Xnf : vector of mixture STFT coeff.
J: number of sources
Cjnf : jth source spatial image
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Probabilistic variance modeling

Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, additional spectral
cues are needed as shown by CASA.

Most audio sources are translation- and phase-invariant: a given sound
may be produced at any time with any relative phase across frequency.
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Probabilistic variance modeling

Paradigm 3: variance modeling

Variance modeling combines these two ideas by modeling the STFT
coefficients of individual source spatial images by a circular multivariate
distribution whose parameters vary over time and frequency.

The non-sparsity of source STFT coefficients over small time-frequency
regions suggests the use of a non-sparse distribution.
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Probabilistic variance modeling

Choice of the distribution

For historical reasons, several distributions have been preferred in a mono
context, which can equivalently be expressed as divergence functions over
the source magnitude/power STFT coefficients:

Poisson ↔ Kullback-Leibler divergence aka I-divergence

tied-variance Gaussian ↔ Euclidean distance

log-Gaussian ↔ weighted log-Euclidean distance

These distributions do not easily generalize to multichannel data.
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Probabilistic variance modeling

The multichannel Gaussian model

The zero-mean Gaussian distribution is a simple multichannel model.

P(Cjnf |Σjnf ) =
1

det(πΣjnf )
e
−CH

jnf
Σ

−1
jnf

Cjnf Σjnf : jth source
covariance matrix

The covariance matrix Σjnf of each source can be factored as the product
of a scalar nonnegative variance Vjnf and a spatial covariance matrix Rjf

respectively modeling spectral and spatial properties

Σjnf = VjnfRjf

Under this model, the mixture STFT coefficients also follow a Gaussian
distribution whose covariance is the sum of the source covariances

P(Xnf |Vjnf ,Rjf ) =
1

det
(
π
∑J

j=1 VjnfRjf

)e−XH
nf (

∑J
j=1 Vjnf Rjf )

−1
Xnf
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Probabilistic variance modeling

General inference algorithm

Independently of the priors over Vjnf and Rjf , source separation is typically
achieved in two steps:

joint MAP estimation of all model parameters using the expectation
maximization (EM) algorithm,

MAP estimation of the source STFT coefficients conditional to the
model parameters by multichannel Wiener filtering

Ĉjnf = VjnfRjf




J∑

j ′=1

Vj ′nfRj ′f




−1

Xnf .
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Probabilistic variance modeling

Rank-1 spatial covariance

The spatial covariances Rjf encode the apparent spatial direction and
spatial spread of sound in terms of

ITD,

IID,

normalized interchannel correlation a.k.a. interchannel coherence.

For non-reverberated point sources, the interchannel coherence is equal to
1, i.e., Rjf has rank 1

Rjf = AjfA
H
jf

In this case, the prior distributions P(Ajf |θj) used with linear modeling can
be reused.

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 26 / 50



Probabilistic variance modeling

Full-rank spatial covariance

For reverberated or diffuse sources, the interchannel coherence is smaller
than 1, i.e. Rjf has full rank.

The theory of statistical room acoustics suggests the direct+diffuse model

Rjf ∝ λjAjfA
H
jf + Bf

λj : direct-to-reverberant ratio
Ajf : direct mixing vector
Bf : diffuse noise covariance

with

Ajf =

√
2

1 + g2
j

(
1

gje
−2iπf τj

)
τj : ITD of direct sound
gj : IID of direct sound

Bf =

(
1 sinc(2πfd/c)

sinc(2πfd/c) 1

)
d : microphone spacing
c : sound speed

Modeling of Rjf as an unconstrained full-rank matrix is also possible.

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 27 / 50



Probabilistic variance modeling

I.i.d. modeling of the source variances

Baseline systems rely model the source variances Vjnf as i.i.d. and locally
constant within small time-frequency regions again.

It can then be shown that the MAP variances are nonzero for up to I 2

sources.

Discrete priors constraining the number of nonzero variances to a smaller
number have also been employed.

When the number of sources is J = I , this model is also called
nonstationarity-based FDICA.
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Probabilistic variance modeling

Benefit of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguities of ITD and IID
and identify the predominant sources more accurately.
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Probabilistic variance modeling

Practical illustration of separation using i.i.d. variance

priors
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Probabilistic variance modeling

Spectral modeling using template spectra

Variance modeling enables the design of phase-invariant spectral priors.

The Gaussian mixture model (GMM) represents the variance Vjnf of each
source at a given time by one of K template spectra wjkf indexed by a
discrete state qjn

Vjnf = wjqjnf with P(qjn = k) = πjk

Different strategies have been proposed to learn these spectra:

speaker-independent training on separate single-source data,

speaker-dependent training on separate single-source data,

MAP adaptation to the mixture using model selection or interpolation,

MAP inference from a coarse initial separation.

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 31 / 50



Probabilistic variance modeling

Practical illustration of separation using template spectra
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Probabilistic variance modeling

Spectral modeling using basis spectra

The GMM does not efficiently model polyphonic sound sources.

