

Speech anonymization

Emmanuel Vincent Inria Nancy – Grand Est

Acknowledgments

Joint work with

- Inria: B. M. L. Srivastava, M. Maouche, N. Vauquier, H. Nourtel, A. Bellet, M. Tommasi, D. Jouvet
- LIA: N. Tomashenko, J.-F. Bonastre, P.-G. Noé
- EURECOM: A. Nautsch, N. Evans, M. Todisco, J. Patino
- LIUM: P. Champion
- NII: X. Wang, X. Miao, J. Yamagishi
- Saarland University: D. Adelani, A. Davody, T. Kleinbauer, D. Klakow
- Vector Institute: A. S. Shamsabadi

Speech technologies

Most speech technologies process and (under certain circumstances) store speech data remotely for inference and training purposes.

Which information is conveyed?

Speech conveys several pieces of information:

- verbal content:
 words, possibly including identifiers and private (phone number, preferences, etc.) or business information
- speaker: identity, age, gender, ethnic origin, etc.
- nonverbal content: emotions, health status, etc.
- acoustic environment: acoustics, ambient noise, other speakers

What are the risks?

- Personal or even sensitive data.
- Collection and processing governed by privacy laws such as the General Data Protection Regulation (GDPR) in Europe or the Privacy Act in the USA.
- Legal bases: user consent for one or more specific purposes, contractual or legal obligations, protection of vital interests, and public or legitimate interest.

- In practice, users cannot always choose the purposes they accept or not.
- In some situations, risks may include
 - > user profiling
 - > user identification
 - > voice cloning or information leakage in case of security breach

Embedded implementation

Cryptography

Homomorphic encryption
Secure multiparty computation
Searchable encryption

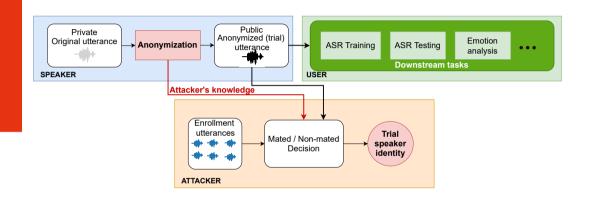
ΑI

Physical obfuscation / deletion
Decentralized learning
Speech/text anonymization

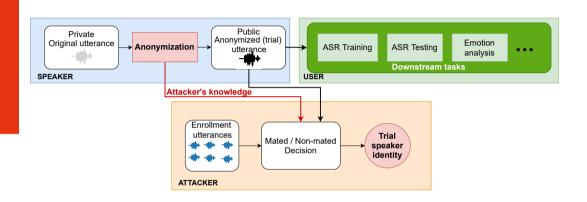
Speech anonymization — Overall principle

- Anonymization:
 - > Transform speech to hide speaker identity
 - > Leave other information unchanged, so that it's useful for downstream tasks
- Defines the goal, even when it's not achieved (≠ strict legal definition)
- Achieving this goal requires:
 - > voice anonymization (aka de-identification) by voice transformation/conversion,
 - > hiding identifiable nonverbal attributes but preserving others (ASR+TTS not OK)
 - > verbal content anonymization.
- Only approach compatible with privacy preservation at both training and test time. Can be complemented by encryption & decentralized learning.
- Assumption: no metadata (often does not hold in practice).

Threat model



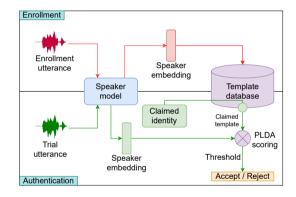
Threat model



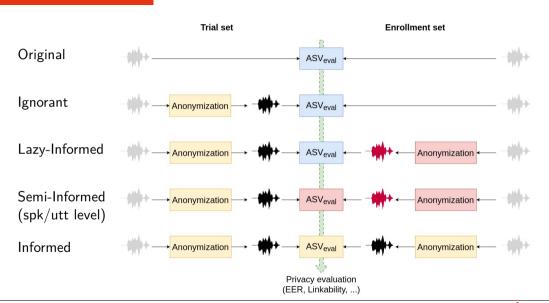
From now on, focus on voice anonymization by voice transformation or conversion.

