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August 25, 2015



2

Outline

Introduction

Fundamental Acoustics

Signal Models

Fundamental Array Processing

Data-Independent Beamforming

Data-Dependent Beamforming

Data-Dependent Source Separation

Summary and Perspectives



3

Outline

Introduction
Considered Problem
Applications
General Approach
Focus and Overview

Fundamental Acoustics

Signal Models

Fundamental Array Processing

Data-Independent Beamforming

Data-Dependent Beamforming

Data-Dependent Source Separation

Summary and Perspectives



4

Introduction
Considered Problem

Commercial applications of speech and audio processing are already available
for, e.g., speech recorded by a close-talk microphone in a quiet environment.

But audio scenes are often more complicated due to

I reverberation,

I noise,

I multiple sound sources.
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Introduction
Considered Problem

A general problem is to analyze such sound scenes in order to

1. describe the environment,

2. localize the sources,

3. describe them,

4. enhance or separate them.

Humans are able to perform the three first tasks above in many situations.

In this lecture, we focus on the problem of speech enhancement or source
separation for multichannel signals.
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Introduction
Applications

Three categories of applications:

I separation per se,

I remixing,

I information retrieval from multisource audio.

Some practical examples follow.
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Introduction
Applications

Spoken communication and personal assistants: simple noise reduction
techniques already available in today’s phones/hearing aids.
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Introduction
Applications

3D audio: upmixing of mono/stereo formats or new 3D formats (SAOC).
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Introduction
Applications

Creative & interactive audio: similar to 3D audio but finer-grained separation
and control for professionals/general public.
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Introduction
Applications

Smart homes: microphones less intrusive and sometimes more informative than
cameras.
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Introduction
Applications

Monitoring and surveillance: similar to smart homes but healthcare/security
market.
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Introduction
Applications

Audiovisual content management: index speech and music documents with
robust, detailed information.
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Introduction
Applications

Sound examples

Music Speech in bus TV series
↓ ↓ ↓

Vocals Speech Speech
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Introduction
General Approach

Solving the speech enhancement and source separation problem requires
building models of:

I audio source properties aka spectral models,

I acoustic mixing conditions aka spatial models.

Increasingly complex models have been proposed over time.
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Introduction
Focus and Overview

In the following, we focus on:

I microphone array recordings of speech

→ similar principles apply to artificial multichannel mixes and to music

I spatial modeling and estimation

→ for state-of-the-art spectral modeling and estimation techniques, see
I T. Cemgil’s course on nonnegative matrix and tensor factorizations (Aug 24)
I D. Wang’s keynote and special session on deep neural networks (Aug 26)
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Introduction
Focus and Overview

Research in the field is typically categorized either as microphone array
processing or source separation.

Rather than opposing them, this lecture seeks to provide

I an overview of their common foundations,

I more details about the most usual algorithms,

I a summary of their common perspectives.
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Fundamental Acoustics
Physics

At usual loudness levels, the wave equation that governs the propagation of
sound in air is linear:

1. the sound field at any time is the sum of the sound fields resulting from
each source at that time;

2. the sound field emitted by a given source propagates over space and time
according to a linear operation.

Unless clipping occurs, microphones also operate linearly.

The overall mixing process is therefore linear.
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Fundamental Acoustics
Physics

In the free field, the recorded waveform differs from the emitted waveform by
I a delay of `/c,
I an attenuation factor of 1/

√
4π`.

x(t) =
1√
4π`

s

(
t− `

c

) x(t): recorded
s(t): emitted
`: source-to-microphone distance
c: speed of sound = 343 m/s

Figure : The spherical wave. Points on each sphere correspond to the same pressure.
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Fundamental Acoustics
Physics

In the presence of obstacles, the wave is subject to different phenomena
depending on its wavelength λ (from 17 mm at 20 kHz to 17 m at 20 Hz):

I reflection on surfaces of larger size (walls),

I diffraction on obstacles of similar size (furniture, ear+head+torso).

Smaller objects have little effect.

Figure : Reflection (left) and diffraction (right).
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Fundamental Acoustics
Physics

The amount of reflected energy is as high as 85% for a carpeted floor and 99%
for a tiled floor.

This induces thousands to millions of propagation paths between each
source and each microphone.

Figure : A few of the propagation paths.
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Fundamental Acoustics
Deterministic Perspective

The summation of the propagation paths at each microphone results in an
acoustic impulse response a(t).
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Figure : Illustration of the shape of an impulse response with RT = 250 ms.
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Fundamental Acoustics
Deterministic Perspective
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Figure : Real impulse response recorded in a meeting room with RT = 230 ms and a
source-to-microphone distance of 1.45 m.
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Fundamental Acoustics
Deterministic Perspective

The overall shape of acoustic impulse responses is often described by

I the reverberation time (RT)

I time it takes for the reverberant tail to decay by 60 decibels (dB)
I depends solely on the room

I the direct-to-reverberant ratio (DRR)

I ratio of the power of the direct path to the rest of the impulse response
I depends on the room and the source-to-microphone distance

The RT varies from 50 ms in a car to 1 s or more in an auditorium.
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Fundamental Acoustics
Statistical Perspective

Since it results from the superposition of many acoustic paths, the reverberant
tail of the impulse response is well described statistically.

More precisely:

I it can be modeled as a zero-mean Gaussian noise signal whose amplitude
decays exponentially over time according to the RT;

I its correlation over frequency decays quickly;

I it is approximately diffuse, i.e., it has similar power in all directions.
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Fundamental Acoustics
Statistical Perspective

In a perfectly diffuse sound field, the correlation between two microphones in
the Fourier domain is given by the sine cardinal model

Γ(k) = sinc

(
2πFskd

cK

)
=

sin(2πFskd/cK)

2πFskd/cK
d: microphone distance

0 1 2 3 4 5 6 7 8

−0.2

0

0.2

0.4

0.6

0.8

1

Fsk/K (kHz)

Γ
(k
)

 

 
d = 5 cm
d = 20 cm
d = 1 m

Figure : Interchannel correlation of the reverberant part of an impulse response as a
function of microphone distance and frequency.
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Signal Models
Time-Domain Free-Field Model

I In a free-field the direct path signal at the n-th microphone can be written
as

xn(t) = an(t) ∗ s(t) =

∫
an(t′)s(t− t′) d t′

with

an(t) =
1√

4π`n
δ

(
t− `n

c

)

where t is the time index, s(t) is the anechoic source signal, and `n is the
distance between n-th microphone and the source.



29

Signal Models
Time-Domain Reverberant-Field Model

I Mathematically, we can formulate the room impulse response (RIR) as

a(t) =

∞∑

i=1

ri(t) ∗ δ(t− τi),

where ∗ denotes the convolution operation, τi denotes the time-of-arrival
of the i-th reflection and ri(t) denotes the impulse response of the i-th
reflection.

I The received signal at the n-th microphone can then be defined as

xn(t) =

∫
an(t′)s(t− t′) d t′

where s(t) is the anechoic signal.
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Signal Models
Time–Frequency Analysis and Synthesis

I We commonly work in the short-time Fourier transform (STFT) to exploit
the temporal and spectral properties of the source signal.

I STFT Analysis:

X(m, k) =

L−1∑

r=0

x(mR+ r)wa(r)e−jωkr with ωk =
2πk

K
,

k = 0, 1, . . . ,K − 1 is the frequency index (with K ≥ L), m is the time
frame index, and R denotes the number of samples between two
successive time frames.

I STFT Synthesis:

x(u) =
∑

m

ws(u−mR)

K−1∑

k=0

X(m, k)ejωk(u−mR),

where u is the discrete time index.

I The spectrogram is given by |X(m, k)|2.
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Signal Models
Time–Frequency Analysis and Synthesis - Window Functions
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Figure : Rectangular, Hamming, and Bartlett windows. Note that an increased
tapering of the window reduces the sidelobe level and increased the width of the main
lobe.
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Signal Models
Time–Frequency Analysis and Synthesis

I Completeness condition for analysis window (wa) and synthesis window
(ws): ∑

m

wa(u−mR)ws(u−mR) =
1

L
for all u. (1)

I Given analysis and synthesis windows that satisfy (1) we can reconstruct
x(u) from its STFT coefficients X(m, k).

I In practice, a Hamming window is often used for the synthesis window.

I A reasonable choice for the analysis window is the one with minimum
energy (Wexler and Raz 1990), given by

wa(u) =
ws(u)

L
∑
m w

2
s (u−mR)

.

I The inverse STFT is efficiently implemented using the weighted
overlap-add method (Crochiere and Rabiner 1983).
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Signal Models
Time–Frequency Analysis and Synthesis - Spectrogram
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Figure : Spectrogram (10 log(|X(m, k)|2)) of a speech signal (sample frequency
16 kHz, DFT length K = 1024, window length L = 512 (32 ms), hamming window).
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Signal Models
Time–Frequency Analysis and Synthesis - Spectrogram
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Figure : Spectrogram (10 log(|X(m, k)|2)) of a speech signal (sample frequency
16 kHz, DFT length K = 1024, window length L = 64 (4 ms), hamming window).
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Signal Models
STFT-Domain Multiplicative and Convolutive Models

I Multiplicative Model: When the STFT analysis frames are much longer
than the RIR, the received signal at the n-th microphone can be written as

Xn(m, k) = An(k)S(m, k),

where An(k) is the Fourier transform of an(u) and S(m, k) is the STFT
of the anechoic signal s(u). As a consequence, the covariance matrix of
x(m, k) = [X1(m, k), X2(m, k), . . . , XN (m, k)]T is of rank-one.

I Convolutive Model: More generally, the received signal at the n-th
microphone can be written as

Xn(m, k) =
∑

k′

L′∑

m′=0

An(m′, k, k′)S(m−m′, k′).
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Signal Models
STFT-Domain Multiplicative and Convolutive Models

I Multiplicative Model: When the STFT analysis frames are much longer
than the RIR, the received signal at the n-th microphone can be written as

Xn(m, k) = An(k)S(m, k),

where An(k) is the Fourier transform of an(u) and S(m, k) is the STFT
of the anechoic signal s(u). As a consequence, the covariance matrix of
x(m, k) = [X1(m, k), X2(m, k), . . . , XN (m, k)]T is of rank-one.

I Convolutive Model: More generally, the received signal at the n-th
microphone can be written as

Xn(m, k) =
L′∑

m′=0

An(m′, k)S(m−m′, k).
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Signal Models
STFT-Domain Multiplicative and Convolutive Models

I Multiplicative Model: When the STFT analysis frames are much longer
than the RIR, the received signal at the n-th microphone can be written as

Xn(m, k) = An(k)S(m, k),

where An(k) is the Fourier transform of an(u) and S(m, k) is the STFT
of the anechoic signal s(u). As a consequence, the covariance matrix of
x(m, k) = [X1(m, k), X2(m, k), . . . , XN (m, k)]T is of rank-one.

I Convolutive Model: More generally, the received signal at the n-th
microphone can be written as

Xn(m, k) =

L′d−1∑

m′=0

An(m′, k)S(m−m′, k)

︸ ︷︷ ︸
Xd
n(m,k)

+

L′∑

m′=L′
d

An(m′, k)S(m−m′, k)

︸ ︷︷ ︸
Xr
n(m,k)

.
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Signal Models
STFT-Domain Additive Model

I Alternatively, the n-th microphone can also be modelled in the STFT
domain as the sum of a direct component and reverberant component:

Xn(k) = Ad
n(k, θ)S(m, k)︸ ︷︷ ︸

Xd
n(m,k)

+Xr
n(m, k),

where Ad
n(k, θ) models the direct path with θ being the DOA of the direct

sound, and Xr
n(m, k) models the reverberant signal component.

I In contrast to the convolutive model, it is commonly assumed that

E{Xd
n(m, k)

(
Xr
n′(m

′, k′)
)∗} = 0 ∀n, n′,m,m′, k, k′.

I The resulting covariance (PSD) matrix equals

E{x(k)xH(k)} = Φxd(k) + Φxr(k)

with

Φxd(m, k) = φS(m, k)ad(k)aH
d (k) and Φxr(m, k) = E{xr(m, k)xH

r (m, k)}

which is an example of a full-rank covariance matrix.
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Signal Models
STFT-Domain Additive Model (continued)

I The covariance matrix of the reverberant component

Φxr(m, k) = E{xr(m, k)xH
r (m, k)}.

is often modelled as

Φxr(m, k) = φr(m, k) Γ(k)

where in a perfectly homogenous and spherically isotropic sound field

[Γ(k)]nn′ = sinc

(
2π Fsk dnn′

cK

)
,

where n and n′ are microphone indices and dnn′ is the distance between
these microphones.

