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Source separation and music

Audio source separation

Many sound scenes are mixtures of several concurrent sound sources.

When facing such scenes, humans are able to perceive and focus on
individual sources.

Source separation is the problem of recovering the source signals
underlying a given mixture.

It is a core problem of audio signal processing, with applications such as:
@ hearing aids,
@ post-production, remixing and 3D upmixing,
@ spoken/multimedia document retrieval,
o MIR.
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Source separation and music

The data at hand

As an inverse problem, source separation requires some knowledge

Music is among the most difficult application areas of source separation
because of the wide variety of sources and mixing processes
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Music sources

Music sources include acoustical or virtual instruments and singing voice.

Sound is produced by transmission of one or more excitation
movements/signals through a resonant body/filter.

This results in a wide variety of sounds characterized by their:
@ polyphony (monophonic or polyphonic)
@ temporal shape (transitory, constant or variable)
@ spectral fine structure (random or pitched)

@ spectral envelope
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Effects of microphone recording

For point sources, room acoustics result in filtering of the source signal
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where the intensity and delay of direct sound are functions of the source
position relative to the microphone.

Diffuse sources (piano, drums) amount to (infinitely) many point sources.

The mixture signal is equal to the sum of the contributions of all sources
at each microphone.
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Source separation and music

Software mixing effects

Usual software mixing effects include:
@ compression and equalization
@ panning, i.e. channel-dependent intensity scaling
@ reverb

@ polarity and autopan

The latter are widely employed to achieve perceptual envelopment,
whereby even point sources are mixed diffusely.

Again, the intensity of direct sound is a function of the source position and
the mixture signal is equal to the sum of the contributions of all sources in
each channel.
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Source separation and music

Overview
Hundreds of source separation systems were designed in the last 20
years. . .

... but few are yet applicable to real-world music, as illustrated by the
2008 and 2010 Signal Separation Evaluation Campaigns (SiSEC).

The wide variety of techniques boils down to three modeling paradigms:

@ computational auditory scene analysis (CASA),

@ probabilistic linear modeling, including independent component
analysis (ICA) and sparse component analysis (SCA),

@ probabilistic variance modeling, including hidden Markov models
(HMM) and nonnegative matrix factorization (NMF).
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Computational auditory scene analysis (CASA)

CASA aims to emulate the human auditory system.
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Source formation relies on the Gestalt rules of cognition:
@ proximity,
@ similarity,
@ continuity,
@ closure,
@ common fate.
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Auditory front-end

The sound signal is first converted into an auditory nerve representation
via a series of processing steps:
@ outer- and middle-ear: filter
@ cochlear traveling wave model: filterbank
@ haircell model: halfwave rectification + bandwise compression +
cross-band suppression
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Sinusoidal+noise decomposition

Many systems further decompose the signal into a collection of sinusoidal
tracks plus residual noise.

This decomposition is useful to
@ reduce the number of sound atoms to be grouped into sources,

@ enable the exploitation of advanced cues, e.g. amplitude and
frequency modulation.

Sinusoidal representation
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Computational auditory scene analysis

Spatial cues

Spatial proximity is assessed by comparing the observed
@ interchannel time difference (ITD),
@ interchannel intensity difference (11D).
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Note: in practice, most systems consider only binaural data, i.e. recorded

by in-ear microphones.
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Spectral cues

The Gestalt rules also translate into e.g.
@ common pitch and onset time,

similar spectral envelope,

°
@ spectral and temporal smoothness,
@ lack of silent time intervals,

°

correlated amplitude and frequency modulation.

Most effort has been devoted to the estimation of pitch by
cross-correlation of the auditory nerve representation in each band.
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Computational auditory scene analysis

Learned cues

In addition to the above primitive cues, the auditory system relies on a
range of learned cues to focus on a given source:

o veridical expectation (episodic memory): "I know the lyrics”

@ schematic expectation (semantic memory): " The inaudible word after
love you must be babe"

@ dynamic adaptive expectation (short-term memory): " This melody
already occurred in the song”

@ conscious expectation
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Source formation and signal extraction

Each time-frequency bin or each sinusoidal track is associated to a single
source according to the above cues: this is known as binary masking.