Privacy assessment

- The success or failure of voice anonymization can be evaluated via speaker verification.
- In practice, speaker embeddings
 x-vectors.
- Higher score ⇒ greater chance of being from the same speaker

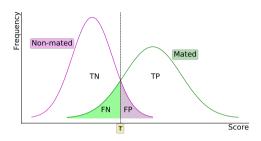


Attacker's knowledge



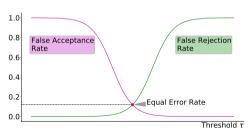
Privacy metrics

Compare same- and different-speaker score distributions with a threshold.



Derive the **equal error rate** (EER). Varies from 0 to 50%, higher is better.

Other metrics include **linkability** (varies from 0 to 1, lower is better) and ZEBRA.

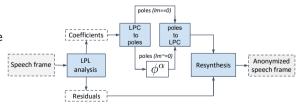


Simple transformation approaches such as

pitch shifting (often used on TV/radio)

Original ⁽¹⁾ -3 tone shift ⁽¹⁾ Multiple shifts ⁽¹⁾

- spectral envelope warping
 - > Baseline B2 of the VoicePrivacy 2022 Challenge
 - VoiceMask
 - > VTLN



Voice transformation — Results

EER (Librispeech)

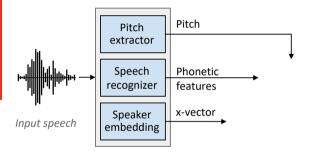
Attacker	Baseline-2	VoiceMask	VTLN
Original speech		4.3%	
lgnorant	26.2%	28.7%	27.4%
Semi-Informed (utt-level)	5.3%	5.0%	6.3%

Simple transformations fail against non-ignorant attackers.

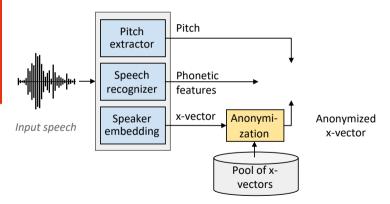
- Idea: replace user's voice by that of a target speaker
- Baseline B1.a of the VoicePrivacy 2022 Challenge

Input speech

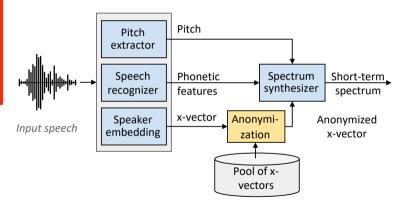
- Idea: replace user's voice by that of a target speaker
- Baseline B1.a of the VoicePrivacy 2022 Challenge



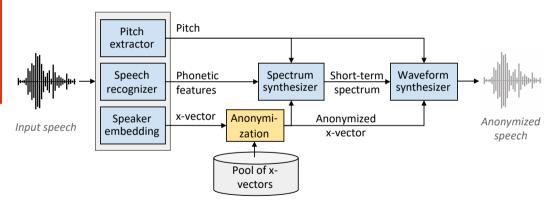
- Idea: replace user's voice by that of a target speaker
- Baseline B1.a of the VoicePrivacy 2022 Challenge



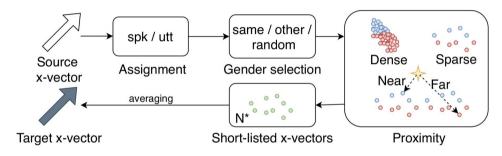
- Idea: replace user's voice by that of a target speaker
- Baseline B1.a of the VoicePrivacy 2022 Challenge



- Idea: replace user's voice by that of a target speaker
- Baseline B1.a of the VoicePrivacy 2022 Challenge