I Hence, the spatial properties of the reverberant component are
time-invariant and the temporal-spectral properties are time-variant.
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Signal Models
Extensions

I The n-th microphone signal can be written as

Yn(m, k) = Xn(m, k) + Vn(m, k),

where Vn(m, k) denotes the additive noise as received by the n-th sensor.

I In the case of J directional sources, the n-th microphone signal can be
written as

Yn(m, k) =

J∑

j=1

Xnj(m, k) + Vn(m, k),

where Xnj(m, k) denotes the j-th source as received by the n-th
microphone.
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Fundamental Array Processing
Spatial Sampling and Spatial Aliasing

I In practice, we can only sample the sound field at discrete positions, i.e.,
we use a discrete aperture rather than a continuous aperture.

I Temporal aliasing: signals with different temporal frequencies become
indistinguishable when sampled across time.

I Spatial aliasing: waves with different spatial frequencies become
indistinguishable when sampled across space.

Example: The smallest inter-microphone distance determines the highest
frequency at which plane waves from different directions (0◦ − 180◦) result in a
unique inter-microphone phase difference.

In this case, spatial aliasing does not occur when

d <
c

2 f
,

where c m s−1 is the sound velocity and f is the frequency of the wave.

The spatial aliasing frequency is therefore fsa = c
2 d

.
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Fundamental Array Processing
Array Constellations

Figure : Cylindrical microphone arrays (top) and linear microphone array (bottom)
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Fundamental Array Processing
Array Constellations

Figure : Spherical microphone arrays by mh acoustics.



45

Fundamental Array Processing
Array Constellations

Figure : The NIST Mark-III microphone array (consists of 64 microphones)
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Fundamental Array Processing
Array Constellations

Figure : The LOUD (Large acOUstic Data) array is an array with 1020 microphones.
See http://groups.csail.mit.edu/cag/mic-array
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Fundamental Array Processing
Near-field versus Far-Field

I In the near-field the sound pressure of a wave measured at different
positions differs both in amplitude and phase.

I When the source is far from the array we have

1

`1
≈ 1

`2
≈ · · · ≈ 1

`N
≈ 1

rs
,

where `n is the distance between the n-th microphone and the source and
rs is the distance from the reference point of the array to the source.

I The acoustic transfer function in a free-field then simplifies to

an(t) =
1√

4πrs

δ

(
t− rs

c
+

rT
nus

c

)
,

where rn denotes the position vector of the n-th microphone and
us = rs/‖rs‖ is a unit-norm vector pointing in the direction of the sound
source.

I Hence, in the far-field the sound pressure of a wave measured at different
positions differs only in phase. The wave can be modelled as a plane wave.
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Fundamental Array Processing
Beamforming

I The task of the beamforming algorithm is to combine the microphone
signals such that a desired, and possibly time-varying, spatial selectivity is
achieved.

I Two major challenges:
1. To design the microphone array

2. To design the beamforming algorithm
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Fundamental Array Processing
Beamforming - Delay and Sum Beamforming

Figure : Block diagram of a delay-and-sum beamformer
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Fundamental Array Processing
Beamforming - Delay and Sum Beamforming

I The microphone signals can be expressed as

yn(t) = xn(t) + vn(t) = x1(t− τn1) + vn(t).

where τn1 denotes the time difference of arrival w.r.t. the first microphone.

I After applying the channel dependent delay Tn we have

ỹn(t) = x1(t− τn1 − Tn) + vn(t− Tn).

where Tn is the delay applied to the n-th microphone signal. Note that we
need to ensure that all delays are positive! Therefore, a channel
independent delay TG is included such that Tn ≥ 0 ∀n.

I The output of the delay-and-sum beamformer is computed using

z(t) =
1

N

N∑

n=1

ỹn(t)

=
1

N

N∑

n=1

x1(t− τn1 − Tn) +
1

N

N∑

n=1

vn(t− Tn)

=
1

N

N∑

n=1

x1(t− TG) +
1

N

N∑

n=1

vn(t− Tn)
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Fundamental Array Processing
Beamforming - Filter and Sum Beamforming

Figure : Block diagram of a filter-and-sum beamformer
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Fundamental Array Processing
Beamforming - Filter and Sum Beamforming

I Time domain:

z(t) =

N∑

n=1

hn(t) ∗ yn(t).

=

N∑

n=1

∫ T ′

0

hn(t′)yn(t− t′) dt′.

I Short-time Fourier transform domain:

Z(m, k) =
N∑

n=1

H∗n(k)Yn(m, k) = hH(k)y(m, k).
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Fundamental Array Processing
Design Criteria - Beam Pattern and Power Pattern

I The spatial response of a filter (i.e., beam pattern) is given by

S(k) =
hH(k) d(k)X1(m, k)

X1(m, k)
= hH(k) d(k).

where d(k) denotes the propagation vector.

I The power pattern is defined as the ratio of the variance of the
beamformer output when the source impinges with a propagation vector
d(k) to the variance of the desired signal X1(m, k).

I From this definition we deduce the narrowband power patterns:

B[d(k)] =
E{|hH(k)d(k)X1(m, k)|2}

E{|X1(m, k)|2}
= |hH(k)d(k)|2.
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Fundamental Array Processing
Design Criteria - Beam Pattern and Power Pattern
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Figure : Power pattern of a ULA array with N = 4 and d = 0.035 m when using a
delay-and-sum beamformer with θs = 90◦.
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Fundamental Array Processing
Design Criteria - Beam Pattern and Power Pattern
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Figure : Power pattern of the delay-and-sum beamformer with N = 4 microphones
and d = 0.035 m for the broadside (left) and endfire (right) orientation
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Fundamental Array Processing
Design Criteria - Beam Pattern and Power Pattern
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Figure : Power patterns of a delay-and-sum beamformer for different array
configurations
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Fundamental Array Processing
Design Criteria - Beam Pattern and Power Pattern
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Figure : Frequency response for two different directions for a ULA array with N = 4
when θs = 90◦, d = 0.035 m.
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Fundamental Array Processing
Design Criteria - Beam Pattern and Power Pattern

I Main lobe The angular region between two nulls which contains the angle
where the array is steered towards and hence B[d(k)] = Bmax.

I Side lobes The angular regions between two nulls which do not contain
the angle where B[d(k)] = Bmax.

I Sidelobe level (SLL) The power of the highest sidelobe relative to Bmax.

I Grating lobes The angular region between two nulls which contains the
angle where the array is not steered towards and B[d(k)] = Bmax.
Happens at and above the spatial aliasing frequency.

I Nulls Angle at which B[d(k)] = 0.

I Half-power beamwidth (HPBW) The angle spanned by the region for
which Bmax/2 ≤ B ≤ Bmax. The HPBW is often referred to as the 3 dB
beamwidth.

I First null beamwidth (FNBW) The angle spanned by the main lobe. The
FNBW is associated with the ability of a microphone array to reject an
interference. For a ULA and delay-and-sum beamformer we obtain:

FNBW ≈ 2 c

f N d
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Fundamental Array Processing
Design Criteria - Beam Pattern and Power Pattern
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Figure : Illustration of a power pattern
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Fundamental Array Processing
Design Criteria - Directivity Factor and Directivity Index

I The directivity index (DI) quantifies the ability of the beamformer to
reduce spherically isotropic or diffuse noise.

I The narrowband directivity factor is given by

D[h(k)] =
B[d(k)]

1
4π

∫ 2π

0

∫ π
0
B[d(k, φ, θ)] sin(φ) dφ dθ

=
B[d(k)]

hH(k)Γ(k)h(k)
=
|hH(k)d(k)|2

hH(k)Γ(k)h(k)

where

[Γ(k)]nn′ = sinc

(
2π Fsk dnn′

cK

)
.

I The classical directivity index is given by DI(k) = 10 log10D(k).
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Fundamental Array Processing
Design Criteria - Directivity Factor and Directivity Index
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Figure : Directivity index of the delay-and-sum beamformer with N = 4 microphones
and d = 0.035 m for the broadside (left) and endfire (right) orientation
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Fundamental Array Processing
Design Criteria - White Noise Gain and Sensitivity

I The white noise gain (WNG) quantifies the ability of the beamformer to
reduce spatially white noise.

I The WNG is also used as a measure for the robustness of the filters w.r.t.
microphone gain and phase mismatches as well as microphone position
errors.

I The narrowband white noise gain is given by

W[h(k)] =
|hH(k)d(k)|2
hH(k)h(k)

=
B[d(k)]

hH(k)h(k)
.

I The sensitivity is given by 1/W[h(k)]. Hence, we can compare the
sensitivity of different filter-and-sum beamformers by evaluating
1/W[h(k)] for different spatial filters h(k).
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Fundamental Array Processing
Design Criteria - White Noise Gain and Sensitivity
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Figure : White noise gain of the delay-and-sum beamformer with N = 4 microphones
and d = 0.035 m for the broadside (left) and endfire (right) orientation
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Data-Independent Beamforming
General overview

I In general, data-independent beamformers are suitable for applications
where the position of the source of interest is known in advance.

I When the source position is unknown a sound source localization /
tracking system can be used to determine the look direction.

I Data-independent beamformers are commonly referred to as fixed
beamformers.

I The beamformers are designed to obtain a spatial focus on the sound
source of interest while minimizing sensor noise, reverberation, and sounds
arriving from other locations.

I Compared with data-dependent beamformers, fixed beamformers require
substantially lower computational complexity.
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Data-Independent Beamforming
Distortionless Response Beamformer

I First we need to carefully define the desired signal!

1) A distortionless response for the desired signal S is obtained when

hH(k) a(k)S(m, k) = S(m, k)

⇒ hH(k) a(k)︸︷︷︸
d(k)

= 1

2) A distortionless response for the desired signal X1 = A1S is
obtained when

hH(k) a(k)S(m, k) = A1(k)S(m, k)

⇒ hH(k) a(k) = A1(k)

⇒ hH(k)
a(k)

A1(k)︸ ︷︷ ︸
d(k)

= 1

I Hence, any spatial filter for which hH(k)d(k) = 1 provides a distortionless
response for a source with propagation vector d(k).
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Data-Independent Beamforming
Maximum White Noise Gain Beamformer

I Let us assume Φv(k) = φV (k)I, i.e., the noise is spatially white and
identically distributed such that φV = φV1 = φV2 = . . . = φVN .

I The maximum white noise gain beamformer is given by

hWNG(k) = argmax
h

|hHd(k)|2
hHh

subject to hHd(k) = 1

= argmin
h

hHh subject to hHd(k) = 1

=
d(k)

dH(k)d(k)
.

I In free-field conditions we can write the propagation vector as:

d(k) =

[
1, exp

(
−j 2π k fs

K
τ2

)
, . . . , exp

(
−j 2π k fs

K
τN

)]T

.

such that

hWNG(k) =
1

N
d(k),

which is equal to the delay-and-sum beamformer.
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Data-Independent Beamforming
Maximum White Noise Gain Beamformer (free-field)

I Now the output signal can be written as

Z(m, k) = hH(k)y(m, k)

=
1

N

N∑

n=1

D∗n(k)Yn(m, k)

=
1

N

N∑

n=1

[D∗n(k)Dn(k)X1(m, k) +D∗n(k)Vn(m, k)]

=
1

N

N∑

n=1

X1(m, k) +
1

N

N∑

n=1

D∗n(k)Vn(m, k)

= X1(m, k) +
1

N

N∑

n=1

D∗n(k)Vn(m, k).

I Note that the spectrum of the residual noise depends on the steering
vector d(k)!
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Data-Independent Beamforming
Maximum White Noise Gain Beamformer (free-field)
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Data-Independent Beamforming
Maximum Directivity Beamformer

I The maximum directivity beamformer is given by

hSD(k) = argmax
h

|hHd(k)|2
hHΓh

subject to hHd(k) = 1

= argmin
h

hHΓh subject to hHd(k) = 1

=
Γ−1(k)d(k)

dH(k)Γ−1(k)d(k)
.

I In a homogenous and spherically isotropic sound field the (n, n′)-th
element of Γ(k) equals sinc(2π k fs dnn′(K c)−1), where dnn′ is the
distance between the n-th and n′-th microphones.

I Using these weights the obtained directivity equals

DF(k) = dH(k)Γ−1(k)d(k).

It can be proven that the largest attainable directivity equals N2.

