

Music Source Separation and its Applications to MIR

Nobutaka Ono and Emmanuel Vincent The University of Tokyo, Japan INRIA Rennes - Bretagne Atlantique, France

> Tutorial supported by the VERSAMUS project <u>http://versamus.inria.fr/</u>

Contributions from Shigeki Sagayama, Kenichi Miyamoto, Hirokazu Kameoka, Jonathan Le Roux, Emiru Tsunoo, Yushi Ueda, Hideyuki Tachibana, Geroge Tzanetakis, Halfdan Rump, Other members of IPC Lab#1

ISMIR2010 Tutorial 1

Outline

Introduction

Part I: Brief Introduction of State-of-the-arts

- Singer/Instrument Identification
- Audio Tempo Estimation
- Part II: Harmonic/Percussive Sound Separation
 - Motivation and Formulation
 - Open Binary Software
- Part III: Applications of HPSS to MIR Tasks
 - Audio Chord Estimation
 - Melody Extraction
 - Audio Genre Classification

Conclusions

Aug. 9, 2010

SOab

Introduction

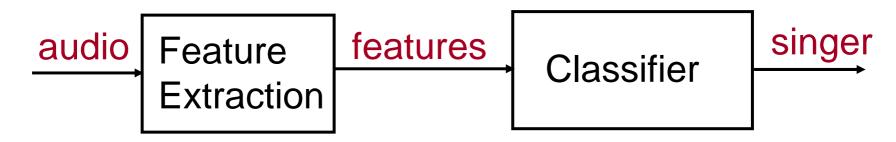
- Focus of the second half of this tutorial is to clarify
 - What source separation has been used for MIR?
 - How does it improve performance of MIR tasks?
- Examples:
 - Multi pitch estimation Task itself is tightly coupled with source
 - separation.
 - Audio genre classification

How source separation is useful? Not straightforward.

Part I: Brief Introduction of State-of-the-arts

Singer Identification

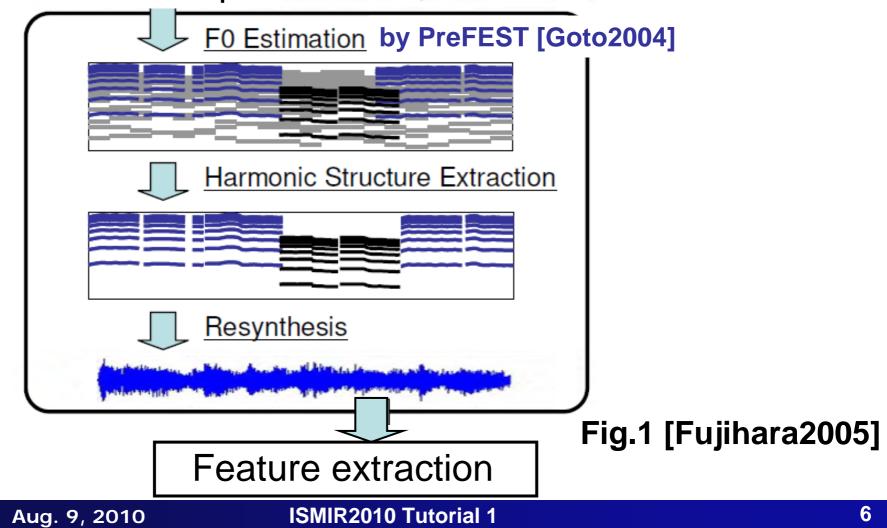
- Task: Identify a singer from music audio with accompaniment
- Typical approach



Accompaniment Sound Reduction [Fujihara2005]

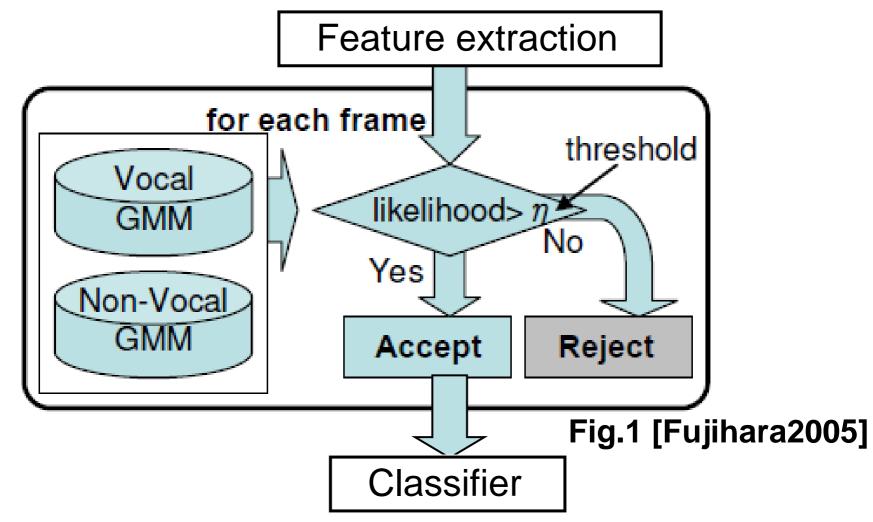
Pre-dominant F0 based voice separation Audio input

Seab



Reliable Frame Selection [Fujihara2005]

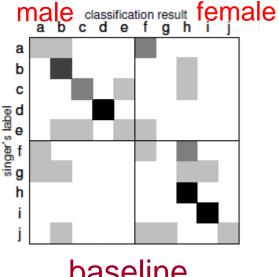
Only reliable frame is used for classification

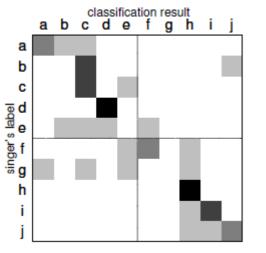


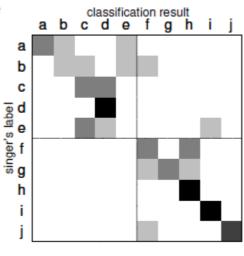
Seab

Aug. 9, 2010

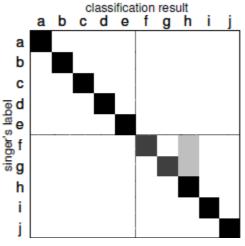
Evaluation by Confusing Matrix







reduction only



Male/female confusion is decreased by accompaniment reduction.

Combination of reduction and selection much improves performance.

Fig. 3 [Fujihara2005]

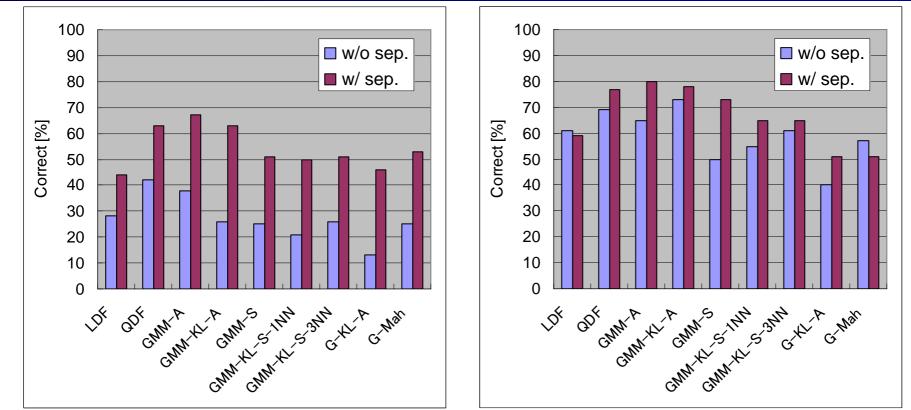
selection only reduction and selection

Vocal Separation Based on Melody Transcriber

- Melody-F0-based Vocal Separation [Mesaros2007]
 - Estimate melody-F0 by melody transcription system [Ryynanen2006].
 - Generate harmonic overtones at multiple of estimated F0.
 - Estimate amplitudes and phases of overtones based on cross correlation between original signal and complex exponentials.

They evaluate the effect of separation in singer identification performance using by different classifiers.

Evaluation by Identification Rate

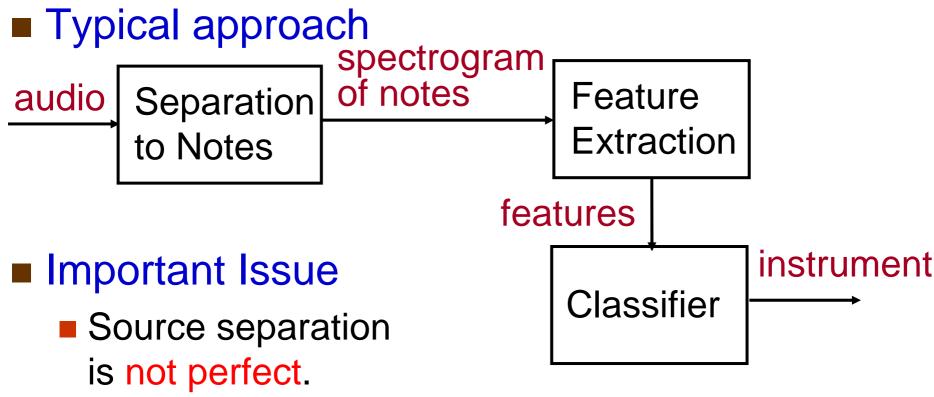


Singing to Accompaniment Ratio: -5dB Singing to Accompaniment Ratio: 15dB Generated by Table 1 and 2 [Mesaros2007]

Performance is much improved, especially in low singing-to-accompaniment ratio.