Individual cues are ambiguous, e.g.

@ the observed IID/ITD may be due to a single source in the associated
direction or to several concurrent sources around that direction,

@ a given sinusoidal track may be a harmonic of different sources.

Most systems exploit several cues with some precedence order or weighting
factors determined by psycho-acousticians.
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Summary of CASA

Advantages:
@ wide range of spectral, spatial and learned cues

@ robustness thanks to joint exploitation of several cues

Limitations:
@ musical noise artifacts due to binary masking

@ suboptimal cues, designed for auditory scene analysis instead of
machine source separation

@ practical limitation to a few spectral and/or spatial cues, with no
general framework for the integration of additional cues

@ (historically) bottom-up approach, prone to error propagation, and
limitation to pitched sources

@ no results within recent evaluation campaigns
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Probabilistic linear modeling

Model-based audio source separation

The alternative top-down approach consists of finding the source signals
that best fit the mixture and the expected properties of audio sources.

In a probabilistic framework, this translates into
@ building generative models of the source and mixture signals,
@ inferring latent variables in a maximum a posteriori (MAP) sense.
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Probabilistic linear modeling

Linear modeling

The established linear modeling paradigm relies on two assumptions:
© point sources
@ low reverberation

Under assumption 1, the sources and the mixing process can be modeled
as single-channel source signals and a linear filtering process.

Under assumption 2, this filtering process is equivalent to complex-valued
multiplication in the time-frequency domain via the short-time Fourier
transform (STFT).

In each time-frequency bin (n, f)
X,r: vector of mixture STFT coeff.
J J: number of sources
Xnf = Z Sjanjf Sinf: jth source STFT coeff.
Jj=1 Ajs: jth mixing vector
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Priors over the mixing vectors

The mixing vectors Ajr encode the apparent sound direction in terms of
o ITD Tj,
o IID gjr.

For non-echoic mixtures, ITDs and |IDs are constant over frequency and
related to the direction of arrival (DOA) 6; of each source

1
Ajf X <g:/,e—2i7rf7'j>

For echoic mixtures, ITDs and |IDs follow a smeared distribution P(Aj¢|6;)
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l.i.d. priors over the source STFT coefficients

Most systems assume that the sources have random spectra, i.e. their
STFT coefficients Sj,¢ are independent and identically distributed (i.i.d.).

The magnitude STFT coefficients of audio sources are sparse: at each
frequency, few coefficients have large values while most are close to zero.

This property is well modeled by the generalized exponential distribution
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Note: coarser binary activity priors have also been employed.
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Probabilistic linear modeling

Inference algorithms

Given the above priors, source separation is typically achieved by joint
MAP estimation of the source STFT coefficients Sj,r and other latent
variables (Aj¢, gj, 7j, p, fj) via alternating nonlinear optimization.

This objective is called sparse component analysis (SCA).

For typical values of p, the MAP source STFT coefficients are nonzero for
at most two sources in a stereo setting.

When the number of sources is J = 2, SCA is renamed nongaussianity-
based frequency-domain independent component analysis (FDICA).
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Practical illustration of separation using i.i.d. linear priors
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Time-frequency bins dominated by the center source are often erroneously
associated with the two other sources.
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Probabilistic linear modeling

SiSEC results on toy mixtures of 3 sources
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Probabilistic linear modeling

Summary of probabilistic linear modeling

Advantages:
@ top-down approach

@ separation of more than one source per time-frequency bin

Limitations:
@ restricted to mixtures of non-reverberated point sources
@ separation of at most two sources per time-frequency bin
@ musical noise artifacts due to the ambiguities of spatial cues

@ no straightforward framework for the integration of spectral cues
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Idea 1: from sources to mixture components

Diffuse or semi-diffuse sources cannot be modeled as single-channel signals
and not even as finite dimensional signals.

Instead of considering the signal produced by each source, one may
consider its contribution to each channel of the mixture signal.

Source separation becomes the problem of estimating the multichannel
mixture components underlying the mixture.

In each time-frequency bin (n, f)
X,r: vector of mixture STFT coeff.

J
X,r = Z Cjnf J: number Qf sources
el Cjnr: jth mixture component
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Probabilistic variance modeling

Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, additional spectral
cues are needed as shown by CASA.