I This beamformer is also known as a super-directive beamformer.
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Data-Independent Beamforming
Maximum Directivity Beamformer (free-field)
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Data-Independent Beamforming
Robust Super-Directive Beamformer

I By enforcing a lower bound on the WNG we can find a more robust
solution by adding an inequality constraint:

hRSD(k) = argmin
h

hHΓ(k)h

subject to hHd(k) = 1 and
1

hHh
≥ const(k).

I This optimization problem is non-convex. The solution has the following
form:

hRSD(k) =
[Γ(k) + c(k)I]−1 d(k)

dH(k) [Γ(k) + c(k)I]−1 d(k)
,

I An iterative procedure can be used to find c(k) such that

1

hH
RSD(k)hRSD(k)

≥ const(k).
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Data-Independent Beamforming
Robust Super-Directive Beamformer (free-field)
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Data-Independent Beamforming
Jointly Optimizing Spatial and Frequency Response

Design of a fixed beamformer with a desired beam pattern:

I The beam pattern (far-field model) of a filter is given by:

S(ω, θ) =
N∑

n=1

H∗n(ω)e−jωτn1(θ)

where τn1(θ) is the time difference of arrival for the n-th microphone
w.r.t. the first microphone.

I We can express S(ω, θ) as a function of the time-domain filter coefficients,
i.e., S(ω, θ) = wTa(ω, θ) where w = [wT

1 ,w
T
2 , . . . ,w

T
N ]T and

a(ω, θ) =
[
uT exp(−j ω τ11(θ)), . . . ,uT exp(−j ω τN1(θ))

]T
with

u = [exp(−j ω 0), . . . , exp(−j ω (L− 1))]T.

I We can now define a weighted-LS approximation criterion:

JLS(w) =

∫

Θ

∫

Ω

ν(ω, θ)|S(ω, θ)− Sd(ω, θ)|2 dω dθ,

where ν(ω, θ) is a weighting function to emphasize the importance of
certain angles and frequencies and Sd(ω, θ) is the desired beam pattern.



75

Data-Independent Beamforming
Jointly Optimizing Spatial and Frequency Response

I The weighted-LS approximation criterion can be written as a quadratic
function

JLS(w) = wTQw − 2wTp +

∫

Θ

∫

Ω

ν(ω, θ)|Sd(ω, θ)|2 dω dθ

with

Q =

∫

Θ

∫

Ω

ν(ω, θ)Re{a(ω, θ)aH(ω, θ)} dω dθ

p =

∫

Θ

∫

Ω

ν(ω, θ)Re{Sd(ω, θ)a∗(ω, θ)} dω dθ.

I Differentiating the cost function w.r.t. w and equating the result to zero
gives

wLS = Q−1p.

I Numerical optimization methods can be used to compute the integrals.

I For further reading including adding constraints and robust design
methods see (Doclo and Moonen 2003).
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Data-Independent Beamforming
Jointly Optimizing Spatial and Frequency Response

Design specification:
- Passband (ωp, θp) = (300− 4000 Hz, 70◦-110◦)
- Stopband (ωs, θs) = (300− 4000 Hz, 0◦ − 60◦ + 120◦ − 180◦)

Figure : Weighted LS technique (no constraints, ν = 1, N = 5, L = 20) as shown in
(Doclo and Moonen 2003).
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Data-Independent Beamforming
Post-filtering

I Post-filters were initially developed because the noise reduction
performance of data-independent beamformers was found to be
insufficient.

I Hence, the objective of the post-filter is to reduce the noise at the output
of the beamformer.

I In principle, any single-channel speech enhancement techniques can be
employed.

I Under specific assumptions, the speech and noise PSDs at the output of
the beamformer can be computed without the need for a voice activity
detector.

I Many of the existing microphone array post-filters are derived under the
following assumptions:

1. The desired speech PSD at the sensors are equal:
φX = φX1

= φX2
= . . . = φXN .

2. The noise-field is homogeneous : φV = φV1 = φV2 = . . . = φVN .
3. The desired speech and noise are uncorrelated.
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Data-Independent Beamforming
Post-filtering - An Example

I Under these assumptions the microphone PSD matrix is given by

Φy = φX ddH + φV Γv with |D1|2 = |D2|2 = . . . = |DN |2 = 1.

I McCowan (2002) showed that φ̂X can be estimated as

φ̂X =
2

N(N − 1)

N−1∑

n=1

N∑

n′=n+1

Re{φYnYn′ } − 1
2
(φYn + φYn′ )Re{ΓVnVn′ }

1− Re{ΓVnVn′ }
.

I Leukimmiatis et al. (2006) showed that φV can be estimated as

φ̂V =
2

N(N − 1)

N−1∑

n=1

N∑

n′=n+1

1
2
(φYn + φYn′ )− Re{φYnYn′ }

1− Re{ΓVnVn′ }
.

I The noise PSD at the beamformer’s output equals φ̂V hH
MVDRΓvhMVDR.

I The single-channel Wiener filter is then given by:

HW =
φ̂X

φ̂X + φ̂V hH
MVDRΓvhMVDR

.
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Data-Independent Beamforming
Application Example

I Setup
Array: Uniform linear array with N = 4 omni-directional microphones
Source: Positioned at 0◦ (i.e., endfire)
Noise: Sensor noise (WGN) and babble speech

I We compare the reference microphone with
1. Delay-and-sum beamformer
2. Super-directive beamformer
3. Super-directive beamformer with Leukimmiatis’s post-filter
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Data-Dependent Beamforming
General overview

I Data-dependent beamformers are able to adjust to the acoustic situation
at hand.

I For a given optimization criteria, the solution can be obtained in
closed-form or using adaptive techniques.

I In the following we focus on closed-form solutions.

I These closed-form solutions also allow us to analyze and compare different
beamformers.
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Data-Dependent Beamforming
Performance Measures - Signal-to-Noise Ratio and Array Gain

I The narrowband input signal to noise ratio (SNR) is given by:

iSNR(m, k) =
φX1(m, k)

φV1(m, k)
,

where φX1(m, k) = E{|X1(m, k)|2} and φV1(m, k) = E{|V1(m, k)|2}.

I The narrowband output SNR

oSNR[h(m, k)] =
φX1(m, k)

∣∣hH(m, k)d(k)
∣∣2

hH(m, k)Φv(m, k)h(m, k)

where Φv(m, k) denotes the noise covariance matrix (a.k.a. PSD matrix).

I Finally, the narrowband array gain is given by

A[h(m, k)] =
oSNR[h(m, k)]

iSNR(m, k)
.
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Data-Dependent Beamforming
Performance Measures - Noise Reduction and Speech Distortion

I The narrowband noise reduction is given:

ξnr[h(m, k)] =
φV1(m, k)

hH(m, k)Φv(m, k)h(m, k)
.

This value is expected to be lower bounded by 1; otherwise the filter
amplifies the noise in sub-band k.

I The narrowband speech distortion is given by:

ξsd[h(m, k)] =
φX1(m, k)

hH(m, k)Φx(m, k)h(m, k)
=

1

|hH(m, k)d(k)|2
.

This value is expected to be lower bounded by 1.

I We can now easy verify that we have the following fundamental relation:

A[h(m, k)] =
oSNR[h(m, k)]

iSNR(m, k)
=
ξnr[h(m, k)]

ξsd[h(m, k)]
.
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Data-Dependent Beamforming
Performance Measures - Speech Distortion Index

I Another commonly used measure is the narrowband speech distortion
index:

νsd[h(m, k)] =
E{|hH(m, k)X1(m, k)−X1(m, k)|2}

E{|X1(m, k)|2}

=
∣∣∣hH(m, k)d(k)− 1

∣∣∣
2

.

I These performance measure are useful to derive and compare different
beamformers.

I To evaluate the full-band performance, it is recommended to first
transform the individual signals back to the time-domain and then to
calculate segmental measures in the time-domain.



85

Data-Dependent Beamforming
Maximum SNR Beamformer

The oSNR can be written as:

oSNR[h(m, k)] =
hH(m, k)Φx(m, k)h(m, k)

hH(m, k)Φv(m, k)h(m, k)

where Φx(m, k) = φX1(m, k)d(m, k)dH(m, k).

The maximum SNR filter is given by

hmax(m, k) = argmax
h

hHΦx(m, k)h

hHΦv(m, k)h

Φx hhHΦvh−Φvh hHΦxh

(hHΦvh)2
= 0

= ρ(m, k) Φ−1
v (m, k)d(m, k)

with ρ(m, k) 6= 0. The filter is equal to ρ times the eigenvector corresponding
to the largest eigenvalue [λmax(m, k)] of the matrix Φ−1

v (m, k)Φx(m, k).

Since the rank of Φx(m, k) is one, the maximum output SNR is given by

oSNR[hmax(m, k)] = λmax(m, k) = tr{Φ−1
v (m, k)Φx(m, k)}

= φX1(m, k)dH(m, k)Φ−1
v (m, k)d(m, k).
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Data-Dependent Beamforming
Minimum Variance Distortionless Response Beamformer

We can minimize the residual noise E{|hH(m, k)v(m, k)|2} with the constraint
that the desired signal is not distorted. Mathematically, this is equivalent to

hMVDR(m, k) = argmin
h

hHΦv(m, k)h subject to hHd(k) = 1.

Using Lagrange multipliers we obtain the solution:

hMVDR(m, k) =
Φ−1

v (m, k)d(k)

dH(k)Φ−1
v (m, k)d(k)

.

When the desired signal is X1, this can be written as (Benesty, Chen, and
Huang 2008)

hMVDR(m, k) =
φX1(m, k)Φ−1

v (m, k)d(k)

tr{Φ−1
v (m, k)Φx(m, k)}

=
Φ−1

v (m, k)Φx(m, k)

tr{Φ−1
v (m, k)Φx(m, k)} iN,1

=
Φ−1

v (m, k)Φy(m, k)− IN×N
tr{Φ−1

v (m, k)Φy(m, k)} −N iN,1.
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Data-Dependent Beamforming
Linearly Constrained Minimum Variance Beamformer

I Let us adopt the multi-source model with J sources.

I The desired signal is given by

Z(m, k) =

J∑

j=1

Q∗j (k)X1j(m, k)

where Q∗j (k) denotes the desired response for the j-th source.

I We can now minimize the residual noise at the output of the beamformer
subject to the constraint

hH(m, k)D(k) = qH(k)

with
D(k) = [d1(k) d2(k) · · · dJ(k)] .

and
q(k) = [Q1(k) Q2(k) · · · QJ(k)]T .
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Data-Dependent Beamforming
Linearly Constrained Minimum Variance Beamformer

I We can minimize the residual noise E{|hH(m, k)v(m, k)|2} with the
constraint that the desired signal is not distorted.

I Mathematically, this is equivalent to (Er and Cantoni 1983)

hLCMV(m, k) = argmin
h

hHΦv(m, k)h subject to hHD(k) = qH(k).

The solution is given by

hLCMV(m, k) = Φ−1
v (m, k)D(k)

[
DH(k)Φ−1

v (m, k)D(k)
]−1

q(k),

I The LCMV beamformer can be interpreted as a two stage spatial processor
that first computes J signals given by DH(k)Φ−1

v (m, k)y(m, k). Finally,

these signals are combined using qH(k)
[
DH(k)Φ−1

v (m, k)D(k)
]−1

to
compute the output of the LCMV beamformer Z(m, k).
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Data-Dependent Beamforming
Generalized Sidelobe Canceller

I The weights of the MVDR beamformer span an N dimensional space.

I This space can be divided into two orthogonal subspaces, i.e., a constraint
subspace and an orthogonal subspace.

I The constraint subspace is defined by the column space of d (with rank
1), and the orthogonal subspace is defined by left null space of d (with
rank N − 1).

I Following this decomposition we can represent the MVDR filter as

hMVDR(m, k) = hc(m, k)−B(k)hnc(m, k),

where hc(m, k) lies in the constraint subspace and −B(k)hnc(m, k) lies in
the orthogonal subspace. The matrix B(k) is referred to as the blocking
matrix and hnc(m, k) is referred to as the noise cancellation filter.

I The blocking matrix is chosen such that

dHB = 01×N−1.