Instrument Identification

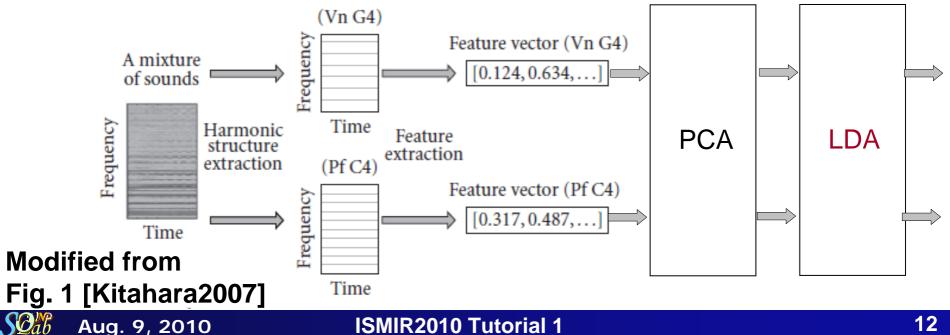
Task: Determine instruments present in music piece



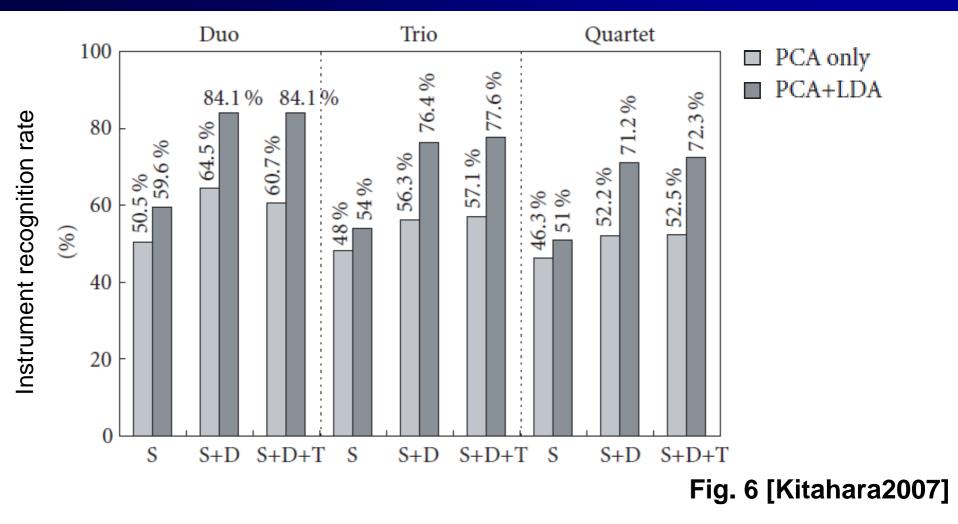
How to reduce errors?

Feature Weighting [Kitahara2007]

- Feature vectors of each instrument are collected from polyphonic music for training.
- Robustness of each feature is evaluated by ratio of intra-class variance to inter-class variance: Applying Linear discriminant analysis (LDA) for feature weighting.



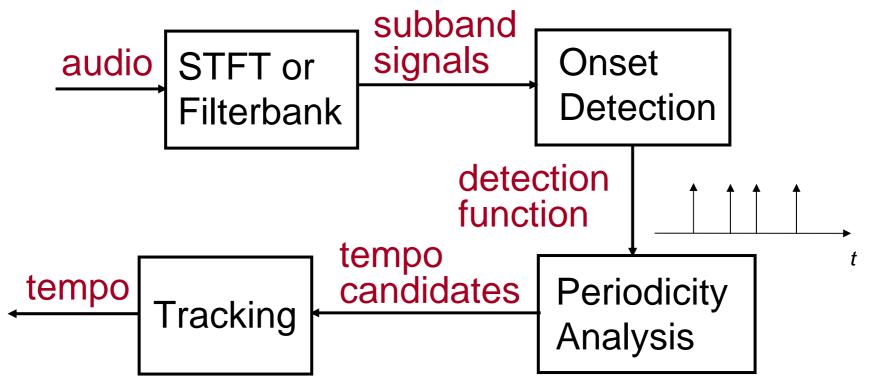
Effectiveness of Feature Weighting



Feature weighting by LDA improves recognition rate.

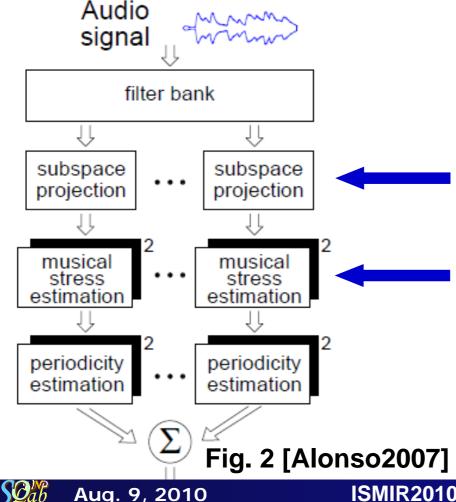
Audio Tempo Estimation

Task: Extract tempo from musical audio Typical approach:



Applying Harmonic+Noise Model

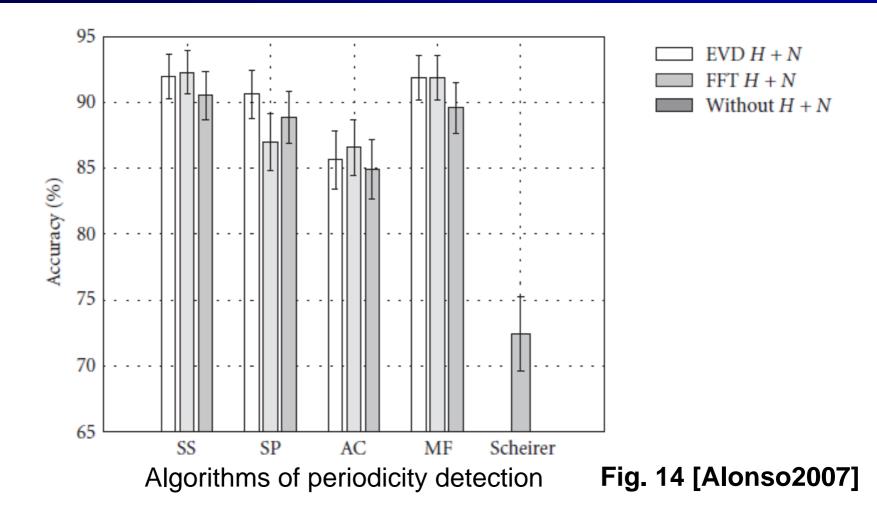
Harmonic+Noise model is applied before calculating detection function [Alonso2007]



Source separation based on harmonic + noise model

Detection functions are calculated from both of harmonic component and noise component, and then, they are merged.

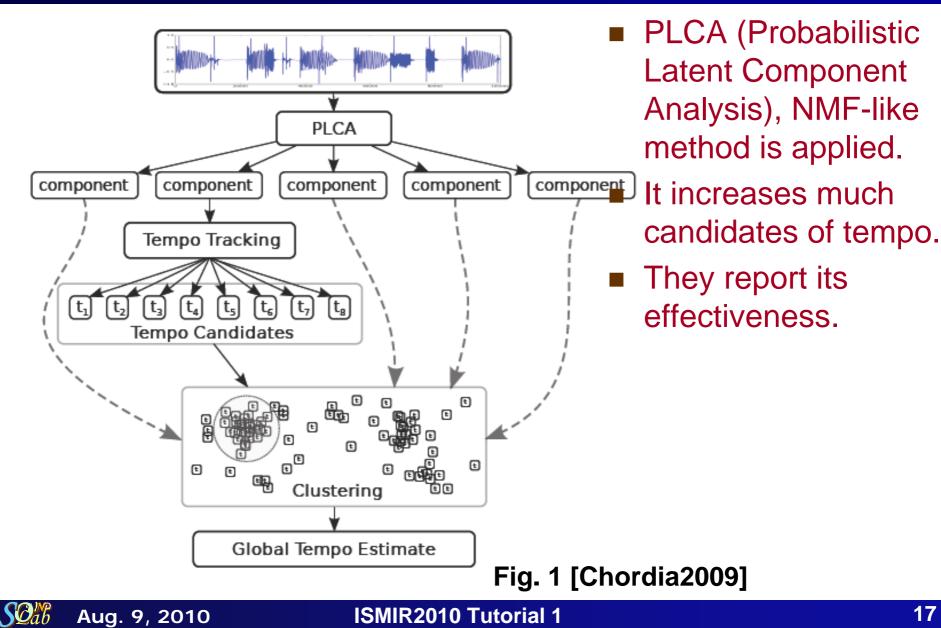
Influence of H+N Model



Separation based on H+N model shows better results.

ISMIR2010 Tutorial 1

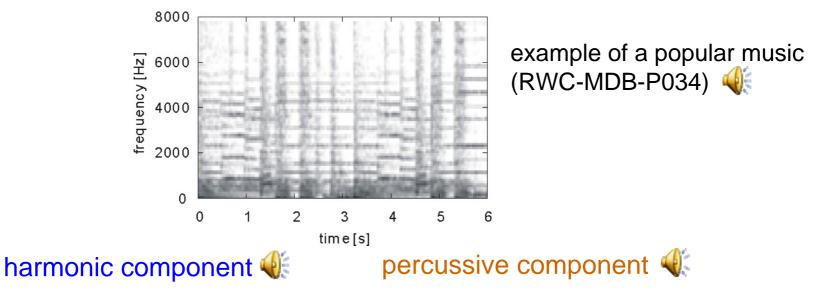
Applying PLCA



Part II: Harmonic/Percussive Sound Separation

Motivation and Goal of HPSS

Motivation: Music consists of two different components



Goal: Separation of a monaural audio signal into harmonic and percussive components

Target: MIR-related tasks

- multi-pitch analysis, chord recognition... H-related
- beat tracking, rhythm recognition... P-related

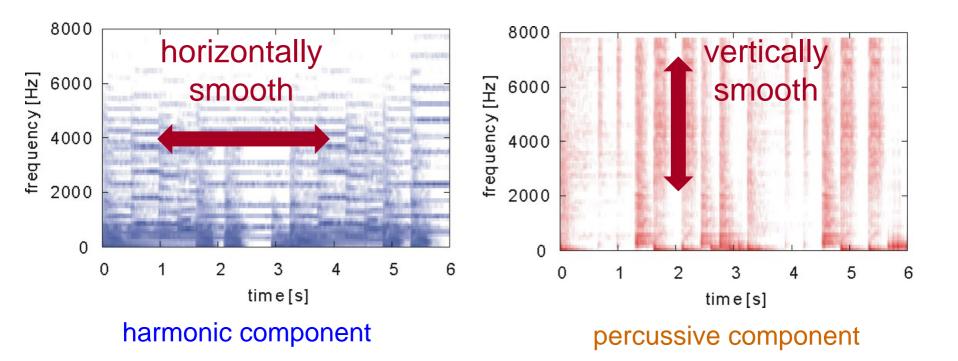
Related Works to H/P Separation

- Source separation into multiple components followed by classification
 - ICA and classification [Uhle2003]
 - NMF and classification [Helen2005]
- Steady + Transient model
 - Adaptive phase vocoder
 - Subspace projection
 - Matching persuit
 - ...etc