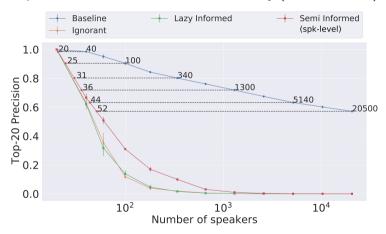
• Target selection procedure:



• Retained choice: random gender + dense

Voice conversion — Privacy results

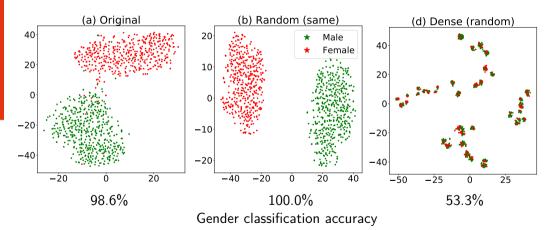
Top-20 PLDA-based identification accuracy (CommonVoice)

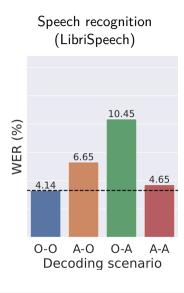


Re-identification risk \rightarrow 0 with 2,000+ speakers with best (Semi-Informed) attack.

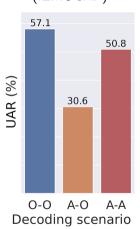
Voice conversion — Privacy results

Besides identity, voice conversion can hide (or not) speaker traits such as gender.



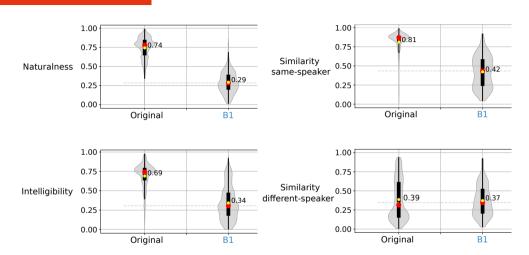


Emotion recognition (IEMOCAP)



Small or negligible loss of utility after retraining on anonymized data (A-A).

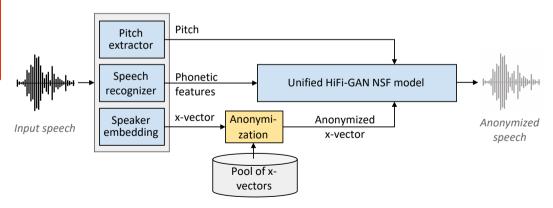
Voice conversion — Subjective results



Human listeners are easily fooled.

Voice conversion — Limitations (1)

- Two-step synthesis in Baseline B1.a yields low naturalness/intelligibility
- Idea: simply replace by a better synthesis model
- Baseline B1.b of the VoicePrivacy 2022 Challenge

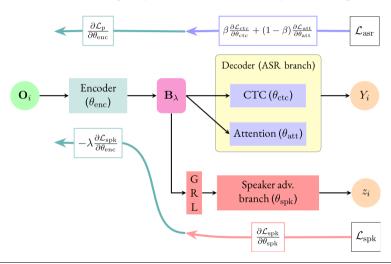


Voice conversion — Limitations (2)

- Key limitation:
 - > pitch and phonetic features contain residual speaker information
 - > this information remains after resynthesis and can be captured by the attacker
- Some ideas explored:
 - > better input features (e.g., wav2vec2.0)
 - > better F0/BN models, trained on more data
 - > adversarial representation learning
 - > attribute-aligned representation learning (e.g., attention-based)
 - vector quantization
 - > additive noise (local differential privacy)
 - > slicing utterances into shorter segments

Adversarial learning — Approach

Adversarial learning of phonetic features for speech recognition



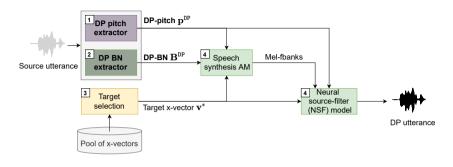
Adversarial learning — Results

Accuracy, EER and WER (Librispeech)

	Spec. feat.	$\lambda = 0$	$\lambda = 0.5$	$\lambda = 2$
Speaker identification accuracy	93.1%	46.3%	6.4%	2.5%
Speaker verification EER	5.7%	23.1%	22.0%	19.6%
Speech recognition WER	_	10.9%	12.5%	12.5%

Adversarial learning generalizes poorly to unseen speakers.