Most audio sources are translation- and phase-invariant: a given sound
may be produced at any time with any relative phase across frequency.
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Probabilistic variance modeling

Variance modeling

Variance modeling combines these two ideas by modeling the STFT
coefficients of individual mixture components by a circular multivariate
distribution whose parameters vary over time and frequency.

The non-sparsity of source STFT coefficients over small time-frequency
regions suggests the use of a non-sparse distribution.
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Probabilistic variance modeling

Choice of the distribution

For historical reasons, several distributions have been preferred in a mono

context, which can equivalently be expressed as divergence functions over
the source magnitude/power STFT coefficients:

@ Poisson <> Kullback-Leibler divergence aka I-divergence

o tied-variance Gaussian <> Euclidean distance

@ log-Gaussian <> weighted log-Euclidean distance

These distributions do not easily generalize to multichannel data.
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The multichannel Gaussian model

The zero-mean Gaussian distribution is a simple multichannel model.

1 —CH £-1C;¢ Y .. jth component
P(Cjnf|zjnf) = —_ ‘jnf “jnf -jnf J p ]
det(ﬂ'zj,,f) covariance matrix

The covariance matrix X ¢ of each mixture component can be factored as
the product of a scalar nonnegative variance Vj,r and a mixing covariance
matrix Rjr respectively modeling spectral and spatial properties

2= VinrRjr

Under this model, the mixture STFT coefficients also follow a Gaussian
distribution whose covariance is the sum of the component covariances

1

-1
e_Xan(Zle anijf) Xnf
J
det (W >ie1 anijf)

P(Xnf|Vinf, Rje) =
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Probabilistic variance modeling

General inference algorithm

Independently of the priors over Vj,r and Rj, source separation is typically
achieved in two steps:
@ joint MAP estimation of all model parameters using the expectation
maximization (EM) algorithm,
@ MAP estimation of the source STFT coefficients conditional to the
model parameters by multichannel Wiener filtering

-1
J

Cinr = VinrRjf z ViineRjrf Xt
=1
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Probabilistic variance modeling

Rank-1 priors over the mixing covariances

The mixing covariances Rjr encode the apparent spatial direction and
spatial spread of sound in terms of

o ITD,
o |ID,
@ normalized interchannel correlation a.k.a. interchannel coherence.

For non-reverberated point sources, the interchannel coherence is equal to
one, i.e. Rjr has rank 1

Rjr = AjrA7

The priors P(Aj|6;) used with linear modeling can then be simply reused.
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Probabilistic variance modeling

Full-rank priors over the mixing covariances

For reverberated or diffuse sources, the interchannel coherence is smaller
than one, i.e. Rjs has full rank.

The theory of statistical room acoustics suggests the direct+diffuse model

. A;j: direct-to-reverberant ratio
Rjr oc AjAjrAjr + By Aj¢: direct mixing vector
B;: diffuse noise covariance

with
A — 2 1 7i: ITD of direct sound
A1+ g2 gje*2"7rf‘fj g ID of direct sound
J
B, 1 sinc(27fd/c) d: microphone spacing
F7~ \sinc(2nfd/c) 1 c: sound speed
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Probabilistic variance modeling

l.i.d. priors over the source variances

Baseline systems rely again on the assumption that the sources have
random spectra and model the source variances Vj,¢ as i.i.d. and locally
constant within small time-frequency regions.

When these follow a mildly sparse prior, it can be shown that the MAP
variances are nonzero for up to four sources.

Discrete priors constraining the number of nonzero variances to one or two
have also been employed.

When the number of sources is J = 2, this model is also called
nonstationarity-based FDICA.
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Benefit of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguities of ITD and 1ID
and identify the predominant sources more accurately.

Linear model
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Probabilistic variance modeling

Practical illustration of separation using i.i.d. variance
priors
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Probabilistic variance modeling

Spectral priors based on template spectra

Variance modeling enables the design of phase-invariant spectral priors.