Good review is provided in [Daudet2005]

Baysian NMF [Dikmen2009]

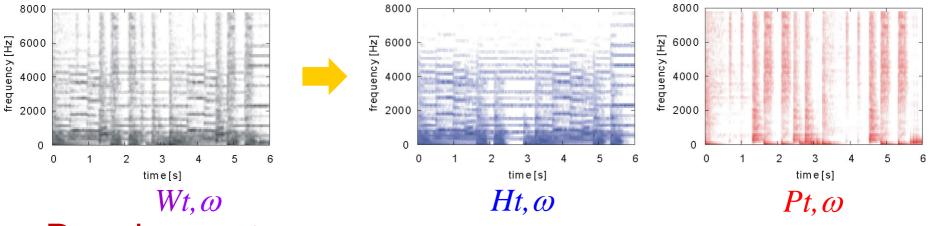
Point: Anisotropy of Spectrogram



ISMIR2010 Tutorial 1

H/P Separation Problem

• Problem: Find $H_{t,\omega}$ and $P_{t,\omega}$ from $W_{t,\omega}$ on power spectrogram



Requirements:

- 1) *H*_t, ω : horizontally smooth
- 2) Pt, w: vertically smooth
- 3) $H_{t,\omega}$ and $P_{t,\omega}$: non-negative
- 4) $H_{t,\omega} + P_{t,\omega}$: should be close to $W_{t,\omega}$

Formulation of H/P Separation (1/2)

Formulation as an Optimization Problem:
 Objective function to minimize

 $J(\boldsymbol{H},\boldsymbol{P}) = \frac{D(\boldsymbol{W},\boldsymbol{H}+\boldsymbol{P})}{\text{Closeness cost}} + \frac{C_H(\boldsymbol{H}) + C_P(\boldsymbol{P})}{\text{Smoothness cost}}$

Under constraints:

 $H_{t,\omega} \geq 0$

 $P_{t,\omega} \geq 0$

In MAP estimation context, they are corresponding likelihood term and prior term, respectively.

Formulation of H/P Separation (2/2)

Closeness cost function: I-divergence

$$D(\boldsymbol{W}, \boldsymbol{H} + \boldsymbol{P}) = \sum_{\omega, \tau} \left\{ W_{\omega, \tau} \log \frac{W_{\omega, \tau}}{H_{\omega, \tau} + P_{\omega, \tau}} - W_{\omega, \tau} + H_{\omega, \tau} + P_{\omega, \tau} \right\}$$

Smoothness cost function: Square of difference

$$C_{H}(\boldsymbol{H}) = \sum_{\omega,\tau} \frac{1}{2\sigma_{H}^{2}} (H_{\omega,\tau-1}^{\gamma} - H_{\omega,\tau}^{\gamma})^{2} \qquad \gamma = 0.5$$

for scale invariance
$$C_{P}(\boldsymbol{H}) = \sum_{\omega,\tau} \frac{1}{2\sigma_{P}^{2}} (P_{\omega-1,\tau}^{\gamma} - P_{\omega,\tau}^{\gamma})^{2}$$

Weights to control two smoothness

A variance modeling based separation using

- Poisson observation distribution
- Gaussian continuity priors

[Miyamoto2008, Ono2008, etc]

Update Rules

Update alternatively two kinds of variables:

• H and P:

$$H_{\omega,\tau} \leftarrow \left(\frac{b_{H\omega,\tau} + \sqrt{b_{H\omega,\tau}^2 + 4a_{H\omega,\tau}c_{H\omega,\tau}}}{2a_{H\omega,\tau}}\right)^2$$
$$P_{\omega,\tau} \leftarrow \left(\frac{b_{P\omega,\tau} + \sqrt{b_{P\omega,\tau}^2 + 4a_{P\omega,\tau}c_{P\omega,\tau}}}{2a_{P\omega,\tau}}\right)^2$$

Auxiliary variables:

$$m_{P\omega,\tau} = \frac{P_{\omega,\tau}}{H_{\omega,\tau} + P_{\omega,\tau}} \qquad m_{H\omega,\tau} = \frac{H_{\omega,\tau}}{H_{\omega,\tau} + P_{\omega,\tau}}$$

$$a_{P\omega,\tau} = \frac{2}{\sigma_P^2} + 2 \qquad a_{H\omega,\tau} = \frac{2}{\sigma_H^2} + 2$$

$$b_{P\omega,\tau} = \frac{(\sqrt{P_{\omega-1,\tau}} + \sqrt{P_{\omega+1,\tau}})}{\sigma_P^2} \qquad b_{H\omega,\tau} = \frac{(\sqrt{H_{\omega,\tau-1}} + \sqrt{H_{\omega,\tau+1}})}{\sigma_H^2}$$

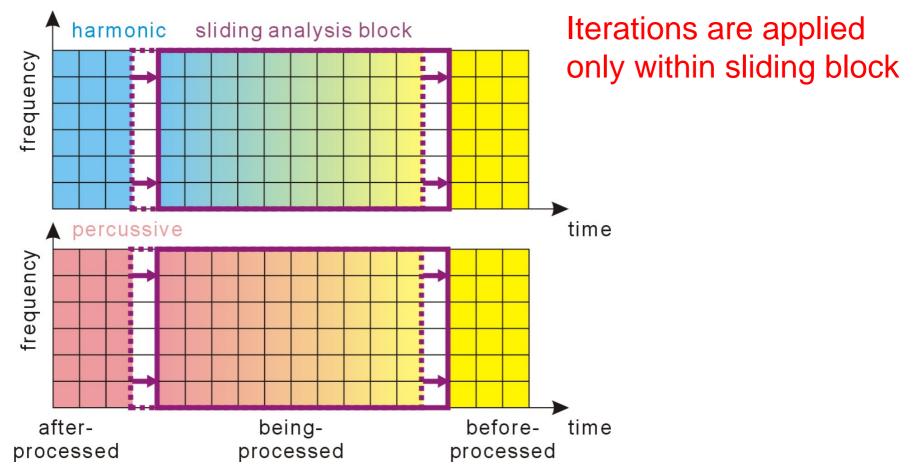
$$c_{P\omega,\tau} = 2m_{P\omega,\tau} W_{\omega,\tau} \qquad c_{H\omega,\tau} = 2m_{H\omega,\tau} W_{\omega,\tau}$$

Separation Examples

Music piece	original	Н	Р
RWC-MDB-P-7 "PROLOGUE "		Ŵ	A
RWC-MDB-P-12 "KAGE-ROU "		A	
RWC-MDB-P-18 "True Heart"	A	A	
RWC-MDB-P-25 "tell me"	A		
RWC-MDB-J-16 "Jive "	€ €	S	A

Real-Time Implementation

Sliding Block Analysis



ISMIR2010 Tutorial 1

Open Software: Real-time H/P equalizer

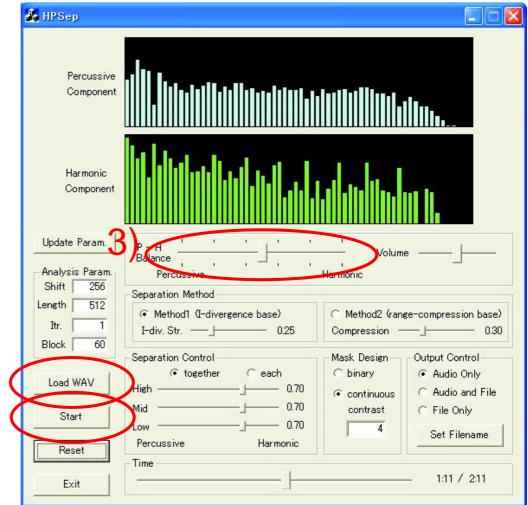
Available at http://www.hil.t.u-tokyo.ac.jp/software/HPSS/

- Control H/P balance of audio signal in real time
- Simple instructions:

Aug. 9, 2010

Cab

- 1) Click "Load WAV" button and choose a WAVformatted audio file.
- 2) Click "Start" button, and then, audio starts.
- Slide H/P balance bar as you like and listen how the sound changes.



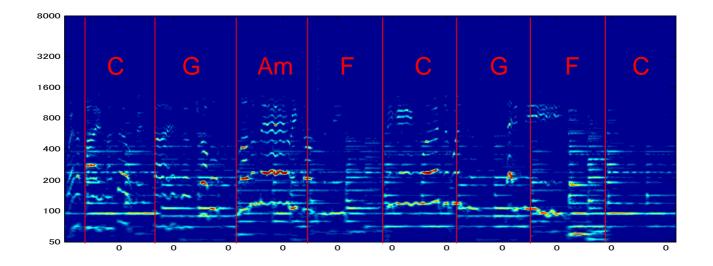
Part III: Applications of HPSS to MIR Tasks

III-1: Audio Chord Detection

ISMIR2010 Tutorial 1

Audio Chord Detection

Task: Estimate chord sequence and its segmentation from music audio



ISMIR2010 Tutorial 1

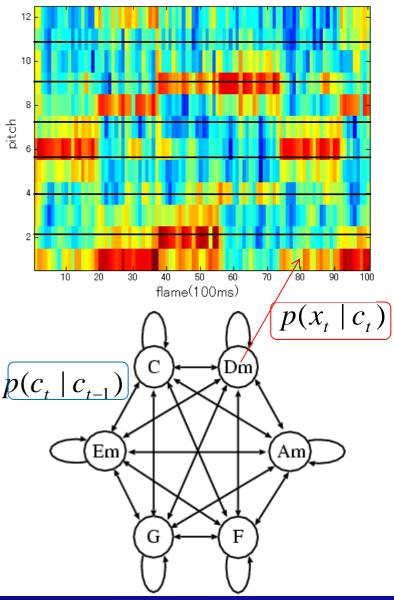
Typical Approach: Chroma Feature + HMM

Feature: chroma [Fujishima1999]