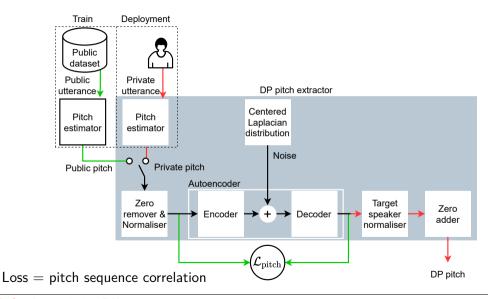
DP voice anonymization — Overall approach

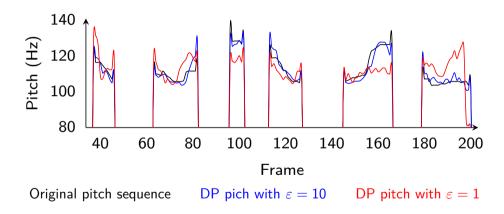


Local differential privacy (DP) principle:

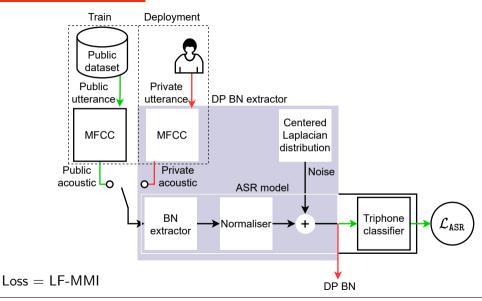
- add Laplacian noise to pitch and phonetic features
- ullet noise scale $\propto \Delta/\epsilon$ with Δ maximum absolute difference between two data points
- ullet if $\epsilon \ll 1$, formal privacy guarantees against any attack
- popular for tabular data (e.g., Apple uses $2 \le \epsilon \le 8$)

DP voice anonymization — DP pitch





DP voice anonymization — DP phonetic features



Semi-Informed (utt-level) EER and WER (Librispeech)

Phonetic ϵ	Pitch ϵ	EER	WER
∞	∞	14.6%	5.4%
100	100	24.2%	6.0%
10	10	27.7%	7.0%
1	1	30.0%	7.8%

Laplacian noise improves privacy.

No formal guarantee though, because ϵ not small enough.

(Side note: utt-level Semi-Informed attacker stronger than spk-level one.)

Voice conversion — Limitations (3)

Reminder: voice anonymization is not (always) anonymization because of

- possibly preserved (quasi-)identifiable nonverbal attributes
 - ⇒ Many studies on re-identifying citizens from demographic attributes
 - \Rightarrow No comparable study for speech attributes, let alone voice-anonymized speech
 - ⇒ Some utterance-level attributes likely already concealed
 - \Rightarrow Main foreseen risk due to utterance aggregation when metadata is included
- preserved verbal content
 - ⇒ Solution depends on the intended usage

Verbal content anonymization for AM training

- When running automatic speech recognition (ASR) on the data, the verbal content cannot be changed.
- When using the data to train an acoustic model (AM), identify **named entities** carrying personal information and **discard** them from the speech signal.

Replacement strategy	Transformed text					
No Replacement	Hi Mister	Miller	, the	Lufthansa	flight	from
	Frankfurt Ai	rport to	Rome is	leaving by	six pm	
Redact	Hi Mister III	II, the I	IIII flight	from IIIII	to IIIII	is leav-
	ing by IIIII					

- Private named entities are domain-dependent: person, age, ethnic category, email, licence plate number, occupation, organisation, address, date, calendar event, amount, URL, etc.
- There exists commercial software for legal, health, etc.