Consequently, any vector that lies in the column space of B (and hence
null space of dH) lies in the orthogonal subspace.
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Data-Dependent Beamforming
Generalized Sidelobe Canceller

hH�v(m, k)h

hHd(k) = 1

hMVDR(m, k)

hc(m, k) =
d(k)

kd(k)k2

Figure : Constrained minimization
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Data-Dependent Beamforming
Generalized Sidelobe Canceller

I The filter hc(m, k) can be optained by projecting the MVDR filter on the
constraint subspace:

hc(m, k) = d(k)
[
dH(k)d(k)

]−1

dH(k) hMVDR(m, k) =
d(k)

‖d(k)‖2 ,

I An example of the blocking matrix, known as a sparse blocking matrix, is

B(k) =




−G
∗
2(k)

G∗1(k)
−G

∗
3(k)

G∗1(k)
· · · −G

∗
N (k)

G∗1(k)

1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1



.

I A closed-form solution for the noise cancellation filter of size (N − 1)× 1
is given by

hnc(m, k) = [BH(k)Φv(m, k)B(k)]−1BH(k)Φv(m, k)hc(m, k).
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Data-Dependent Beamforming
Generalized Sidelobe Canceller

I This structure is called a generalized sidelobe canceller (GSC).

I It is often preferred for adaptive implementations as it allows us to write a
constrained optimization problem as an unconstrained optimization
problem.

hc

B

+

hnc

y Z

�

Figure : Generalized sidelobe structure.
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Data-Dependent Beamforming
Multichannel Wiener Filter (Single Source)

The Wiener filter provides the smallest mean squared error (MSE):

J [h(m, k)] = E{|hH(m, k)y(m, k)−X1(m, k)|2}
= φX1(m, k) + hH(m, k)Φy(m, k)h(m, k)

− φX1(m, k)
(
hH(m, k)d(k) + dH(k)h(m, k)

)
.

We can now compute the Wiener filter by taking the derivative w.r.t. hH(m, k)
and equate the expression to zero:

hW(m, k) = φX1(m, k)Φ−1
y (m, k)d(k).

We can also express the Wiener filter as:

hW(m, k) = Φ−1
y (m, k)E{x(m, k)X∗1 (m, k)}

= Φ−1
y (m, k)Φx(m, k)iN,1

=
[
IN×N −Φ−1

y (m, k)Φv(m, k)
]
iN,1,

where IN×N is the identity matrix of size N ×N .
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Data-Dependent Beamforming
Multichannel Wiener Filter (Single Source)

I We can decompose the multichannel Wiener filter into a MVDR filter
followed by a single-channel Wiener filter.

I We can write the Wiener filter as:

hW(m, k) =
Φ−1

v (m, k)Φx(m, k)

1 + tr{Φ−1
v (m, k)Φx(m, k)} iN,1

I It can then easily be verified that

hW(m, k) = hMVDR(m, k)HW(m, k)

with

HW(m, k) =
tr{Φ−1

v (m, k)Φx(m, k)}
1 + tr{Φ−1

v (m, k)Φx(m, k)}

=
oSNR[hMVDR(m, k)]

1 + oSNR[hMVDR(m, k)]

=
hH

MVDR(m, k)Φx(m, k)hMVDR(m, k)

hH
MVDR(m, k)[Φx(m, k) + Φv(m, k)]hMVDR(m, k)

.
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Data-Dependent Beamforming
Parametric Multichannel Wiener Filter (Single Source)

In order to provide the ability to control the amount of noise reduction and
speech distortion we consider the following optimization problem:

J [h(m, k)] = E{|hH(m, k)x(m, k)−X1(m, k)|2}+ µ E{|hH(m, k)v(m, k)|2}

where µ is the trade-off parameter. The first term is related to the speech
distortion and the second term is related to the residual noise.

The solution for the kth sub-band is given by

hPW,µ(m, k) = φX1(m, k) [Φx(m, k) + µΦv(m, k)]−1 d(k)

=
φX1(m, k)Φ−1

v (m, k)d(k)

µ+ φX1(m, k)dH(k)Φ−1
v (m, k)d(k)

=
φX1(m, k)Φ−1

v (m, k)d(k)

µ+ tr{Φ−1
v (m, k)Φx(m, k)}

=
Φ−1

v (m, k)Φx(m, k)

µ+ tr{Φ−1
v (m, k)Φx(m, k)} iN,1.
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Data-Dependent Beamforming
Parametric Multichannel Wiener Filter (Single Source)

We consider the following special cases:
I µ = 0: hPW,0 = hMVDR, which is the MVDR filter.

I µ = 1: hPW,1 = hW, which is the Wiener filter.

I µ > 1: Results in a filter producing low residual noise (compared to the
Wiener filter) at the expense of high speech distortion.

I µ < 1: Results in a filter producing high residual noise (compared to the
Wiener filter) and low speech distortion.

It can then easily be verified that

hPW,µ(m, k) = HPW,µ(m, k) hMVDR(m, k)

with

HPW,µ(m, k) =
tr{Φ−1

v (m, k)Φx(m, k)}
µ(k) + tr{Φ−1

v (m, k)Φx(m, k)}

=
hH

MVDR(m, k)Φx(m, k)hMVDR(m, k)

hH
MVDR(m, k)[Φx(m, k) + µΦv(m, k)]hMVDR(m, k)

.
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Data-Dependent Beamforming
Detection and Estimation

I To compute the spatial filters we need
to estimate the second-order statistics
(SOS) of the desired signal(s) and the
undesired signal.

I One possibility is to use a
detection/classification and estimation
approach.

I The detector/classifier can exploit
spatial, spectral, and/or temporal
features and will tell us, for example,
whether the desired-plus-undesired or
undesired sounds are active.

Detection / Classification

y(k, m) Z(k, m)

Estimation

Spatial Filter

(�x,�v) or (d,�v)

a posteriori probabilities

Figure : General structure

I For example, if the hypothesis is true that the undesired signal is active,
the SOS of the undesired signal can be updated.

I In some cases, additional prior information can be incorporated such as a
(pre-defined) region of interest.
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Data-Dependent Beamforming
PSD Estimation

I Let us define two hypotheses:
I H0 : y(m, k) = v(m, k) (speech absence)

I H1 : y(m, k) = x(m, k) + v(m, k) (speech presence)

I The PSD matrix of the observed noisy signals can be estimated using:

Φ̂y(m, k) = αy(m, k)Φ̂y(m− 1, k) + [1− αy(m, k)] y(m, k)yH(m, k).

I The PSD matrix of the noise signals can be estimated using:

Φ̂v(m, k) = αv(m, k)Φ̂v(m− 1, k) + [1− αv(m, k)] y(m, k)yH(m, k).

I The smoothing parameters αy(m, k) and αv(m, k) need to be controlled,
for example, based on the posterior probabilities, p[H1|y] and p[H0|y].
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Data-Dependent Beamforming
RTF Estimation

I We can obtain an estimate of the RTF w.r.t. X1 in the MMSE sense by
solving:

d̂(m, k) = argmin
d
E{|x(m, k)− dX1(m, k)|2}.

The solution is given by

d̂(m, k) =
E{x(m, k)X∗1 (m, k)}
E{|X1(m, k)|2}

=
Φx(m, k)iN,1

iTN,1Φx(m, k)iN,1
with iN,1 = [1 0 . . . 0]T .

I By using the fact that x = aS, we can verify that

d̂(k) =
a(k)

A1(k)
.

I Using the fact that Φy(m, k) = Φx(m, k) + Φv(m, k):

d̂(m, k) =
[Φy(m, k)−Φv(m, k)] iN,1

iTN,1 [Φy(m, k)−Φv(m, k)] iN,1
.
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Data-Dependent Beamforming
RTF Estimation using Non-Stationarity

I The desired speech is non-stationary and the statistics of the noise very
slowly compared to the statistics of the speech (Gannot, Burshtein, and
Weinstein 2001).

I The microphone signal can be expressed as

Yn(m, k) = Dn(k)Y1(m, k) + Un(m, k)

where

Un(m, k) = Vn(m, k)−Dn(k)V1(m, k) and Dn(k) =
An(k)

A1(k)
.

I Multiplying both sides with Y ∗1 (m, k) and taking the expectation yields:

φ̂YnY1(m, k) = Dn(k)φ̂Y1Y1(m, k) + φUnY1(m, k) + εn(m, k)

where εn(m, k) = φ̂UnY1(m, k)− φUnY1(m, k).

I With a short time period of L frames we can assume the noise is
stationary such that φUnY1(m, k) = φUnY1(k).
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Data-Dependent Beamforming
RTF Estimation using Non-Stationarity

I We can collect estimates for L frames and construct the following
overdetermined set of equations:

φ̂YnY1
(m, k)

φ̂YnY1
(m− 1, k)

...

φ̂YnY1 (m− L+ 1, k)

 =


φ̂Y1Y1

(m, k) 1

φ̂Y1Y1 (m− 1, k) 1
...

φ̂Y1Y1
(m− L+ 1, k) 1


[

Dn(k)
φUnY1

(k)

]

+


εn(m, k)

εn(m− 1, k)
...

εn(m− L+ 1, k)


for n ∈ {2, 3, . . . N}.
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Data-Dependent Beamforming
RTF Estimation using Non-Stationarity

I An unbiased estimate of Dn(k) is now given by

D̂n(m, k) =

〈
φ̂Y1Y1(m, k)φ̂YnY1(m, k)

〉
−
〈
φ̂Y1Y1(m, k)

〉〈
φ̂YnY1(m, k)

〉

〈
φ̂2
Y1Y1

(m, k)
〉
−
〈
φ̂Y1Y1(m, k)

〉2

with

〈A(m, k)〉 , 1

L

L−1∑

m′=0

A(m−m′, k).
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Parametric Spatial Filtering

I Parametric spatial filtering incorporate nearly instantaneous information
about the acoustic scene in the design of the (spatial) filter.

I We can differentiate between two types of parametric spatial filters:

1. A single-channel filter that is computed based on spatial parameters and
SOS.

2. A multi-channel filter that is computed based on spatial parameters and
SOS.

I Commonly used spatial parameters are DOA, signal-to-diffuse ratio,
interaural phase differences, interaural level differences, etc.

y(k, m) Z(k, m)

Parameter
Estimation

Spatial Filter

Figure : General parametric spatial filtering structure
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Application Examples
Source Extraction: Problem Formulation

Spatial filter

Estimate of desired source at
microphone

Scenario

I Multiple talkers

I Additive background noise

I Distributed sensor arrays

Applications

I Teleconferencing systems

I Automatic speech recognition

I Spatial sound reproduction

I Signal model: y(m, k) = xjtarget(m, k) +
∑

j 6=jtarget
xj(m, k) + v(m, k).

I Aim: Obtain an MMSE estimate of X1 jtarget(m, k).
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Application Examples
Source Extraction: Proposed Solution (Taseska and Habets 2014)

I Hypotheses:

Hv : y(m, k) = v(m, k) → speech absent

Hx : y(m, k) =
∑

j

xj(m, k) + v(m, k) → speech present

Hxj : y(m, k) = xj(m, k) +

J∑

j′ 6=j
xj′(m, k)

︸ ︷︷ ︸
≈0

+ v(m, k) j = 1, 2, . . . , J

I Recursive estimation of the PSD matrices:

Φ̂xj+v(m) = p[Hxj |y]
(
αx Φ̂xj+v(m− 1) + (1− αx) yyH

)

+
(
1− p[Hxj |y]

)
Φ̂xj+v(m− 1)

I Signal-to-diffuse ratio (Υ) and position (Θ) based posterior probabilities:

p[Hxj |y] = p[Hxj |y,Hx] · p[Hx |y] ≈ p[Hxj |Θ,Hx] · p[Hx |Υ,y]
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Application Examples
Source Extraction: Parameter-based PSD Matrix Estimation

b⌦

b⌥

b⇥

b�v

b�xj

p[Hx|b⌥,y]

p[Hxj
| b⇥, Hx] p̂[Hxj

|y]

I The distribution p[Θ̂ |Hx] is modelled as a Gaussian mixture (GM).

I GM parameters estimated by the Expectation-Maximization algorithm.

I For more details see (Taseska and Habets 2014).
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Application Examples
Source Extraction: Results (1)

Setup:

I Three reverberant sources with approximately equal power, diffuse babble
speech (SNR=22 dB), and uncorrelated sensor noise (SNR=50 dB). The
reverberation time was T60 = 250 ms.

I Two uniform circular arrays were used with three omnidirectional
microphones, a diameter 2.5 cm and an inter-array spacing of 1.5 m.