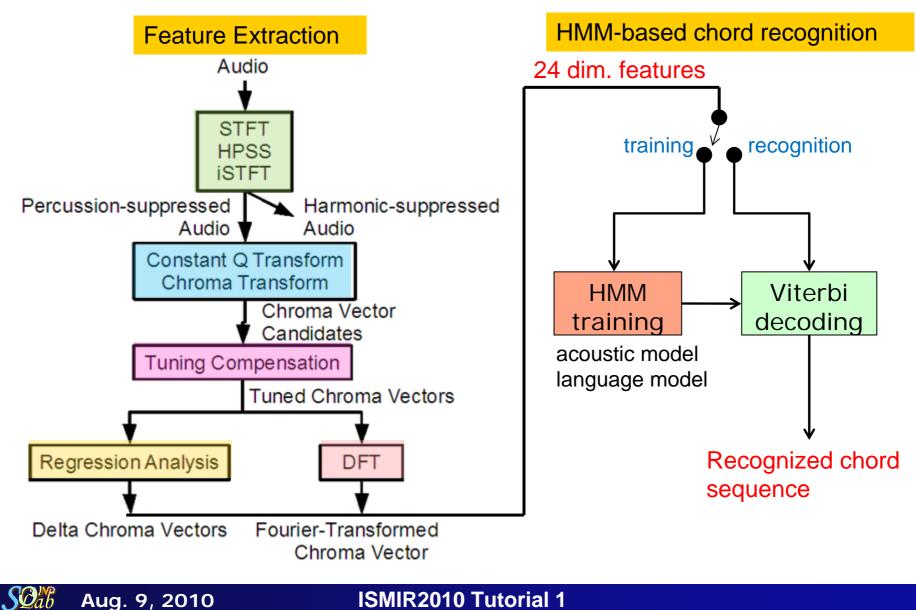
- Chroma observation probability $p(x_t | c_t)$
- Transition: chord progression
 - Bigram probability $p(c_t | c_{t-1})$
- Maximum a Posteriori Chord Estimation [Sheh2003]
 - Viterbi algorithm for …

$$\underset{c}{\operatorname{argmax}} p(x_0|c_0) p(c_0) \prod_{t \in \mathbb{Z}^{-1}}^{T} p(x_t|c_t) p(c_t|c_{t-1})$$

Initial prob.¹ emission transition

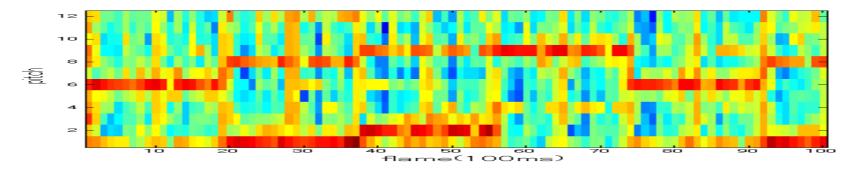


Feature-refined System [Ueda2009]

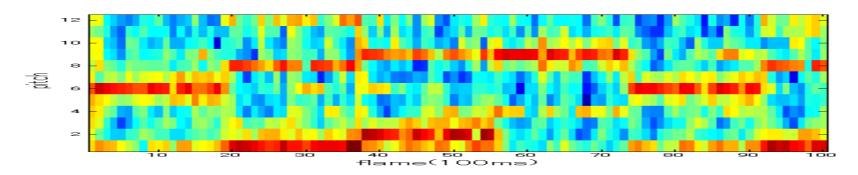


Suppressing Percussive Sounds

Percussive sounds are harmful in chord detection



Emphasize harmonic components by HPSS



ISMIR2010 Tutorial 1

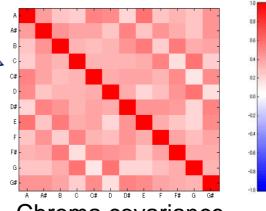
Fourier-transformed Chroma

Covariance matrix of chroma.

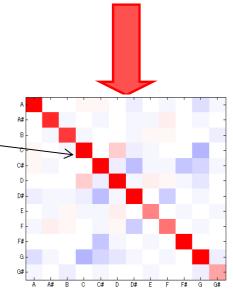
- Highly correlated components: diagonal-only approximation infeasible
 - Caused by harmonic overtones or some pitches performed at the same time
 - Results in large number of parameters

Covariance matrix is near circulant

- Assuming ...
 - Harmonic overtones of all pitches have the same structure
 - The amount of occurrence of the same intervals is the same
- Circulant matrix diagonalized by DFT
- Diagonal approximation of FT-Chroma covariance
 - Reduces the number of model parameters (statistically robust)



Chroma covariance

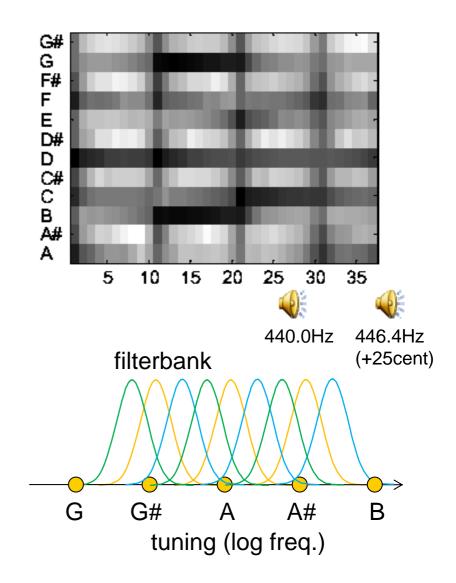


FT-Chroma covariance

Tuning Compensation

Tuning difference among songs

- Neglecting this may blur chroma features
- Choose best tuning from multiple candidates
 - Find maximum chroma energy (sum of all bins of chroma)
 - Assume: tuning does not change within a song



Delta Chroma Features

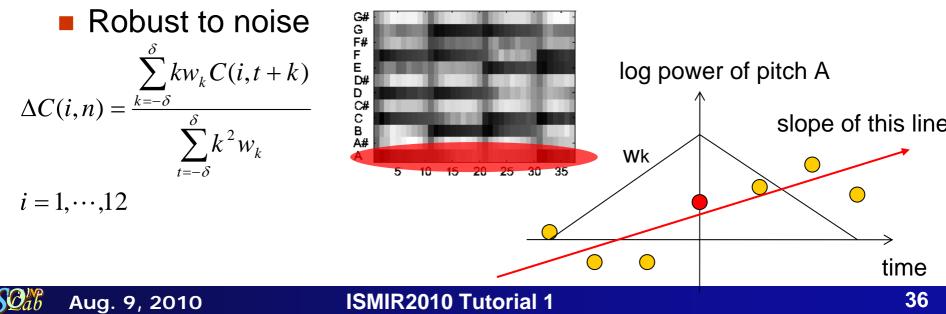
Improve chord boundary accuracy

by features representing chord boundaries

Chord tones largely changes at chord boundary

- Delta chroma: derivative of chroma features
- Cf. Delta cepstrum (MFCC): Effective features of speech recognition

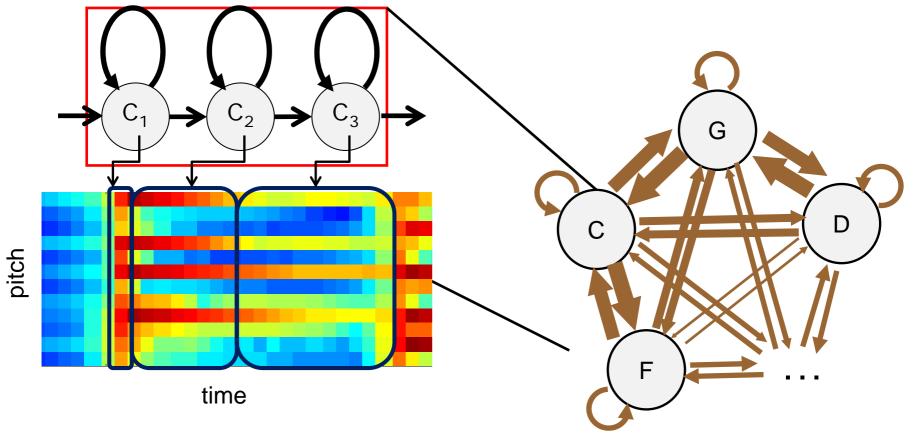
Calculated by regression analysis of δ sample points [Sagayama&Itakura1979]



Multiple States per Chord

Chroma changes from "onset" to "release"

- capture the change by having multiple states per chord
- tradeoff between data size and the number of states



ISMIR2010 Tutorial 1

Experimental Evaluation

Test Data

- 180 songs (12 albums) of The Beatles (chord reference annotation provided by C. Harte)
- 11.025 kHz sampling, 16bit, 1ch, WAV file
- Frequency range: 55.0Hz-1661.2Hz (5 octaves)

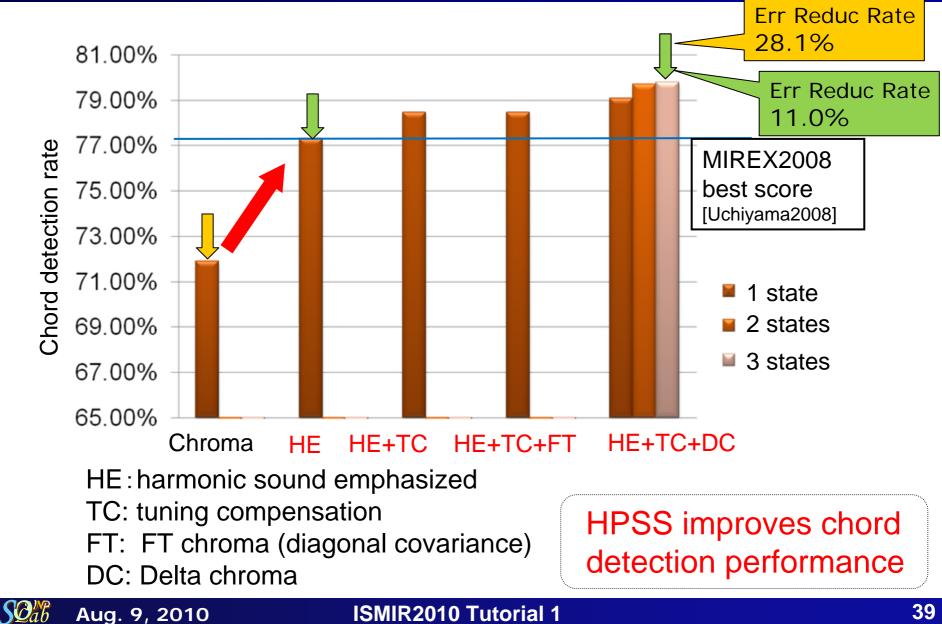
Labels

12 × major/minor =24 chords + N (no chord)