Verbal content anonymization for text processing

When using the data to train a language model (LM), replace words instead

Replacement strategy	Transformed text			
No Replacement	Hi Mister Miller, the Lufthansa flight from			
	Frankfurt Airport to Rome is leaving by six pm			
Typed-Placeholder	Hi Mister PER, the ORG flight from LOC to LOC is			
	leaving by TIME			
Named-Placeholder	Hi Mister Smith, the SAP flight from London to			
	London is leaving by afternoon			
Word by word	Hi Mister John , the BOSCH flight from New Boston to			
	Berlin is leaving by eleven morning			
Full entity	Hi Mister John , the BOSCH flight from New York to			
	Berlin is leaving by twelve pm			

• This also applies to NLP tasks such as named entity recognition (NER), intent detection (ID), or dialog act classification (DAC).

Verbal content anonymization for text processing

Replacement strategy	VerbMobil NER F1-score	ATIS ID Accuracy	SNIPS ID Accuracy	en-TOD ID Accuracy	Restaurant DAC Accuracy	Taxi DAC Accuracy
No replacement	88.3 ± 0.2	98.4 ± 0.2	98.0 ± 0.2	99.4 ± 0.0	$\textbf{78.9} \pm \textbf{0.1}$	90.0 ± 0.1
Redact	0.2 ± 0.2	94.8 ± 0.2	89.7 ± 0.8	97.4 ± 0.6	75.9 ± 0.3	88.1 ± 0.2
Typed-Placeholder	0.0 ± 0.0	95.7 ± 0.3	54.1 ± 3.8	97.2 ± 0.7	76.5 ± 0.2	87.9 ± 0.5
Named Placeholder	13.5 ± 1.4	95.9 ± 0.3	76.2 ± 2.9	98.2 ± 0.1	77.3 ± 0.2	89.3 ± 0.1
Word-by-Word	72.6 ± 0.3	$98.6 \pm 0.2^*$	$97.5 \pm 0.3^*$	$99.2 \pm 0.1^*$	78.4 ± 0.2	$89.9 \pm 0.2^*$
Full Entity	$85.9 \pm 0.3^*$	$98.5 \pm 0.2^*$	$97.4 \pm 0.3^*$	$99.2 \pm 0.1^*$	$78.5 \pm 0.1^*$	$89.9 \pm 0.1^*$

- Full entity replacement preserves utility.
- However, it may still not result in anonymization due to preserved attributes.

Verbmobil dialog corpus, rephrasing by BART

Test set	Gender	\mathbf{Age}
Original training data		
Original test set	70.3	65.4
Paraphrased test set	62.1	60.6
Anonymised training data		
Original test set	68.5	61.1
Paraphrased test set	66.7	60.5

• Hiding attributes such as age (\leq or > 21) or gender is a lot more difficult.

Was anonymization successful?

- Is an EER of xx% enough? What's the threshold?
- The **reduction in re-identification accuracy** after anonymization is more easily interpretable.
- Experiments suggest that for short sentences, if the dataset has many speakers, accurate text anonymization, no metadata, the answer is probably yes.
- This remains to be legally validated using, e.g., the three criteria of the Article 29 Working Party (European Data Protection Board)
 - > linkability: ability to link records related to an individual or a group \to we measured this for individuals, not groups
 - > singling out: ability to single out an individual or a group \to TBD
 - > inference: ability to re-identify an individual based on observed attributes o TBD

Perspectives

Anonymization:

- > Improved attribute disentanglement and noising/quantization
- > Word replacement inside speech signals (not only text)

• Selective attribute manipulation:

- > Privacy w.r.t. other attributes, e.g., gender, age, accent
- > Utility for other tasks than ASR, e.g., medical
- > User-friendly interface

Evaluation

- > Stronger, more realistic attackers (metadata, etc.)
- > Quantify re-identification risk based on nonverbal attributes
- Watermarking to avoid anonymized voice sounding like another real speaker
- Efficient embedded, real-time implementation
- Combination with encryption & decentralized learning