(a) Training during single-talk (b) Training during triple-talk

Figure : Output of the EM algorithm (3 iterations) and 4.5 s of noisy speech data.
The actual source positions are denoted by white squares. The array location is
marked by a plus symbol. The interior of each ellipse contains 85% probability mass of
the respective Gaussian.
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Application Examples
Source Extraction: Results (2)

time (s)

reference source signals

mixture

extracted source signals

time (s)

mixture

reference source signals

extracted source signals

(1)

(2)

(3)

(1)

(2)

(3)

Figure : Left: constant single-talk scenario. Right: mainly triple-talk scenario. (S,M)
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Application Examples
Directional Filtering

I Flexible sound acquisition in noisy and reverberant environments with
rapidly changing acoustic scenes is a common problem in modern
communication systems.

I A spatial filter is proposed that provides an arbitrary spatial response for
J sources being simultaneously active per time and frequency.

I The spatial filter provides an optimal tradeoff between the white noise
gain (WNG) and the directivity index.

I The filter is controlled by nearly instantaneous information (i.e.,
narrowband DOAs and diffuse-to-noise ratio) to respond quickly to
changes in the acoustic scene.
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Application Examples
Directional Filtering: Problem Formulation

Assuming the three components in (1) are mutually uncorre-
lated, we can express the power spectral density (PSD) matrix of
the microphone signals as

Φ(k, n) = E
{
x(k, n)xH(k, n)

}

=
L∑

l=1

Φl(k, n) + Φd(k, n) + Φn(k, n), (2)

with

Φd(k, n) = φd(k, n) Γd(k), (3)
Φn(k, n) = φn(k, n) I. (4)

Here, I is an identity matrix, φn(k, n) is the expected power of the
microphone self-noise, which is identical for all microphones, and
φd(k, n) is the expected power of the diffuse field, which can vary
rapidly across time and frequency. The ij-th element of the coher-
ence matrix Γd(k), denoted by γij(k), is the diffuse field coherence
between microphone i and j. For instance for a spherically isotropic
diffuse field, we have γij(k)=sinc(κrij) [21] with wavenumber κ
and rij = ||dj − di||.

The directional sound xl(k, n) in (1) can be written as

xl(k, n) = a(k, ϕl) Xl(k, n, d1), (5)

where ϕl(k, n) is the DOA of the l-th plane wave (ϕ = 0 denoting
the array broadside) and a(k, ϕl) = [a1(k, ϕl) . . . aM (k, ϕl)]

T is
the propagation vector. The i-th element of a(k, ϕl),

ai(k, ϕl) = exp
{
 κ ri sin ϕl(k, n)

}
, (6)

describes the phase shift of the l-th plane wave from the first to the
i-th microphone. Note that ri = ||di − d1|| is equal to the distance
between the first and the i-th microphone.

The aim of the paper is to filter the microphone signals x(k, n)
such that directional sounds arriving from specific spatial regions are
attenuated or amplified as desired, while the diffuse sound and mi-
crophone self-noise are suppressed. The desired signal can therefore
be expressed as

Y (k, n) =

L∑

l=1

G(k, ϕl)Xl(k, n, d1), (7)

where G(k, ϕ) is a real-valued arbitrary directivity function which
can be frequency dependent. Figure 1 shows the magnitude of two
example directivities G1(k, ϕ) and G2(k, ϕ). When using G1(k, ϕ)
(solid line), we attenuate directional sound arriving from ϕ < 45◦

by 21 dB while directional sound from other directions is not at-
tenuated. In principle, one can design arbitrary directivities, even
functions such as G2(k, ϕ) (dashed line). Moreover, G(k, ϕ) can
be designed time variant, e. g., to extract moving or emerging sound
sources once they have been localized.

An estimate of the signal Y (k, n) is obtained by a linear combi-
nation of the microphone signals x(k, n), i. e.,

Ŷ (k, n) = wH(k, n)x(k, n), (8)

where w(k, n) is a complex weight vector of length M . It follows
from (5) and (7) that w(k, n) has to satisfy the linear constraints

wH(k, n) a(k, ϕl) = G(k, ϕl), l ∈ {1, 2, . . . , L}. (9)

Moreover, the diffuse sound power and self-noise power at the fil-
ter’s output has to be minimized. The corresponding optimal weight
vector w(k, n) is derived in the next section. In the following, the
dependency of the weights w(k, n) on k and n is omitted for brevity.
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Fig. 1. Two arbitrary directivity functions & source positions

3. OPTIMAL SPATIAL FILTERS

3.1. Existing Spatial Filters

While the PSD φn(k, n) can be estimated during periods of silence,
φd(k, n) is commonly assumed unknown and unobservable. We
therefore consider two existing spatial filters that can be computed
without this knowledge.

The first spatial filter is known as a delay-and-sum beamformer
and minimizes the self-noise power at the filter’s output (i. e., maxi-
mizes the WNG) [1]. The optimal weight vector that minimizes the
mean squared error (MSE) between (7) and (8) subject to (9) is then
obtained by

wn = arg min
w

wH Φn(k, n)w︸ ︷︷ ︸
wHw

s. t. (9). (10)

There exists a closed-form solution to (10) [1] that allows a fast com-
putation of wn. It should be noted that this filter does not necessarily
provide the largest directivity index (DI).

The second spatial filter is known as the robust superdirec-
tive (SD) beamformer and minimizes the diffuse sound power at the
filter’s output (i. e., maximizes the DI) with a lower-bound on the
WNG [22]. The lower-bound on the WNG increases the robustness
to errors in the propagation vector and limits the amplification of the
self-noise [22]. The optimal weight vector that minimizes the MSE
between (7) and (8) subject to (9) and satisfies the lower-bound on
the WNG is then obtained by

wd = arg min
w

wH Φd(k, n)w︸ ︷︷ ︸
wH Γd(k,n)w

s. t. (9) (11)

and subject to a quadratic constraint wH w<β. The parameter β−1

defines the minimum WNG and determines the achievable DI of the
filter. In practice, it is often difficult to find an optimal trade-off
between a sufficient WNG in low signal-to-noise ratio (SNR) situa-
tions, and a sufficiently high DI in high SNR situations. Moreover,
solving (11) leads to a non-convex optimization problem due to the
quadratic constraint, which is time-consuming to solve. This is espe-
cially problematic in our application, since the complex weight vec-
tor needs to be recomputed for each k and n due to the time-varying
constraints (9).

3.2. Proposed Spatial Filters

The proposed spatial filter combines the benefits of the spatial filters
in the previous subsection, i. e., providing a high DI in situations
with high DNR, and a high WNG otherwise. The spatial filter is
only linearly constrained, which allows a fast computation of the
weights.

I Signal model: Based on a multi-wave sound field model, the N
microphone signals can be expressed as:

y(m, k) =

J∑

j=1

xj(m, k)

︸ ︷︷ ︸
J plane waves

+ xr(m, k)︸ ︷︷ ︸
diffuse sound

+ v(m, k)︸ ︷︷ ︸
sensor noise (Φv=φV I)

I Aim: Capturing J plane waves (J ≤ N) with desired arbitrary gain while
attenuating the sensor noise and reverberation.

The desired signal is given by:

Z(m, k) =
J∑

j=1

G(k, ϕj)X1j(m, k).

I The desired signal is estimated using an informed LCMV filter:

Ẑ(m, k) = hH
iLCMV(m, k) y(m, k).
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Application Examples
Directional Filtering: Proposed Solution (1)

I The proposed informed LCMV filer is given by:

hiLCMV = argmin
h

hH [Φxr(m, k) + Φv(m, k)] h

s. t. hH(m, k) ad(k, ϕj) = G(k, ϕj), j ∈ {1, 2, . . . , J}

where ad(k, ϕj) denotes the steering vector for the jth plane wave at time
m and frequency k.

For the assumed signal model, we can alternatively minimize

hH [Ψ(m, k) Γd(k) + I] h,

where Ψ(m, k) = φr(m, k)/φV (m, k) denotes the diffuse-to-noise ratio
(DNR) and Γ(k) denotes the spatial coherence matrix of the diffuse sound
field.

I The filter is updated for each time and frequency given the parametric
information (i.e., DOAs and DNR).

I The filter requires knowledge of the DNR, which can be estimated using
an auxiliary spatial filter (c.f. (Thiergart, Taseska, and Habets 2014)).
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Application Examples
Directional Filtering: Proposed Solution (2)
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.

Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
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Fig. 4. Estimated DOA ϕ1(k, n) and resulting gains G(k, ϕ1)

fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.
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SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.
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for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.

Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
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fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

7. REFERENCES

[1] J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal
Processing. Berlin, Germany: Springer-Verlag, 2008.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.

Figure : Left: DOA ϕ1(m, k) as a function of time and frequency. Right: Desired
response |G(k, ϕ1)|2 in dB for DOA ϕ1(m, k) as a function of time and frequency.
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.

Informed LCMV Filter 

6 

The optimal weights w(k, n) to solve our problem in (8) are
found by minimizing the sum of the self-noise power and diffuse
sound power at the filter’s output, i. e.,

wnd = arg min
w

wH [Φd(k, n) + Φn(k, n)] w s. t. (9). (12)

Using (3) and (4), the optimization problem can be expressed as

wnd = arg min
w

wH [Ψ(k, n)Γd(k) + I]︸ ︷︷ ︸
=J(k,n)

w s. t. (9), (13)

where

Ψ(k, n) =
φd(k, n)

φn(k, n)
(14)

is the time-varying input DNR at the array microphones. The solu-
tion to (13) given the constraints (9) is [23]

wnd = J−1A
[
AHJ−1A

]−1

g, (15)

where A(k, n)= [a(k, ϕ1) . . . a(k, ϕL)] contains the propagation
vectors for the L plane waves. The corresponding gains are given by
g(k, n)= [G(k, ϕ1) . . . G(k, ϕL)]T. The estimation of Ψ(k, n) is
discussed in the next section.

4. PARAMETER ESTIMATION

Several parameters need to be estimated for the proposed approach in
Sec. 3.2. The DOAs ϕl(k, n) of the L plane waves can be obtained
with well-known narrowband DOA estimators such as ESPRIT [24]
or root MUSIC [25]. In the following, we discuss the estimation of
the input DNR Ψ(k, n).

To estimate Ψ(k, n), we propose to use an additional spatial fil-
ter which cancels the L plane waves such that only diffuse sound is
captured. The weights of this spatial filter are found by maximizing
the WNG of the array, i. e.,

wΨ = arg min
w

wHw (16)

subject to

wH a(k, ϕl) = 0, l ∈ {1, 2, . . . , L}, (17)

wH a(k, ϕ0) = 1. (18)

Constraint (18) ensures non-zero weights wΨ. The propagation vec-
tor a(k, ϕ0) corresponds to a specific direction ϕ0(k, n) being dif-
ferent from the DOAs ϕl(k, n) of the L plane waves. In the fol-
lowing, we choose for ϕ0(k, n) the direction which has the largest
distance to all ϕl(k, n), i. e.,

ϕ0(k, n) = arg max
ϕ

(
min

l
|ϕ − ϕl(k, n)|

)
, (19)

where ϕ ∈ [−π
2
, π

2
]. Given the weights wΨ, the output power of the

additional spatial filter is given by

wH
Ψ Φ(k, n)wΨ = φd(k, n)wH

Ψ Γd(k)wΨ

+ φn(k, n)wH
Ψ wΨ. (20)

The input DNR can now be computed with (14) and (20), i. e.,

Ψ(k, n) =
wH

Ψ Φ(k, n)wΨ − φn(k, n)wH
Ψ wΨ

φn(k, n)wH
Ψ Γd(k)wΨ.

(21)
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Fig. 2. True and estimated DNR Ψ(k, n). The two marked areas
indicate respectively a silent and active part of the signal.

The required expected power of the microphone self-noise φn(k, n)
can for example be estimated during silence assuming that the power
is constant over time. Note that the proposed DNR estimator does
not necessarily provide the lowest estimation variance in practice
due to the chosen optimization criteria (16), but provides unbiased
results.

5. EXPERIMENTAL RESULTS

Let us assume L = 2 plane waves in the model in (1) and an ULA
with M =4 microphones with an inter-microphone spacing of 3 cm.
A reverberant shoebox room (7.0 × 5.4 × 2.4 m3, RT60 ≈ 380 ms)
was simulated using the source-image method [26, 27] with two
speech sources at ϕA = 86◦ and ϕB = 11◦, respectively (distance
1.75 m, cf. Fig. 1). The signals consisted of 0.6 s silence followed
by double talk. White Gaussian noise was added to the microphone
signals resulting in a segmental signal-to-noise ratio (SSNR) of
26 dB. The sound was sampled at 16 kHz and transformed into the
time-frequency domain using a 512-point STFT with 50% overlap.