Evaluation

- Album filtered 3-fold cross validation
 - 8 albums for training, 4 albums for testing
- Frame Recognition Rate
 - = (#correct frames) / (#total frames)
- Sampled every 100ms

Chord Detection Results



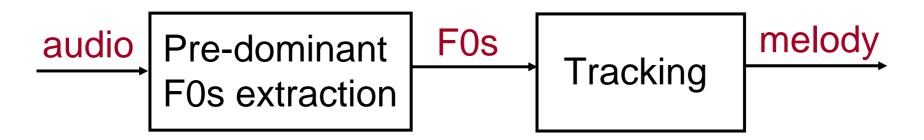
Part III: Applications of HPSS to MIR Tasks

III-2: Melody Extraction

ISMIR2010 Tutorial 1

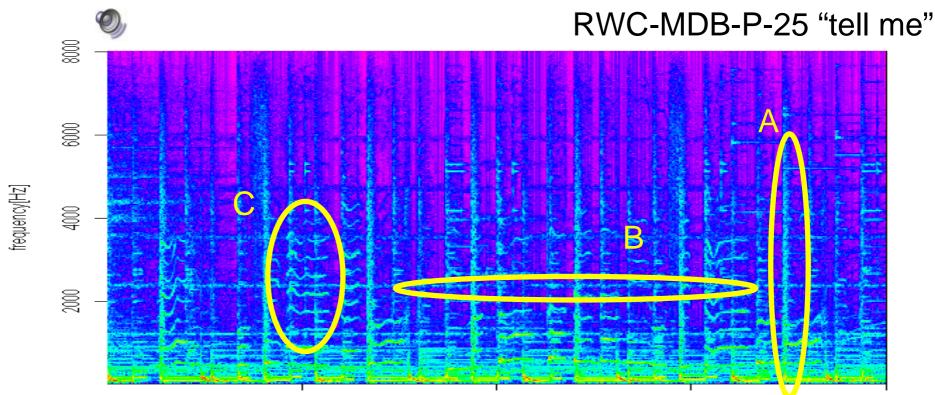
Melody Extraction

- Task: Identify a melody pitch contour from polyphonic musical audio
- Typical approach:



Singing voice enhancement will be useful pre-processing.

Singing Voice in Spectrogram



- A. Vertical component: Percussion
- B. Horizontal component: Harmonic instrument (piano, guitar, etc..)
- C. Fluctuated component: Singing voice

8

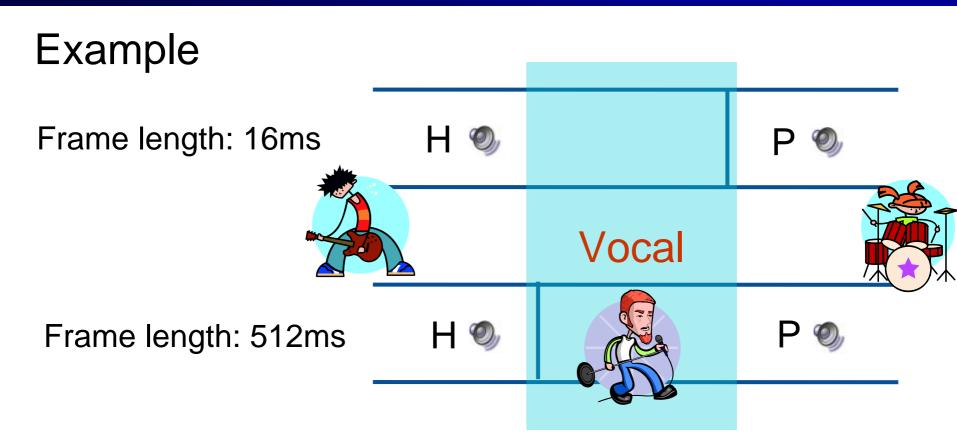
Is Voice Harmonic or Percussive?

Depends on spectrogram resolution (frame-length)

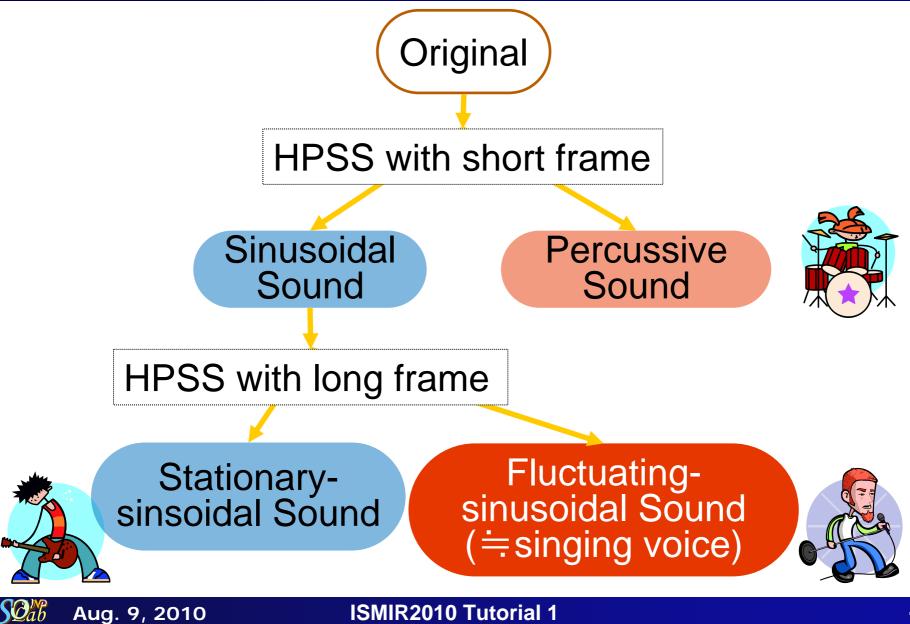
- On short-frame STFT domain, voice appears as "H" (time direction clustered).
- On long-frame STFT domain, voice appears as "P" (frequency direction clustered).



HPSS Results with Different Frame Length

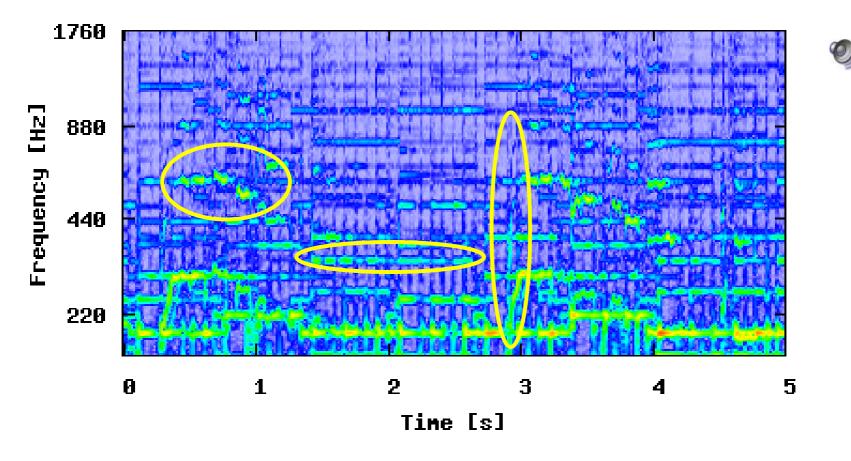


Two-stage HPSS [Tachibana2010]



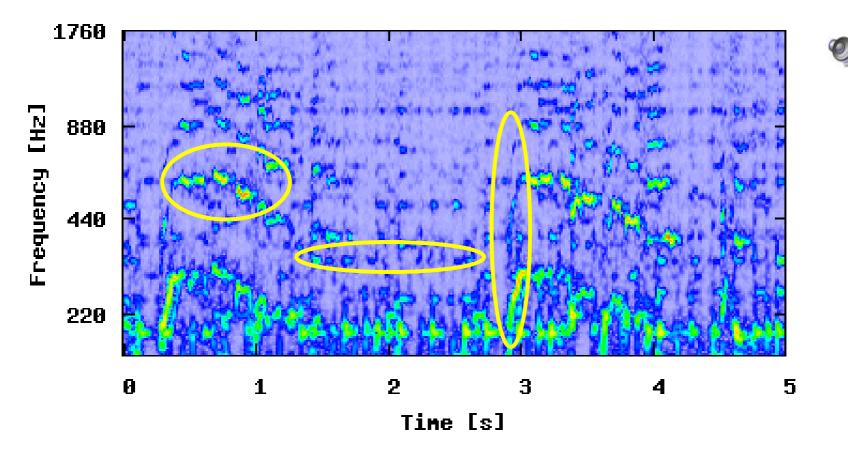
Spectrogram Example

Original signal (from LabROSA dataset)



Spectrogram Example

Voice-enhanced signal (by two-stage HPSS)