The Gaussian mixture model (GMM) represents the variance V¢ of each

source at a given time by one of K template spectra wjr indexed by a
discrete state gj,

Vinf = Wjq,,r With P(qjn = k) = mjk

Different strategies have been proposed to learn these spectra:
@ speaker-independent training on separate single-source data,
@ speaker-dependent training on separate single-source data,
@ MAP adaptation to the mixture using model selection or interpolation,

@ MAP inference from a coarse initial separation.
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Probabilistic variance modeling

Practical illustration of separation using template spectra
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Probabilistic variance modeling

Spectral priors based on basis spectra

The GMM does not efficiently model polyphonic musical instruments.

The variance Vj,r of each source is then better represented as the linear

combination of K basis spectra wj,s multiplied by time-varying scale
factors hjin

K

Vine = § hjknWjks
k=1

This model is also called nonnegative matrix factorization (NMF).

Again, a range of strategies have been used to learn these spectra:
@ instrument-dependent training on separate single-source data,
@ MAP adaptation to the mixture using uniform priors,

@ MAP adaptation to the mixture using trained priors.
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Practical illustration of separation using basis spectra
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Probabilistic variance modeling

Constrained template/basis spectra

MAP adaptation or inference of the template/basis spectra is often needed
due to

@ the lack of training data,

@ the mismatch between training and test data.

However, it is often inaccurate: additional constraints over the spectra are
needed to further reduce overfitting.
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Probabilistic variance modeling

Harmonicity and spectral smoothness constraints

For instance, harmonicity and spectral smoothness can be enforced by
@ associating each basis spectrum with some a priori pitch p

@ modeling wj,r as the sum of fixed narrowband spectra byr
representing adjacent partials at harmonic frequencies scaled by
spectral envelope coefficients ejy

Lp
Wipf = E :ejp/bp/f :
=1

Parameter estimation now amounts to estimating the active pitches and
their spectral envelopes instead of their full spectra.
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Probabilistic variance modeling

Practical illustration of harmonicity constraints
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Probabilistic variance modeling

Further constraints
Further constraints that have been implemented in this context include
@ source-filter model of instrumental timbre,

@ inharmonicity and tuning.

Probabilistic priors are also popular:

@ state transition priors
P(qjn = k|qj.n—1=1) = mju
@ spectral continuity priors (for percussive sounds)
P(Vinf|Vinf—1) = N (Vinf; Vinf—1, Operc)
@ temporal continuity priors (for sustained sounds)

P( anf’ Vj,n—l,f) = N( anf; Vj,n—l,fa Usust)
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Probabilistic variance modeling

SiSEC results on toy mixtures of 3 sources
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SIiSEC results on professional mixtures
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Probabilistic variance modeling

Summary of probabilistic variance modeling

Advantages:
@ top-down approach
@ virtually applicable to any mixture, including to diffuse sources
@ no hard constraint on the number of sources per time-frequency bin
°

fewer musical noise artifacts by joint exploitation of spatial, spectral
and learned cues

©

principled modular framework for the integration of additional cues

Limitations:
@ remaining musical noise artifacts

@ current implementations limited to a few spectral and/or spatial
cues. . . but this is gradually changing!
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Summary principles of model-based source separation
Most model-based source separation systems rely on modeling the STFT
coefficients of each source as a function of

@ a scalar variable (Sjyr or Vjur) encoding spectral cues,

@ a vector or matrix variable (Ajs or Rjr) encoding spatial cues.

Robust source separation requires priors over both types of cues:

@ spectral cues alone cannot discriminate sources with similar pitch
range and timbre,

@ spatial cues alone cannot discriminate sources with the same DOA.

A range of informative priors have been proposed, relating for example
@ Sjnr or Vjur to discrete or continuous latent states,
@ Ajr or Rjs to the source DOAs.

Variance modeling outperforms linear modeling.
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Summary and future challenges

Conclusion and remaining challenges

To sum up, source separation is a core problem of audio signal processing
with huge potential applications.

Existing systems are gradually finding their way into the industry,
especially for applications that can accomodate

@ a certain amount of musical noise artifacts, such as MIR,

@ partial user input/feedback, such as post-production.

We believe that these two limitations could be addressed in the next 10
years by exploiting the full power of probabilistic modeling, especially by:

@ integrating more and more spatial and spectral cues,

@ making a better use of learned cues, using training data or repeated
sounds
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