The variance Vjnf of each source can be modeled instead as the linear
combination of K basis spectra wjkf multiplied by time activation
coefficients hjkn

Vjnf =
K∑

k=1

hjknwjkf

This model is also called nonnegative matrix factorization (NMF).

A range of strategies have been used to learn these spectra:

instrument-dependent training on separate single-source data,

MAP adaptation to the mixture using uniform priors,

MAP adaptation to the mixture using trained priors.
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Probabilistic variance modeling

Practical illustration of separation using basis spectra
Piano source C
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Probabilistic variance modeling

SiSEC results on music mixtures
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Probabilistic variance modeling

Constrained template/basis spectra

MAP adaptation or inference of the template/basis spectra is often needed
due to

the lack of training data,

the mismatch between training and test data.

However, it is often inaccurate: additional constraints over the spectra are
needed to further reduce overfitting.
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Probabilistic variance modeling

Harmonicity and spectral smoothness constraints

For instance, harmonicity and spectral smoothness can be enforced by

associating each basis spectrum with some a priori pitch p

modeling wjpf as the sum of fixed narrowband spectra bplf
representing adjacent partials at harmonic frequencies scaled by
spectral envelope coefficients ejpl

wjpf =

Lp∑

l=1

ejplbplf .

Parameter estimation now amounts to estimating the active pitches and
their spectral envelopes instead of their full spectra.
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Probabilistic variance modeling

Practical illustration of harmonicity constraints
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Probabilistic variance modeling

A flexible spectral model

We have built upon this idea and proposed a flexible framework enabling
the joint exploitation of a wide range of cues by:

factorization of the variance assuming the excitation-filter model
Vjnf = V ex

jnf V
ft

jnf

further factorization of each part into basis spectra and time
activation coefficients e.g. V ex

jnf =
∑

k h
ex

jknw
ex

jkf

further factorization of the basis spectra and time activation series
into fine structure and envelope coefficients e.g. w ex

jkf =
∑

l e
ex

jlk f
ex

jlf
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Probabilistic variance modeling

Source-filter factorization
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Probabilistic variance modeling

Fine structure and envelope factorization
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Probabilistic variance modeling

SiSEC results on professional music mixtures
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Probabilistic variance modeling

Results on a speech mixture

Recorded mixture of 4 sources
Estimated sources using rank-1 mixing covariance

full-rank mixing covariance
rank-1 and harmonicity
full-rank and harmonicity
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Probabilistic variance modeling

Separation of single-channel recordings

The separation of single-channel recordings is more difficult than that of
multichannel recordings since it relies on spectral cues only.

A specific model must be learned a priori for each source.

This makes it possible to separate the sources in each time frame (using
pitch for instance).

For mixtures of 2 speakers

Schmidt & Olsson obtained a SDR of 8 dB with 5 min training
signals,

Smaragdis obtained a SDR of 5 dB with 30 s training signals.

Grouping of the separated sources over time remains difficult and requires
more sophisticated temporal evolution models which are currently being
studied.

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 44 / 50



Probabilistic variance modeling

Exploitation of visual cues
Two approaches exist to exploit visual cues:

activity detection of each speaker and zeroing of inactive time
intervals,

lip feature extraction and joint modeling of audio and visual features
by GMMs.

The second approach performs better, but it cannot always be applied.

Most of these algorithms were tested on mixtures with I ≥ J.

In a single-channel scenario, Llagostera obtained comparable performance
to Smaragdis but with much shorter training signals.
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Probabilistic variance modeling

Summary of probabilistic variance modeling

Advantages:

virtually applicable to any mixture, including to diffuse sources

no hard constraint on the number of sources per time-frequency bin

the predominant sources are more accurately estimated by joint use of
spatial, spectral and learned cues

principled flexible framework for the integration of additional cues

Limitations:

remaining musical noise artifacts

remaining local optima of the estimation criterion

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 46 / 50



Probabilistic variance modeling

1 Beamforming and post-filtering

2 Probabilistic linear modeling

3 Probabilistic variance modeling

4 Summary
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Summary

Summary

This state of the art showed that

variance modeling algorithms have a greater potential due to the
fusion of multiple cues,

the separation quality is satisfactory for instantaneous noiseless
mixtures: the handling of reverberation and noise remains a major
challenge,

single-channel separation remains difficult, especially when the
sources have similar spectral cues,

visual cues can improve performance but their use has been little
studied.

Existing systems are gradually finding their way into the industry,
especially for remixing applications that can accomodate a certain amount
of musical noise artifacts and partial user input/feedback.
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Websites and software

FASST: http://bass-db.gforge.inria.fr/fasst/
Software framework for the implementation of source separation
algorithms (Matlab)

SiSEC: http://sisec.wiki.irisa.fr/
Series of evaluation campaigns

E. Vincent (Inria Nancy)IRISA/D5 Thematic Seminar 18/02/2013 50 / 50


	Beamforming and post-filtering
	Probabilistic linear modeling
	Probabilistic variance modeling
	Summary