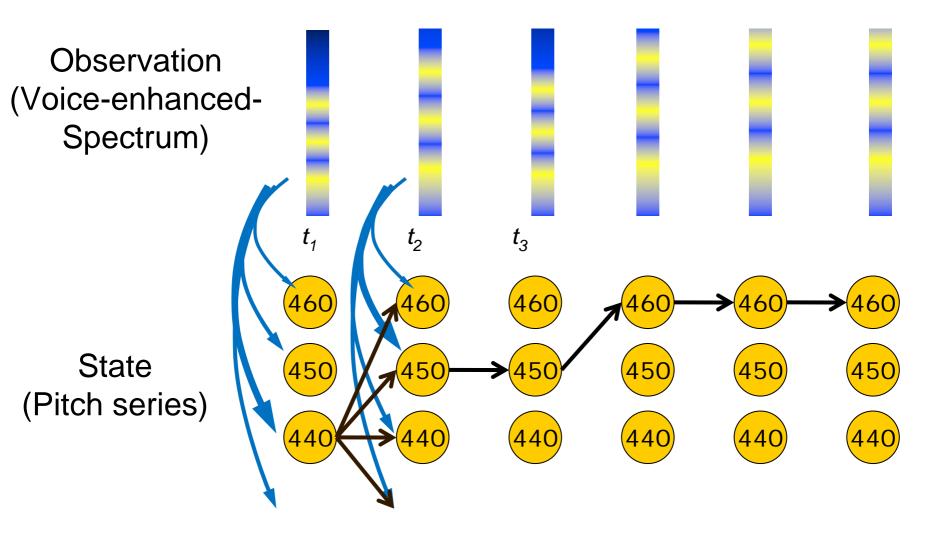


Separation Examples

title	original	Extracted Vocal	Vocal Cancelled*	Genre
"tell me"	Ø,	Ø,	Ø,	F, R&B
"Weekend"	Ø,	Ø,	Ø,	F, Euro beat
"Dance Together"	Ø,	Ø,	Ø,	M, Jazz
"1999"	Ø,	Ø,	Ø,	M, Metal rock
"Seven little crows"	Ø,	Ø,	Ø,	F, Nursery rhyme
"La donna è mobile" from Verdi's opera "Rigoletto"	Ø,	Ø,	Ø,	M, Classical

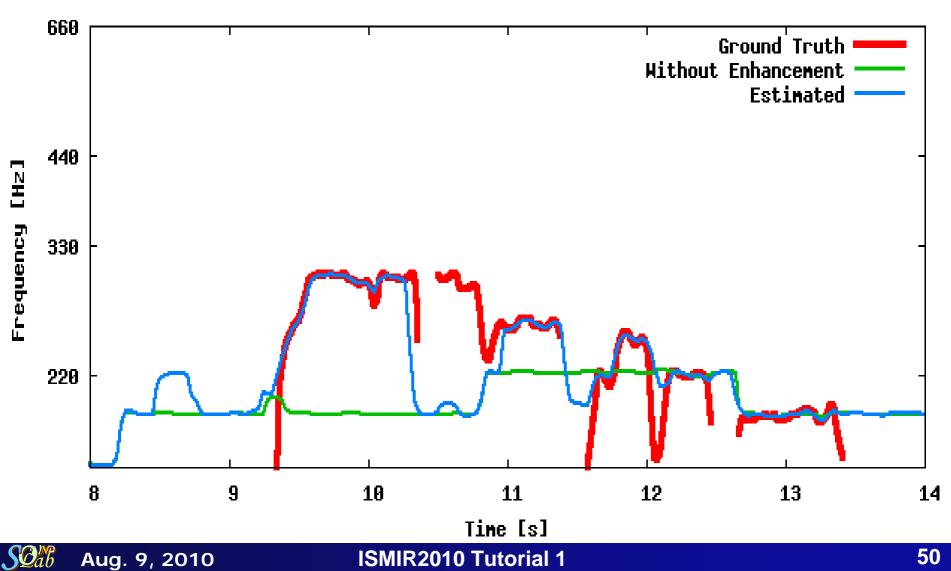
Melody Tracking by DP [Tachibana2010]

Estimating hidden states by dynamic programming



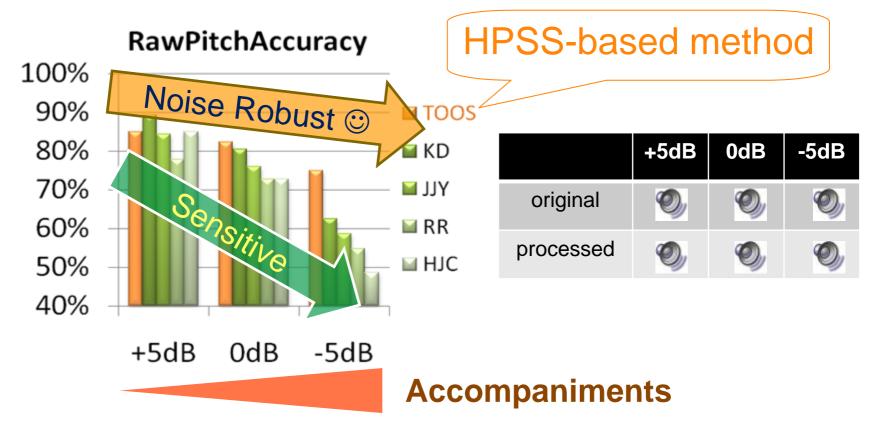
Example of Melody Tracking

train06.wav, distributed by LabROSA database



Results in MIREX 2009

Data: 379 songs, mixed in +5 dB, 0dB, and -5 dB.



Robustness to large singer-to-accompaniment ratio is greatly improved.

Part III: Applications of HPSS to MIR Tasks

III-3: Audio Genre Classification

ISMIR2010 Tutorial 1

Audio Genre Classification

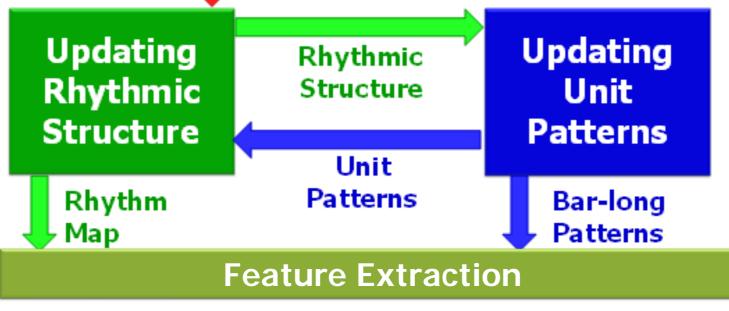
- Task: estimate genre from music audio
 - Blues, classical, jazz, rock, ...
- Typical approach

- Example of features [Tzanetakis2001]
 - Timbral information (MFCC, etc.)
 - Melodic information
 - Statistics about periodicities: Beat histogram

New Features I: Percussive Patterns

Harmonics / Percussions Separation

Percussion-Emphasized Spectrogram



[Tsunoo2009]

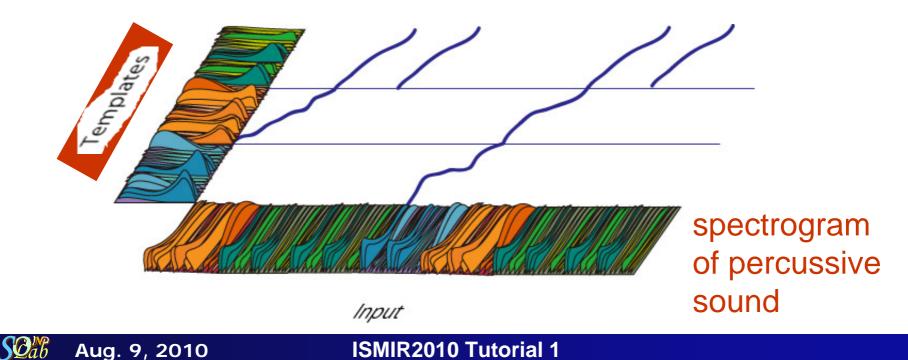
Motivation for Bar-long Percussive Patterns

- Bar-long percussive patterns (temporal information) are frequently characteristic of a particular genre
- Difficulties
 - 1) Mixture of harmonic and percussive components
 - 2) Unknown bar-lines
 - 3) Tempo fluctuation
 - 4) Unknown multiple patterns

A A A B A A A C C C C

Rhythmic Structure Analysis by One-pass DP algorithm

- Assume that correct bar-line unit patterns are given.
- Problem: tempo fluctuation and unknown segmentation
 - Analogous to continuous speech recognition problem
 - One-pass dynamic programming algorithm can be used to segment



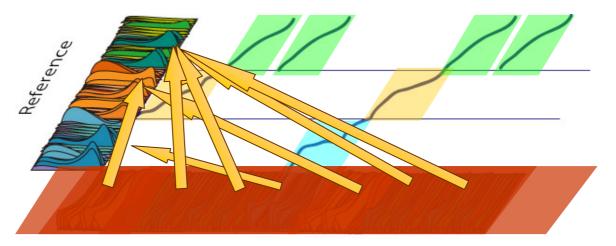
Dynamic Pattern Clustering [Tsunoo2009]

- Actually, unit patterns also should be estimated.
 - Chicken-and-egg problem

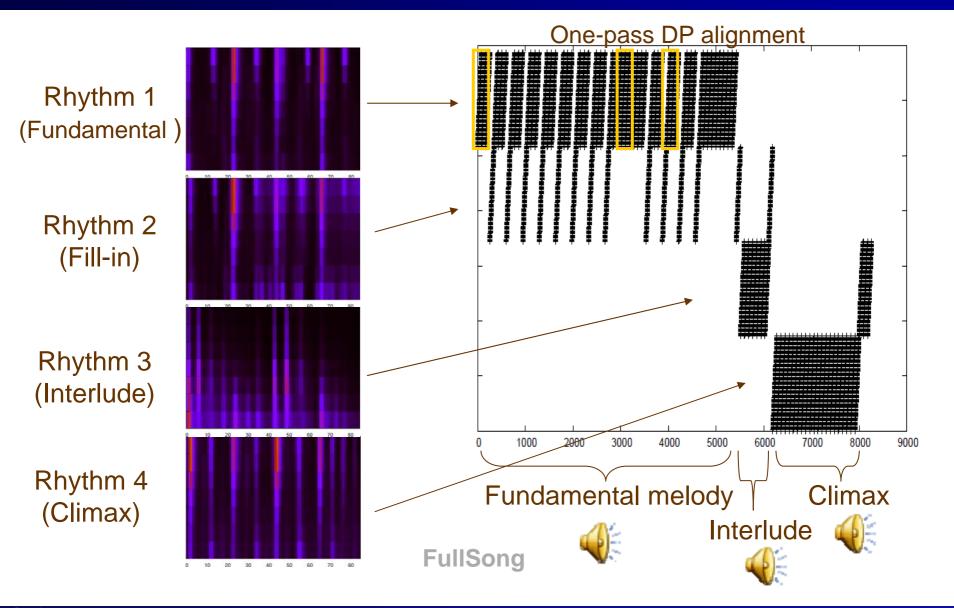
Oah

Aug. 9, 2010

- Analogous to unsupervised learning problem
- Iterative algorithm based on k-means clustering
 - Segment spectrogram using one-pass DP algorithm
 - Update unit patterns by averaging segments
- Convergence is guaranteed mathematically