We consider the directivity function G1(ϕ) in Fig. 1, i. e., we
aim at extracting source A without distortions while attenuating the
power of source B by 21 dB. We compare the two spatial filters
in Sec. 3.1 and the proposed spatial filter in Sec. 3.2. For the ro-
bust SD beamformer (11), we set the minimum WNG to −12 dB.
For the proposed spatial filter (13), we estimate the DNR Ψ(k, n)
as explained in Sec. 4. The self-noise power φn(k, n) is computed
from the silent signal part at the beginning. The expectation in (2) is
approximated by a recursive temporal average over τ = 50ms.

5.1. Time-Invariant Directional Constraints

For this simulation, we assume prior knowledge about the two source
positions ϕA and ϕB. In all processing steps we used ϕ1(k, n) = ϕA

and ϕ2(k, n) = ϕB. Therefore, the directional constraints in (9)
and (17) do not vary over time.

Figure 2 shows the true and estimated DNR Ψ(k, n) as a func-
tion of time and frequency. We obtain a relatively high DNR during
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.

Informed LCMV Filter 
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The optimal weights w(k, n) to solve our problem in (8) are
found by minimizing the sum of the self-noise power and diffuse
sound power at the filter’s output, i. e.,

wnd = arg min
w

wH [Φd(k, n) + Φn(k, n)] w s. t. (9). (12)

Using (3) and (4), the optimization problem can be expressed as

wnd = arg min
w

wH [Ψ(k, n)Γd(k) + I]︸ ︷︷ ︸
=J(k,n)

w s. t. (9), (13)

where

Ψ(k, n) =
φd(k, n)

φn(k, n)
(14)

is the time-varying input DNR at the array microphones. The solu-
tion to (13) given the constraints (9) is [23]

wnd = J−1A
[
AHJ−1A

]−1

g, (15)

where A(k, n)= [a(k, ϕ1) . . . a(k, ϕL)] contains the propagation
vectors for the L plane waves. The corresponding gains are given by
g(k, n)= [G(k, ϕ1) . . . G(k, ϕL)]T. The estimation of Ψ(k, n) is
discussed in the next section.

4. PARAMETER ESTIMATION

Several parameters need to be estimated for the proposed approach in
Sec. 3.2. The DOAs ϕl(k, n) of the L plane waves can be obtained
with well-known narrowband DOA estimators such as ESPRIT [24]
or root MUSIC [25]. In the following, we discuss the estimation of
the input DNR Ψ(k, n).

To estimate Ψ(k, n), we propose to use an additional spatial fil-
ter which cancels the L plane waves such that only diffuse sound is
captured. The weights of this spatial filter are found by maximizing
the WNG of the array, i. e.,

wΨ = arg min
w

wHw (16)

subject to

wH a(k, ϕl) = 0, l ∈ {1, 2, . . . , L}, (17)

wH a(k, ϕ0) = 1. (18)

Constraint (18) ensures non-zero weights wΨ. The propagation vec-
tor a(k, ϕ0) corresponds to a specific direction ϕ0(k, n) being dif-
ferent from the DOAs ϕl(k, n) of the L plane waves. In the fol-
lowing, we choose for ϕ0(k, n) the direction which has the largest
distance to all ϕl(k, n), i. e.,

ϕ0(k, n) = arg max
ϕ

(
min

l
|ϕ − ϕl(k, n)|

)
, (19)

where ϕ ∈ [−π
2
, π

2
]. Given the weights wΨ, the output power of the

additional spatial filter is given by

wH
Ψ Φ(k, n)wΨ = φd(k, n)wH

Ψ Γd(k)wΨ

+ φn(k, n)wH
Ψ wΨ. (20)

The input DNR can now be computed with (14) and (20), i. e.,

Ψ(k, n) =
wH

Ψ Φ(k, n)wΨ − φn(k, n)wH
Ψ wΨ

φn(k, n)wH
Ψ Γd(k)wΨ.

(21)
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Fig. 2. True and estimated DNR Ψ(k, n). The two marked areas
indicate respectively a silent and active part of the signal.

The required expected power of the microphone self-noise φn(k, n)
can for example be estimated during silence assuming that the power
is constant over time. Note that the proposed DNR estimator does
not necessarily provide the lowest estimation variance in practice
due to the chosen optimization criteria (16), but provides unbiased
results.

5. EXPERIMENTAL RESULTS

Let us assume L = 2 plane waves in the model in (1) and an ULA
with M =4 microphones with an inter-microphone spacing of 3 cm.
A reverberant shoebox room (7.0 × 5.4 × 2.4 m3, RT60 ≈ 380 ms)
was simulated using the source-image method [26, 27] with two
speech sources at ϕA = 86◦ and ϕB = 11◦, respectively (distance
1.75 m, cf. Fig. 1). The signals consisted of 0.6 s silence followed
by double talk. White Gaussian noise was added to the microphone
signals resulting in a segmental signal-to-noise ratio (SSNR) of
26 dB. The sound was sampled at 16 kHz and transformed into the
time-frequency domain using a 512-point STFT with 50% overlap.

We consider the directivity function G1(ϕ) in Fig. 1, i. e., we
aim at extracting source A without distortions while attenuating the
power of source B by 21 dB. We compare the two spatial filters
in Sec. 3.1 and the proposed spatial filter in Sec. 3.2. For the ro-
bust SD beamformer (11), we set the minimum WNG to −12 dB.
For the proposed spatial filter (13), we estimate the DNR Ψ(k, n)
as explained in Sec. 4. The self-noise power φn(k, n) is computed
from the silent signal part at the beginning. The expectation in (2) is
approximated by a recursive temporal average over τ = 50ms.

5.1. Time-Invariant Directional Constraints

For this simulation, we assume prior knowledge about the two source
positions ϕA and ϕB. In all processing steps we used ϕ1(k, n) = ϕA

and ϕ2(k, n) = ϕB. Therefore, the directional constraints in (9)
and (17) do not vary over time.

Figure 2 shows the true and estimated DNR Ψ(k, n) as a func-
tion of time and frequency. We obtain a relatively high DNR during
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Fig. 3. DI and WNG of the spatial filters in Sec. 3. For wd, the
minimum WNG was set to −12 dB to make the spatial filter robust
against the microphone self-noise.

speech activity due to the reverberant environment. The estimated
DNR in Fig. 2(b) possesses a limited temporal resolution due to the
incorporated temporal averaging process. Nevertheless, the Ψ(k, n)
estimates are sufficiently accurate as shown by the following results.

Figure 3(a) depicts the mean DI for wn and wd (which are both
signal-independent), and for the proposed spatial filter wnd (which
is signal-dependent). For the proposed spatial filter, we show the DI
for a silent part of the signal and during speech activity [both signal
parts marked in Fig. 2(b)]. During silence, the proposed spatial filter
(dashed line wnd) provides the same low DI as wn. During speech
activity (solid line wnd), the obtained DI is as high as for the robust
SD beamformer (wd). Figure 3(b) shows the corresponding WNGs.
During silence, the proposed spatial filter (dashed line wnd) achieves
a high WNG, while during signal activity, the WNG is relatively low.

In general, Fig. 3 shows that the proposed spatial filter combines
the advantages of both existing spatial filters: during silent parts,
a maximum WNG is provided leading to a minimal self-noise am-
plification, i. e., high robustness. During signal activity and high
reverberation, where the self-noise is usually masked, a high DI is
provided (at cost of a low WNG) leading to an optimal reduction of
the diffuse sound. In this case, even rather small WNGs are tolera-
ble. Note that for higher frequencies (f > 5 kHz), all spatial filters
perform nearly identically since the coherence matrix Γd(k) in (11)
and (13) is approximately equal to an identity matrix.

5.2. Instantaneous Directional Constraints

For this simulation, we assume that no a priori information on ϕA

and ϕB is available. The DOAs ϕ1(k, n) and ϕ2(k, n) are estimated
with ESPRIT. Thus, the constraints (9) vary across time. Only for
the robust SD beamformer (wd) we use a single and time-invariant
constraint (9) corresponding to a fixed look direction of ϕA = 86◦.
This beamformer serves as a reference.

Figure 4 shows the estimated DOA ϕ1(k, n) and resulting gain
|G(k, ϕ1)|2. The arriving plane wave is not attenuated if the DOA is
inside the spatial window in Fig. 1 (solid line). Otherwise, the power
of the wave is attenuated by 21 dB.
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Fig. 4. Estimated DOA ϕ1(k, n) and resulting gains G(k, ϕ1)

Table 1 summarizes the overall performance of the spatial filters
in terms of signal-to-interference ratio (SIR), signal-to-reverberation
ratio (SRR), and SSNR at the filter’s output. In terms of SIR and
SRR (source separation, dereverberation), the proposed approach
(wnd) and the robust SD beamformer (wd) provide the highest per-
formance. However, the SSNR of the proposed wnd is 6 dB higher
than the SSNR of wd, which represented a clearly audible bene-
fit. The best performance in terms of SSNR is obtained using wn.
In terms of PESQ, wnd and wd outperform wn. Using instanta-
neous directional constraints (as in this section) instead of time-
invariant constrains (as in Sec. 5.1, values in brackets) mainly re-
duced the achievable SIR, but provides a fast adaption in case of
varying source positions. Note that the computation time of all re-
quired complex weights per time frame was larger than 80 s for wd

(CVX toolbox [28,29]) and smaller than 0.08 s for the proposed ap-
proach (MATLAB R2012b, MacBook Pro 2008).

6. CONCLUSIONS

An informed linearly constrained minimum variance filter was pro-
posed that provides a desired spatial response for L sources being
simultaneously active for each time and frequency in a noisy and re-
verberant environment. The filter exploits instantaneous information
on the direction-of-arrival of L plane waves and on the diffuse-to-
noise ratio (DNR) at the filter input. The DNR information allows
us to design a filter that maximizes the white noise gain when the
DNR is low, and the directivity index when the DNR is high. Simu-
lations results demonstrate the practical applicability of the proposed
filter and DNR estimator.

SIR [dB] SRR [dB] SSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table 1. Performance of all spatial filters [∗ unprocessed]. Values
in brackets refer to Sec. 5.1, otherwise Sec. 5.2. The signals were
A-weighted before computing the SIR, SRR, and SSNR.

sources silent 

sources active 

sources silent 

sources active 

Figure : Top: Directivity index (DI) in dB.
Bottom: White noise gain (WNG) in dB.
wn minimizes the noise power, wd

minimizes the diffuse power, wnd is the
proposed iLCMV filter that minimizes the
diffuse plus noise power [shown when the
sources are active (red solid line) and
silent (red dashed line)].
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Application Examples
Directional Filtering: Results (2)

I The proposed spatial filter provides a high DI when the sound field is
diffuse and a high WNG when the sensor noise is dominant.

I Interfering sound can be strongly attenuated if desired.

I The proposed DNR estimator provides a sufficiently high accuracy and
temporal resolution to allow signal enhancement under adverse conditions
even in changing acoustic scenes.

SegSIR [dB] SegSRR [dB] SegSNR [dB] PESQ
∗ 11 (11) −7 (−7) 26 (26) 1.5 (1.5)
wn 21 (32) −2 (−3) 33 (31) 2.0 (1.7)
wd 26 (35) 0 (−1) 22 (24) 2.1 (2.0)
wnd 25 (35) 1 (−1) 28 (26) 2.1 (2.0)

Table : Performance of all spatial filters [∗ unprocessed, first
sub-column using true DOAs (of the sources), second
sub-column using estimated DOAs (of the plane waves)]. Audio
Examples
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Data-Dependent Source Separation
General Overview

Rather than using a detection/classification technique to estimate the signal
statistics and subsequently deriving the spatial filter, we seek to estimate them
jointly.

In a probabilistic framework:

I build a full generative model of the mixture signal,

I infer the parameters and the source signals in some probabilistic sense.
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Data-Dependent Source Separation
General Overview

Theorem (Darmois): two stationary Gaussian sources are not separable from
each other.

Two interchangeable modeling paradigms:

I nongaussianity (Comon and Jutten 2010; Makino, Lee, and Sawada 2007;
O’Grady, Pearlmutter, and Rickard 2005; Pedersen et al. 2008),

I nonstationarity (Févotte and Cardoso 2005; Pham, Servière, and
Boumaraf 2003; Vincent, Bertin, et al. 2014; Vincent, Jafari, et al. 2010).
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Data-Dependent Source Separation
Notations

Reminder: in the case of J directional sources

Yn(m, k) =

J∑

j=1

Xnj(m, k)+Vn(m, k)
Yn(m, k): recorded at the n-th microphone
Xnj(m, k): j-th source as received by the n-th mic
Vn(m, k): diffuse noise

We call Xnj(m, k) the spatial image of the j-th source at the n-th
microphone.