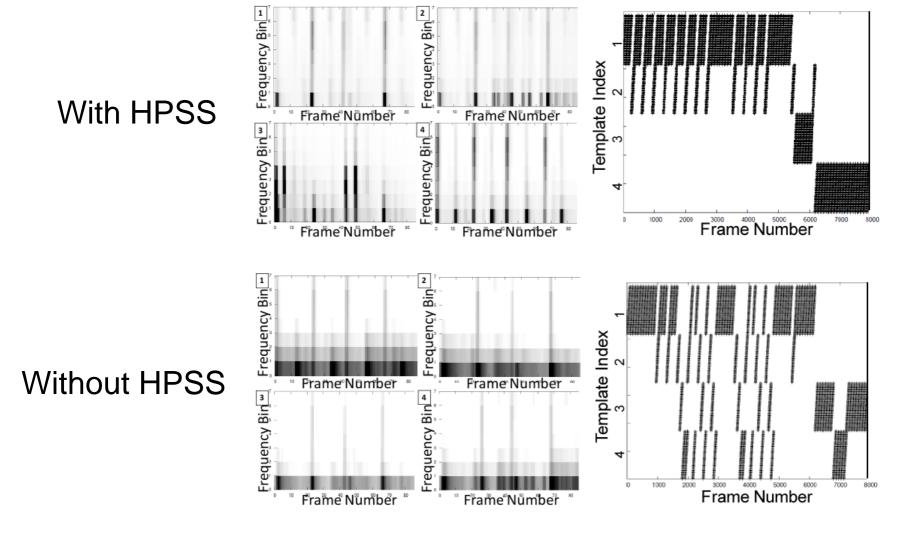


Example of "Rhythm Map"



ISMIR2010 Tutorial 1

Necessity of HPSS in Rhythm Map



Rhythm patterns and structures are not extracted without HPSS!

ISMIR2010 Tutorial 1

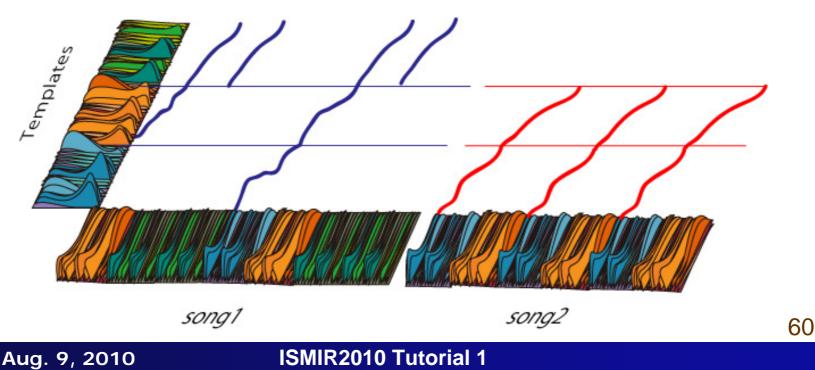
Extracting Common Patterns to a Particular Genre

- Apply to a collection of music pieces
- Alignment calculation by one-pass DP algorithm
 - Use same set of templates

SCA5

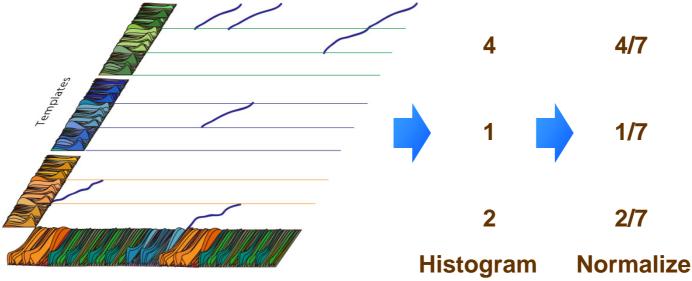
- Updating templates by k-means clustering
 - Use whole music collection of a particular genre

Iteration



Features and Classifiers

- Feature Vectors: Genre-pattern Occurrence Histogram (normalized)
- Classifier: Support Vector Machine (SVM)



Input

ISMIR2010 Tutorial 1

Experimental Evaluation

Dataset

(standard)

- GTZAN dataset
- o 22050Hz sampling, 1ch
- 30 seconds clips
- 10 genres
 - {blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, rock}
- 100 songs per genre: total
 1000 songs

Evaluation

- 10-fold cross-validation
- Classifier: linear SVM (toolkit "Weka" used)

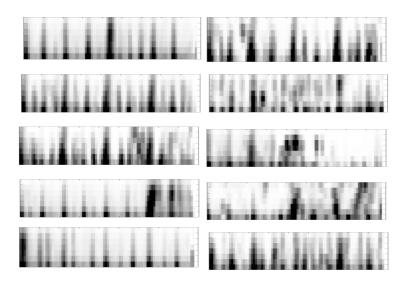
(rhythm-intensive)

- Ballroom dataset
- o 22050Hz sampling, 1ch
- 30 seconds clips
- 8 styles
 - {chacha, foxtrot, quickstep, rumba, samba, tango, viennesewaltz, waltz}
 - 100 songs per style: total 800 songs

Extracted Percussive Patterns

Pattern set

- Divided the datasets into 2 parts and obtained 2 sets of 10 templates for each genre
- Example of learned templates classical



10 templates learned from "blues"

country disco hiphop jazz metal pop reggae rock

Genre Classification Accuracy

Percussive pattern feature only

Features [number of dim.]	GTZAN dataset	Ballroom dataset
Baseline (Random)	10.0%	12.5%
Rhythmic (from template set #1) [10/8]	43.6%	54.0%
Rhythmic (from template set #2) [10/8]	42.3%	55.125%

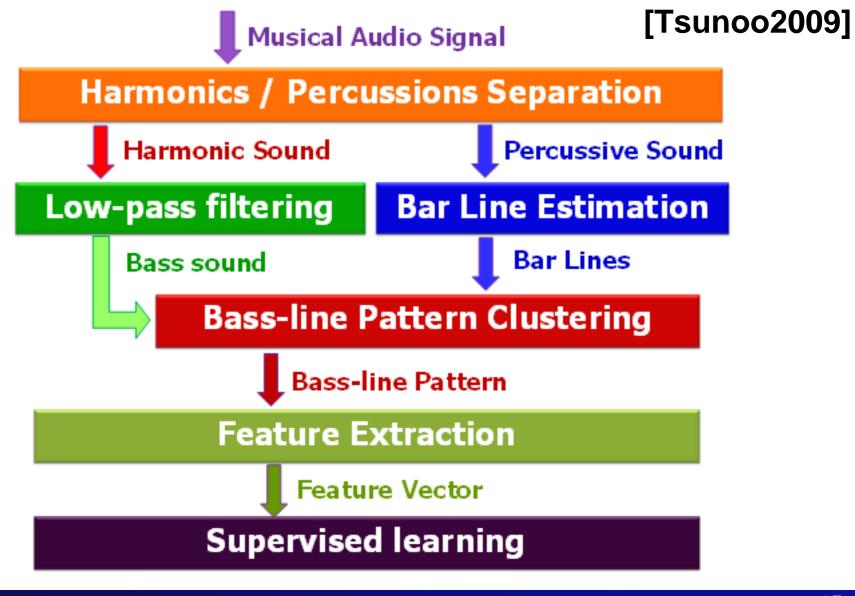
Merged with timbral features

- Statistic features such as MFCC, etc. (68 dim.) [Tzanetakis 2008]
- Performed well on audio classification tasks in MIREX 2008

Features [number of dim.]	GTZAN dataset	Ballroom dataset
Existing (Timbre) [68]	72.4%	57.625%
Merged (from template set #1) [78/76]	76.1%	70.125%
Merged (from template set #2) [78/76]	76.2%	69.125%

Classification accuracy is improved by combining percussive pattern features.