Assuming low reverberation, Xnj(m, k) can be modeled as

Xnj(m, k) = Anj(k)Sj(m, k)
Anj(k): Fourier transform of the RIR
Sj(m, k): anechoic source signal
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Data-Dependent Source Separation
Notations

This can also be written in vector form (one entry per microphone):

y(m, k) =
J∑

j=1

xj(m, k) + v(m, k)

xj(m, k) = aj(k)Sj(m, k)

or in matrix form (one entry per microphone and per source):

y(m, k) = A(k) s(m, k).

We call aj(k) the mixing vectors and A(k) the mixing matrix.
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Data-Dependent Source Separation
Nongaussianity

In the time-frequency domain, the distribution of the source STFT coefficients
Sj(m, k) is nongaussian.

More specifically, it is sparse: at each frequency, a few coefficients are large
and most are close to zero.
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Figure : STFT of a speech source.
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Data-Dependent Source Separation
Nongaussianity

This property can be modeled in two ways:

I binary activation model
→ hard/soft clustering

I sparse i.i.d. model
→ independent component analysis and sparse component analysis
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Data-Dependent Source Separation
Hard/Soft Clustering

Binary activation model:

I in each time-frequency bin, only one source jact(m, k) is active and the
other sources are equal to zero,

I jact(m, k) is uniformly distributed in {1, . . . , J},
I the noise v(m, k) is Gaussian with covariance matrix Φv(k).

Note: the source STFT coefficients Sact
j (m, k) are considered as deterministic

parameters.

Goal: jointly estimate the hidden data jact(m, k) and the model parameters
θ = {aj(k),Φv(k)} from the observed data by maximizing the log-likelihood:

L =
∑

m,k

− log det(πΦv(k))

− (y(m, k)− aact
j (k)Sact

j (m, k))HΦ−1
v (k)(y(m, k)− aact

j (k)Sact
j (m, k))
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Data-Dependent Source Separation
Hard/Soft Clustering

If j = jact(m, k), then the ML estimate of Sj(m, k) is given by the MVDR
beamformer

qSj(m, k) = hH
MVDR j(k)y(m, k) with hMVDR j(k) =

Φ−1
v (k)aj(k)

aH
j (k)Φ−1

v (k)aj(k)
.

Note that hMVDR j(k) is computed from aj(k), not from ad j(k).

The log-likelihood simplifies to

L =
∑

m,k

− log det(πΦv(k))− yH(m, k)Φ−1
v (k)y(m, k)

+
|aact H
j (k)Φ−1

v (k)y(m, k)|2
aact H
j (k)Φ−1

v (k)aact
j (k)
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Data-Dependent Source Separation
Hard/Soft Clustering

Expectation-maximization (EM) algorithm:

I E-step:

γj(m, k) , p(jact(m, k) = j|y, θ)

∝ e

|aH
j (k)Φ

−1
v (k)y(m,k)|2

aH
j

(k)Φ
−1
v (k)aj(k)

I M-step:

aj(k) =

∑
j,m γj(m, k) qS∗j (m, k)y(m, k)
∑
j,m γj(m, k)|qSj(m, k)|2

Φv(k) =
1

M

∑

j,m

γj(m, k)(y(m, k)− aj(k) qSj(m, k))(y(m, k)− aj(k) qSj(m, k))H

with qSj(m, k) updated as above
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Data-Dependent Source Separation
Hard/Soft Clustering

After convergence, estimate Sj(m, k):

I either in the ML sense (hard time-frequency masking)

Ŝj(m, k) =

{
qSj(m, k) if j = jact(m, k)

0 otherwise

I or in the MMSE sense (soft time-frequency masking)

Ŝj(m, k) = γj(m, k) qSj(m, k)

Popular heuristic alternatives: k-means clustering of

I interchannel phase and intensity differences,

I phase- and amplitude-normalized y(m, k).
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Data-Dependent Source Separation
Hard/Soft Clustering
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Figure : Hard time-frequency masking (aj(k) known).
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Data-Dependent Source Separation
Hard/Soft Clustering

Hard vs soft clustering makes little difference in practice.

Both do not fully exploit the benefit of multichannel processing: the
beamformer enhances the target but not does attenuate interfering speakers.
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Figure : Hard time-frequency masking (aj(k) known).
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Figure : Soft time-frequency masking (aj(k) known).
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Data-Dependent Source Separation
Independent Component Analysis and Sparse Component Analysis

To reduce distortion, model Sj(m, k) as independent and identically distributed
(i.i.d.) according to a continuous (circular complex) distribution.

Example model: generalized exponential distribution

P (|Sj(m, k)|) =
p

β(k)Γ(1/p)
e
−
∣∣∣∣Sj(m,k)β(k)

∣∣∣∣p p: shape parameter
β(k): scale parameter
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Figure : Distribution of the magnitude STFT coefficients of a speech source.
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Data-Dependent Source Separation
Independent Component Analysis and Sparse Component Analysis

When there are J = N directional sources and no noise (determined mixture),
the sources are obtained by inverting the mixing matrix:

qs(m, k) = A−1(k) y(m, k).

Goal: estimate A(k) from the observed data by maximizing the log-likelihood:

L =
∑

j,m,k

logP ( qSj(m, k))

with qSj(m, k) depending on A(k) and y(m, k) as above.

This is equivalent to minimizing the mutual information between the sources.

This is called frequency-domain independent component analysis (FDICA).

Optimization performed using nonlinear optimization techniques, e.g., gradient
ascent. See V. Zarzoso and A. Yeredor’s lecture for more details.
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Data-Dependent Source Separation
Independent Component Analysis and Sparse Component Analysis

FDICA was said to perform blind beamforming because it automatically adapts
to the deviations of aj(k) from ad j(k) due to echoes and reverberation.
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Figure : Beam patterns obtained by FDICA as a function of the direct path angle
(θtarget = 50◦, θinterf = 120◦, N = 2, d = 30 cm).
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Data-Dependent Source Separation
Independent Component Analysis and Sparse Component Analysis

When there are J > N directional sources or noise (under-determined mixture),
joint estimation of A(k) and s(m, k) in the ML sense is difficult.

Dictionary learning techniques have little been applied so far.

Popular heuristics:

I first estimate A(k) using some clustering technique (all columns) or ICA
(N columns at once),

I then estimate s(m, k) in the ML sense.

This is called sparse component analysis (SCA).

For typical values of p, the resulting s(m, k) are nonzero for up to N sources.
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Data-Dependent Source Separation
Independent Component Analysis and Sparse Component Analysis
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Figure : Sparse component analysis (aj(k) known).
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Data-Dependent Source Separation
Initialization and Constraints (Nongaussian Models)

Up to now, the mixing vectors aj(k) at different frequencies k are unrelated
with each other.

Consequence: the sources Sj(m, k) are estimated up to a permutation
indeterminacy.

Heuristic approaches:

I initialize aj(k) with the steering vector ad j(k),

I align the permutations by minimizing, e.g., ‖aj(k)− ad j(k)‖,
I modify the estimation algorithm so as to account for a linear constraint,

e.g., aH
d j(k)aj(k) = 1, or a penalty term, e.g., ‖aj(k)− ad j(k)‖2.

I Note that aj(k) needs to be normalized in the same way as ad j(k).
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Data-Dependent Source Separation
Initialization and Constraints (Nongaussian Models)

Note: none of these approaches matches the actual distribution of aj(k) in a
reverberant environment. . .
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Figure : Distribution of A2j(k)/A1j(k) over k for one source j.

. . . but they work nevertheless to a certain extent!
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Data-Dependent Source Separation
Initialization and Constraints (Nongaussian Models)

Results (N = 2, J = 3, d = 1 m, soft time-frequency masking)

Mixture with RT = 130 ms

Estimated sources

Mixture with RT = 250 ms

Estimated sources
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Data-Dependent Source Separation
Nonstationarity

Despite their success, FDICA and SCA have two fundamental limitations:

I model valid for directional sources with low reverberation only,

I joint estimation difficult when J > N .

Idea 1: instead of considering the signals emitted by the sources, consider their
spatial images xj(m, k):

y(m, k) =
J∑

j=1

xj(m, k)

Becomes valid for reverberated and diffuse sources.

No need for a specific noise term: noise is just a source (or several sources) as
the others.
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Data-Dependent Source Separation
Nonstationarity

Idea 2: rather than considering a sparse i.i.d. model use a simpler (circular
complex) model but with time-varying parameters.

For a wide class of distributions, time-varying parameters result in sparse data.

Better matches the physical production process of speech and other sounds.

Will make it easy to exploit spectral models in addition to spatial models.
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Data-Dependent Source Separation
Nonstationarity

The non-sparsity of source STFT coefficients over small time-frequency regions
suggests the use of a non-sparse distribution.
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Figure : Empirical distribution of STFT coefficients over time-frequency regions of
increasing size.
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Data-Dependent Source Separation
Nonstationarity

Besides the generalized exponential, several other distributions have been
proposed for the source magnitude/power STFT coefficients that do not easily
generalize to multichannel data.

These distributions are generally equivalently expressed as divergences:

I Poisson ↔ Kullback-Leibler divergence aka I-divergence

I nonzero-mean tied-variance Gaussian ↔ squared Euclidean distance
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Data-Dependent Source Separation
Multichannel Wiener Filter (Revised)

Local Gaussian model (LGM):

xj(m, k) ∼ N (0,Φxj (m, k))

⇒ y(m, k) ∼ N (0,Φy(m, k)) with Φy(m, k) =

J∑

j=1

Φxj (m, k)

Factorization into a time-varying power spectrum φSj (m, k) and a spatial
covariance matrix Φaj (k)

Φxj (m, k) = φSj (m, k) Φaj (k)

Goal: jointly estimate the model parameters θ = {φSj (m, k),Φaj (k)} from the
observed data by maximizing the log-likelihood:

L =
∑

m,k

− log det(πΦy(m, k))− yH(m, k)Φ−1
y (m, k)y(m, k)

Note: Sj(m, k) are now considered as random variables and do not appear in L
anymore.
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Data-Dependent Source Separation
Multichannel Wiener Filter (Revised)

Generalization: replace y(m, k) by the empirical mixture covariance matrix

Φ̂y(m, k) = E{y(m, k)yH(m, k)}:

L̂ ,
∑

m,k

− log det(πΦy(m, k))− E{yH(m, k)Φ−1
y (m, k)y(m, k)}

=
∑

m,k

− log det(πΦy(m, k))− tr(E{yH(m, k)Φ−1
y (m, k)y(m, k)})

=
∑

m,k

− log det(πΦy(m, k))− tr(E{Φ−1
y (m, k)y(m, k)yH(m, k)})

=
∑

m,k

− log det(πΦy(m, k))− tr(Φ−1
y (m, k)Φ̂y(m, k)).

Computed by averaging of y(m, k)yH(m, k) locally over time and/or frequency.

Besides the observed phase and intensity differences, Φ̂y(m, k) also accounts
for the correlation aka coherence between microphones.
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Data-Dependent Source Separation
Multichannel Wiener Filter (Revised)

Coherence reduces indeterminacies and helps recovering up to N2 sources.

Linear model Covariance model
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Figure : Use of y(m, k) vs Φ̂y(m, k) as the input representation.
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Data-Dependent Source Separation
Multichannel Wiener Filter (Revised)

Given the model parameters, estimate the source spatial images in the MMSE
sense using the multichannel Wiener filter

x̂j(m, k) = HH
j (m, k)y(m, k).

Taking the derivative of E{‖HH
j (m, k)y(m, k)− xj(m, k)‖2} w.r.t. HH

j (m, k)
and equating it to zero yields

HW j(m, k) = Φ−1
y (m, k)Φxj (m, k)

=




J∑

j′=1

φSj′ (m, k)Φaj′ (k)



−1

φSj (m, k)Φaj (k).