New Features II: Bass-line Patterns

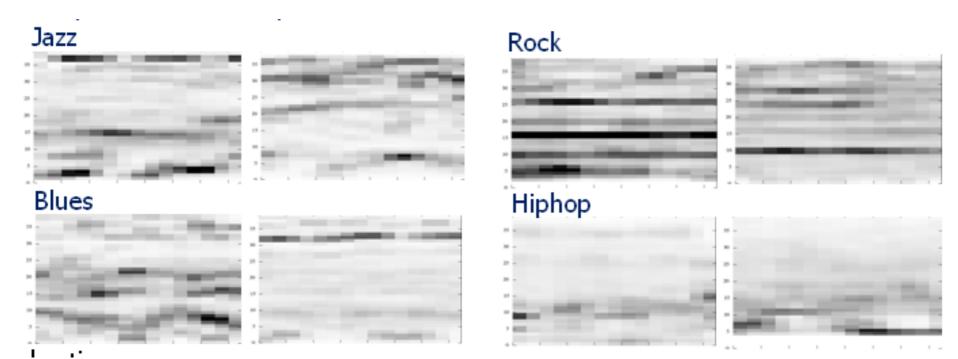


ISMIR2010 Tutorial 1

SOab

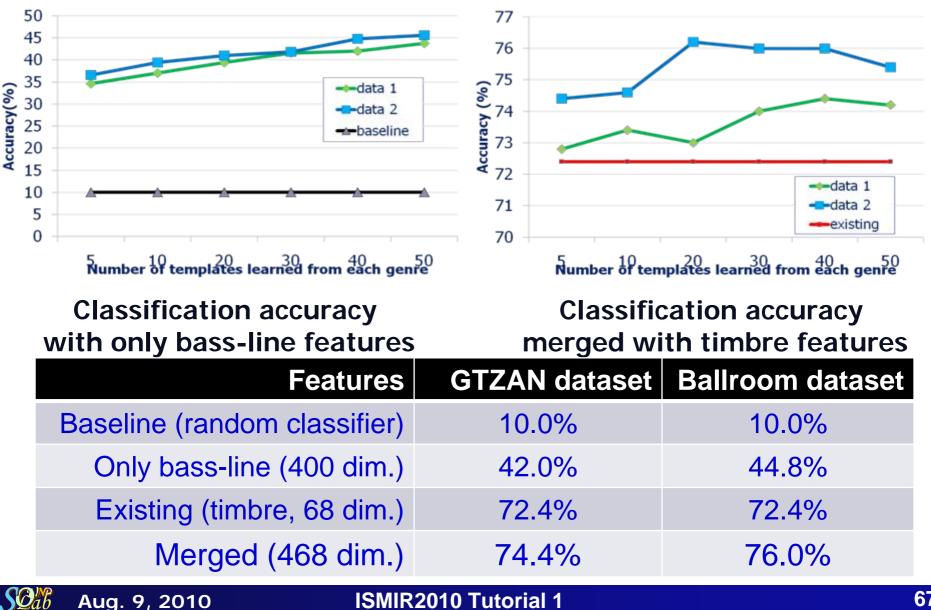
Aug. 9, 2010

Examples of Extracted Bass-line Patterns



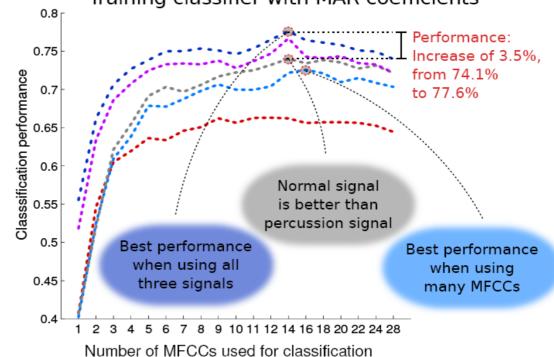
ISMIR2010 Tutorial 1

Genre Classification Accuracy



Another Application of HPSS [Rump2010]

- Autoregressive MFCC Model applied to Genre Classification
- HPSS increases the number of channels mono -> three (original, harmonic, percussive) and improves
 Training classifier with MAR coefficients



performance

Conclusions

Source separation techniques used to MIR

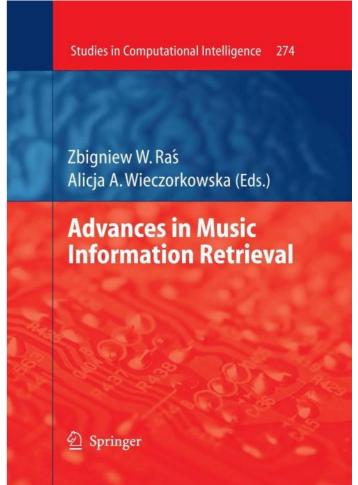
- F0-based harmonic separation
- Non-negative matrix factorization or PLCA
- Sinusoid + Noise model
- Harmonic/percussive sound separation
- Source separation is useful
 - To enhance specific components
 - To increase the number of channels and the dimension of feature vectors
 - To generate new features

Future Works

- Application of source separation to other MIR tasks
 - Cover song identification, audio music similarity,...
- Improvement of separation performance itself by exploiting musicological knowledge
- Using spatial (especially stereo) information
 - Current works are limited to monaural separation
- Feature weighting technique for overcoming errors due to imperfect source separation

Reference Book Chapter

- Advances in Music Information Retrieval, ser. Studies in Computational Intelligence, Z. W. Ras and A. Wieczorkowska, Eds. Springer, 274
 - N. Ono, K. Miyamoto, H. Kameoka, J. Le Roux, Y. Uchiyama, E. Tsunoo, T. Nishimoto and S. Sagayama, "Harmonic and Percussive Sound Separation and its Application to MIR-related Tasks," pp.213-236



Available Separation Softwares

- Harmonic Percussive Sound Separation (HPSS)
 - http://www.hil.t.u-tokyo.ac.jp/software/HPSS/
- ICA Central: Early software restricted to mixtures of two sources
 - http://www.tsi.enst.fr/icacentral/algos.html
- SiSEC Reference Software: Linear modeling-based software for panned or recorded mixtures
 - <u>http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-determined+speech+and+music+mixtures</u>
- QUAERO Source Separation Toolkit: Modular variancemodeling based software implementing a range of structures: GMM, NMF, source-filter model, harmonicity, diffuse mixing, etc
 - To be released Fall 2010: watch the music-ir list for an announcement!

Advertisement: LVA/ICA 2010

180 degree panoramic sea view

81 contributed papers

42 liters of coffee

4 keynotes:

Pierre Comon, University of Nice, France Stéphane Mallat, Ecole Polytechnique, France Mark Girolami, University of Glasgow, UK Arie Yeredor, Tel-Aviv University, Israel

2 panel sessions:

Evaluation : SiSEC 2010 and remaining challenges The future of latent variable analysis and signal separatio

2 hours of private visit to Mont-Saint Michel

LVA/ICA 2010 will be held in St. Malo, France on September 27-30, 2010.

More than 20 papers on music and audio source separation will be presented.

ISMIR2010 Tutorial 1

Singer/Instrument Identification

- H. Fujihara, T. Kitahara, M. Goto, K. Komatani, T. Ogata and H. Okuno, "Singer Identification Based on Accompaniment Sound Reduction and Reliable Frame Selection, "Proc. ISMIR, 2005.
- M. Goto, "A real-time music-scene description system: predominant-F0 estimation," Speech Communication, vol. 43, no. 4, pp. 311–329, 2004.
- A. Mesaros, T. Virtanen and A. Klapuri, "Singer identification in polyphonic music using vocal separation and pattern recognition methods," *Proc. ISMIR*, pp. 375-378, 2007.
- M. Ryynanen and A. Klapuri, "Transcription of the Singing Melody in Polyphonic Music", *Proc. ISMIR*, 2006.
- T. Kitahara, M. Goto, K. Komatani, T. Ogata and H. G. Okuno, "Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps," EURASIP Journal on Applied Signal Processing, vol. 2007, 2007, article ID 51979.

Audio Tempo Estimation

- M. Alonso, G. Richard and B. David, "Accurate tempo estimation based on harmonic + noise decomposition," EURASIP Journal on Advances in Signal Processing, Volume 2007 (2007), Article ID 82795
- P. Chordia and A. Rae, "Using Source Separation to Improve Tempo Detection," Proc. ISMIR, pp. 183-188, 2009.

Related Works to H/P Separation

- C. Uhle, C. Dittmar, and T. Sporer, "Extraction of drum tracks from polyphonic music using independent subspace analysis," Proc. ICA, pp. 843-847, 2003.
- M. Helen and T. Virtanen, "Separation of drums from polyphonic music using non-negative matrix factorization and support vector machine," Proc. EUSIPCO, Sep. 2005.
- L. Daudet, "A Review on Techniques for the Extraction of Transients in Musical Signals," Proc. CMMR, pp. 219-232, 2005.
- O. Dikmen, A. T. Cemgil, "Unsupervised Single-channel Source Separation Using Basian NMF," *Proc. WASPAA*, pp. 93-96, 2009.

Harmonic/Percussive Sound Separation

- K. Miyamoto, H. Kameoka, N. Ono and S. Sagayama, "Separation of Harmonic and Non-Harmonic Sounds Based on Anisotropy in Spectrogram, *Proc. ASJ*, pp.903-904, 2008. (in Japanese)
- N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka and S. Sagayama, "Separation of a Monaural Audio Signal into Harmonic/Percussive Components by Complementary Diffusion on Spectrogram," *Proc. EUSIPCO*, 2008.
- N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka and S. Sagayama, "A Real-time Equalizer of Harmonic and Percussive Components in Music Signals," *Proc. of ISMIR*, pp.139-144, 2008.
- N. Ono, K. Miyamoto, H. Kameoka, J. Le Roux, Y. Uchiyama, E. Tsunoo, T. Nishimoto and S. Sagayama, "Harmonic and Percussive Sound Separation and its Application to MIR-related Tasks," Advances in Music Information Retrieval, ser. Studies in Computational Intelligence, Z. W. Ras and A. Wieczorkowska, Eds. Springer, 274, pp.213-236, Feb., 2010.

Applications of HPSS to MIR Tasks

- Y. Ueda, Y. Uchiyama, T. Nishimoto, N. Ono and S. Sagayama, "HMM-Based Approach for Automatic Chord Detection Using Refined Acoustic Features," *Proc. ICASSP*, pp.5518-5521, 2010.
- J. Reed, Y. Ueda, S. M. Siniscalchi, Y. Uchiyama, S. Sagayama, C. -H. Lee, "Minimum Classification Error Training to Improve Isolated Chord Recognition," *Proc. ISMIR*, pp.609-614, 2009.
- H. Tachibana, T. Ono, N. Ono and S. Sagayama, "Melody Line Estimation in Homophonic Music Audio Signals Based on Temporal-Variability of Melodic Source," *Proc. ICASSP*, pp.425-428, 2010.
- H. Rump, S. Miyabe, E. Tsunoo, N. Ono and S. Sagayama, "On the Feature Extraction of Timbral Dynamics," *Proc. ISMIR*, 2010.

Aug. 9, 2010

Applications of HPSS in MIR Tasks

- E. Tsunoo, N. Ono and S. Sagayama, "Rhythm Map: Extraction of Unit Rhythmic Patterns and Analysis of Rhythmic Structure from Music Acoustic Signals," *Proc. ICASSP*, pp.185-188, 2009.
- E. Tsunoo, G. Tzanetakis, N. Ono and S. Sagayama, "Audio Genre Classification Using Percussive Pattern Clustering Combined with Timbral Features," *Proc. ICME*, pp.382-385, 2009.
- E. Tsunoo, N. Ono and S. Sagayama, "Musical Bass-Line Pattern Clustering and Its Application to Audio Genre Classification," *Proc. ISMIR*, pp.219-224, 2009.
- E. Tsunoo, T. Akase, N. Ono and S. Sagayama, "Music Mood Classification by Rhythm and Bass-line Unit Pattern Analysis," *Proc. ICASSP*, pp.265-268, 2010.