The tradeoff between interference and noise reduction and target distortion can
be controlled similarly to above.
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Data-Dependent Source Separation
Spatial Image EM (SIEM)

Expectation-maximization (EM) algorithm with {xj(m, k)} as hidden data:

I E-step: compute p(xj(m, k)|y, θ)
HW j(m, k) = Φ−1

y (m, k)Φxj (m, k)

p(xj(m, k)|y, θ) = N (HH
W j(m, k)y(m, k)︸ ︷︷ ︸

posterior mean

, (I−HH
W j(m, k))Φxj (m, k)

︸ ︷︷ ︸
posterior covariance

)

with I the identity matrix of size N ×N
⇒ Φ̂xj (m, k) = HH

W j(m, k)Φ̂y(m, k)HW j(m, k) + (I−HH
W j(m, k))Φxj (m, k)

︸ ︷︷ ︸
posterior second order moment

I M-step: maxθ Ex{log p(y,x)} ⇔
maxθ

∑
j,m,k − log det(πΦxj (m, k))− tr(Φ−1

xj (m, k)Φ̂xj (m, k))

φSj (m, k) =
1

N
tr(Φ−1

aj (k)Φ̂xj (m, k))

Φaj (k) =
1

M

M∑

m=1

Φ̂xj (m, k)

φSj (m, k)
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Data-Dependent Source Separation
Spatial Image EM (SIEM)
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Figure : Spatial image EM (aj(k) known).
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Data-Dependent Source Separation
Alternative Flavors of EM

Alternative flavors of EM depending on the choice of the hidden data:

I “subsources”,

I binary activations.

Also, more general techniques beyond EM not covered here:

I other auxiliary function for the log-likelihood
→ minorization-maximization (MM)

I free energy,
→ variational Bayes (VB), see A. Deleforge’s lecture for more details
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Data-Dependent Source Separation
Alternative Flavors of EM

Subsource EM (SSEM): decompose (non-uniquely) Φaj (k) = Aj(k)AH
j (k)

and sj(k) , A−1
j (k)xj(m, k) with Aj(k) ∈ CN×Rj and sj(k) ∈ CRj , stack

into A(k) ∈ CN×R and s(k) ∈ CR, and consider s(k) ∈ CR as hidden data.

I E-step:

Φs(m, k) = diag(

Rj times︷ ︸︸ ︷
φSj (m, k))

Φy(m, k) = A(k)Φs(m, k)AH(k) + Φv(k)

HW(m, k) = Φ−1
y (m, k)A(k)Φs(m, k)

Φ̂s(m, k) = HH
W(m, k)Φ̂y(m, k)HW(m, k) + (I−HH

W(m, k)A(k))Φs(m, k)

with I the identity matrix of size R×R.

I M-step:

φSj (m, k) =
1

Rj
tr(Φ̂sj (m, k))

A(k) =

(
M∑

m=1

Φ̂y(m, k)H(m, k)

)(
M∑

m=1

Φ̂s(m, k)

)−1



148

Data-Dependent Source Separation
Alternative Flavors of EM

Binary activation EM (BAEM): assume a single active source jact(m, k)
uniformly distributed in {1, . . . , J} and consider its index as hidden data.

I E-step:

γj(m, k) , p(jact(m, k) = j|y, θ)

∝ e
− tr(Φ−1

xj
(m,k)Φ̂y(m,k))

det(πΦxj (m, k))

I M-step:

φSj (m, k) =
1

N
tr(Φ−1

aj (k)Φ̂xj (m, k))

Φaj (k) =

∑M
m=1 γj(m, k)Φ̂y(m, k)/φSj (m, k)

∑M
m=1 γj(m, k)
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Data-Dependent Source Separation
Initialization and Constraints (Nonstationary Models)

Up to now, the spatial covariance matrices Φaj (k) at different frequencies k
are unrelated with each other.

Consequence: permutation indeterminacy again.

Reminder: on average over all absolute positions in the room

E{Φaj (k)} = ad j(k)aH
d j(k) + φr(k)Γ(k)

with

[Γ(k)]nn′ = sinc

(
2π Fsk dnn′

cK

)
.

Heuristic approaches:

I initialize Φaj (k) with its average E{Φaj (k)},
I align the permutations by minimizing, e.g., ‖Φaj (k)− E{Φaj (k)}‖
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Data-Dependent Source Separation
Initialization and Constraints (Nonstationary Models)

More principled approach: modify the estimation algorithm so as to account for

I either a set of deterministic rank-1 constraints

Φaj (k) =
∑

θ

φθjad(k, θ)aH
d (k, θ)

I or a probabilistic inverse-Wishart prior

Φaj (k) ∼ IW(Ψj(k), f)

where Ψj(k) = (f −N)E{Φaj (k)} and the number of degrees of freedom
f is learned from data

→ M-step modified for maximum a posteriori (MAP) estimation as

Φaj (k) =
1

γ(f +N) +M

(
γΨj(k) +

M∑

m=1

Φ̂xj (m, k)

φSj (m, k)

)

with γ a tradeoff hyper-parameter determining the strength of the prior.
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Data-Dependent Source Separation
Initialization and Constraints (Nonstationary Models)
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Figure : Separation of 3 speech sources from 2 mics spaced by 5 cm
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Data-Dependent Source Separation
Joint Spatial-Spectral Estimation

The nonstationary Gaussian model makes it easy to exploit spectral models:

I nonnegative matrix factorization (NMF) and its constrained variants, e.g.,
harmonic NMF,

I spectral/temporal continuity models (HPSS, KAM),

I deep neural networks (DNN) . . .

These models provide deterministic constraints on φSj (m, k).

The M-step is simply modified by

I first estimating φSj (m, k) as 1/N × tr(Φ−1
aj (k)Φ̂xj (m, k)),

I subsequently projecting it to the constrained space.

It can be shown that this approach does maximize the log-likelihood under the
constraint.
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Data-Dependent Source Separation
Joint Spatial-Spectral Estimation

Results (N = 2, J = 4, d = 1 m, RT = 250 ms)

Mixture

Estimated sources using rank-1 spatial covariance

full-rank spatial covariance

rank-1 + harmonic NMF

full-rank + harmonic NMF
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Summary and Perspectives
Wrap-up

We have seen many speech enhancement and source separation techniques.

Historically: targeted different use cases in terms of

I number of microphones,

I number of speech sources,

I number of directional and diffuse noise sources.

Today:

I use cases have merged,

I rely on the same fundamental principles of acoustics and array processing,

I share the same signal models,

I share some estimation criteria.
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Summary and Perspectives
Wrap-up

The only remaining differences are perhaps

I whether sensor noise is generally considered or not,

I whether spatial and spectral models are exploited successively or jointly,

I whether independence is at the core of the estimation criteria or not.

I whether the signal statistics and the spatial filter are estimated
successively or alternatively,

I whether estimation is generally done online or not.

But even these differences tend to disappear!
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Summary and Perspectives
Resources

For development, simulate data by mixing speech with RIRs and noise

I recorded in a real room

Table : Some impulse response datasets.

Name

#
RIR

s

N #
ro

om
s

#
ar

ra
y

pos
.

J m
ov

in
g

re
al

noi
se

RWCP1 364 84 7 1 9 no no
SiSEC2 ∼50 2 5 1 ∼20 no no
AIR3 214 2 8 1 13 no no
CAMIL4 32400 2 1 16200 1 yes no
CHiME25 242 2 1 1 121 yes yes

I or simulated by software6789.

1http://research.nii.ac.jp/src/en/RWCP-SSD.html
2https://sisec.inria.fr/
3http://www.ind.rwth-aachen.de/de/forschung/tools-downloads/aachen-impulse-response-database/
4https://team.inria.fr/perception/category/data/
5http://spandh.dcs.shef.ac.uk/chime challenge/chime2013/
6http://sourceforge.net/projects/roomsim/
7http://www.audiolabs-erlangen.de/fau/professor/habets/software/{rir-generator,smir-generator}
8http://www.loria.fr/˜evincent/Roomsimove.zip
9http://www.audiolabs-erlangen.de/fau/professor/habets/software/noise-generators
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Summary and Perspectives
Resources

For test, use real data with a reference (close-talk microphone).

Table : Some real multichannel audio datasets with a reference (Le Roux et al. 2015).

Name

ap
plic

.

#
hou

rs

N #
en

vs
.

sp
ea

k.
pos

.

sp
ea

k.
ov

er
l.

Aurora-310 car ∼20 4 1 static no
AMI11 meeting 100 16 3 static yes
DICIT12 TV order 6 16 1 moving no
COSINE13 discuss. 38 20 8 moving yes
SWC14 game 7 92 1 moving yes
CHiME315 tablet 19 6 4 moving little

For more datasets, see wiki of ISCA Robust Speech Processing SIG16.

10http://catalog.elra.info/index.php?cPath=37 40
11http://groups.inf.ed.ac.uk/ami/
12http://shine.fbk.eu/resources/dicit-acoustic-woz-data
13http://melodi.ee.washington.edu/cosine/
14http://mini.dcs.shef.ac.uk/data-2/
15http://spandh.dcs.shef.ac.uk/chime challenge/
16https://wiki.inria.fr/rosp/
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Summary and Perspectives
Resources

Get inspiration from or compare with existing software. . .

Table : Some multichannel speech enhancement and separation software.

Name Implemented techniques

BeamformIt17 DS beamformer

DSRtk18 maximum negentropy beamformer
post-filter

HARK19
DS or LCMV beamformer
FDICA with linear constraint
post-filter

MESSL20 soft clustering

ManyEars21 LGM with linear constraint
post-filter

FASST22 multichannel NMF and constrained variants

For more software, see wiki of ISCA RoSP SIG or LVA Central23.

17http://www.xavieranguera.com/beamformit/
18http://distantspeechrecognition.sourceforge.net/
19http://www.hark.jp/
20https://github.com/mim/messl
21http://sourceforge.net/projects/manyears/
22http://bass-db.gforge.inria.fr/fasst/
23http://lvacentral.inria.fr/
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Summary and Perspectives
Resources

Evaluate the results using

I subjective listening tests (e.g., MUSHRA or ABX)

I objective quality metrics

Table : Evaluation software.

Name Implemented metrics

PESQ24 perceptual speech quality (PESQ)

PEMO-Q25 perceptual similarity metric (PSM)

Loizou’s26

segmental SNR
log-likelihood ratio
cepstrum distance
composite measure. . .

BSS Eval27
signal-to-distortion ratio (SDR)
signal-to-interference ratio (SIR)
signal-to-artifacts ratio (SAR)

PEASS28

overall perceptual score (OPS)
target-related perceptual score (TPS)
interference-related perceptual score (IPS)
artifacts-related perceptual score (APS)

24http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=5374
25http://www.hoertech.de/web en/produkte/pemo-q.shtml
26http://www.crcpress.com/product/isbn/9781466504219
27http://bass-db.gforge.inria.fr/bss eval/
28http://bass-db.gforge.inria.fr/peass/
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Current Challenges and Opportunities

Improved signal models.

Challenges:

I account for inter-frame and inter-frequency characteristics,

I model the phase of the source signals and use this model in a multichannel
scenario,

I leverage expertise in signal processing to exploit recent advances in
machine learning, e.g., deep learning, optimally.
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Current Challenges and Opportunities

Time-varying acoustic scenes.

Challenges:

I number of sources changing over time,

I find which sources appeared/disappeared,

I sources not continuously active.
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Current Challenges and Opportunities

Source and microphone movements.

Challenges:

I track the sources while moving,

I jointly estimate the source locations and the signal model parameters,

I whenever possible, control the movement.

Opportunities:

I avoid location indeterminacies for linear/planar arrays,

I increase SNR by moving closer to the speakers.
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Current Challenges and Opportunities

Learning of the manifold of acoustic responses specific to a given room.

Challenges:

I estimation of some acoustic responses in the first place,

I dimension reduction,

I robustness to change of temperature, position of furniture and people. . .

I new approaches for source separation as a model selection problem

Opportunity: account for all possibly available spatial information: direct path,
delays and amplitudes of early echoes, shape of reverberation.
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Current Challenges and Opportunities

Ad-hoc arrays built from separate devices available at a given time.

Challenges:

I time-varying delay, sampling frequency mismatch, microphone mismatch,

I computational constraints,

I distributed estimation.

Opportunities:

I use all available microphones,

I wider spatial coverage.



166

Summary and Perspectives
Current Challenges and Opportunities

Multimodal integration.

Challenges:

I integrate with cameras, accelerometers, lasers. . .

I heterogeneous data with different sampling rates.

Opportunity: exploit each modality for what it works best (e.g., vision for
source localization).
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Current Challenges and Opportunities

Integration with subsequent applications.

Challenges:
I use for remixing or automatic speech recognition,
I shape residual noise and speech distortion so that they are as little

disturbing as possible for the considered task,
I characterize the uncertainty in the estimated source signals and propagate

it to the considered task.

Opportunity: better integration will improve performance for the considered
task.
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