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Motivation

Discretized time evolutions in physics (lattice-gas models, cellular
automata. . . ). Generalized:

I To a general discrete space: Graphs

I Keeping the symmetries of physics: Causality and
Translation-invariance

Two definitions for the same object:

I Axiomatic definition (physical/mathematical)

I Constructive definition (computational)
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Axiomatic view

Evolutions of graphs

+ causality
+ translation invariance
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Constructive view
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Constructive view

OK, but how to glue all the subgraphs together?
Have each vertex order its edges. Make the subgraphs overlap.
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Some results on this generalization of CA

Axiomatic definition: (Causal dynamics)

I Pointed graphs endowed with a Cantor metric.

I Causality as continuous functions w.r.t. the metric.

I Translation invariance as a commutation with isomorphism.

Constructive definition: (Localizable dynamics)

I F (G ) induced by a local rule f .

Theorem [AD12a, AD12b][AM12]

The axiomatic definition equivalent to the constructive definition.

Theorem [AM12]

I Local rules f are enumerable

I The induced G 7→ F (G ) is computable
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Characterize. . .

. . . pseudo-manifolds:

I Simplicial/∆ complexes.

I Obtained by glueing simplices on facets.

NO: NO: YES:
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Correspondance between graphs and pseudo manifolds?

Consider n-dimensional pseudo-manifolds.

Is there an encoding taking:

I A simplex ↪→ A vertex.

I The glueing of two facets ↪→ A (labelled) edge.

I A pseudo manifold ∼= A (labelled) graph.

?

↪→

How much more is there to a simplicial complex than there is to a
graph?
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Colored Complexes

Number the n + 1 faces of a n-simplex with {0, ..., n}.

1

2 0

Close to our graphs, but still not an oriented complex
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Vertex rotation and symmetry
A vertex rotation:

:2
:0

:1

:0
:1

:2(1, 2, 0)

Formally:
I Vertex rotation: Even permutation of the ports
I Vertex symmetry: Odd permutation of the ports

Rotations define 2 orientations:
I On 2-simplices (triangles):

Clockwise vs. Counter Clockwise
I On 3-simplices (tetrahedra):

Three fingers rule: left hand vs. right hand.

Vertex modulo rotations ↔ oriented n-simplex.
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Oriented glueing of n-simplices

In 2 dimensions:

u v
:0 :1
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Oriented glueing of n-simplices
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Oriented glueing of n-simplices

In n dimensions:

I n! ways of glueing two n-simplices.

I n!
2 oriented ways.

I We can use an odd permutation to explicit the glueing.
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Graph ↔ Complex

u

u : 3
u : 0

u : 1

u : 2

u :{3,1}u :{0,1,2}
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Graph ↔ Complex

u v
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Hinging and alternating paths

: a
: b

: a
: b

: a
: b
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: b
: a : b : a : b

: a
: b
: a
: b

: a

: b
: a

: b

Problems:

I distance between two triangles?

I bounded density of information?

I and later: twists? manifold? pseudo-manifold?
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Hinging and alternating paths

Characterizing 0-simplices:

u0

u1

u2
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Geometric distance and alternating paths

0-alternating path ↔ distance 1

Bounded neighbourhood ↔ Bounded 0-alternating paths
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Twists
How to detect edge bendings?

(0, 2, 1)

0

2

1

u 1

2

0

v
(1, 0, 2)

u :1 ≡ v :0 and v :0 ≡ u :0 ⇒ u :1 ≡ u :0

Just look at all hinging cycles!
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What do we have:

I Notion of oriented complex

I Notion of bounded Neighbourhood (bounded star)

What do we need:

I Can we compare two graphs? Can we define homeomorphism?

I Is our graph a manifold?
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Bistellar move - Sphere
Idea in 2D: Remove one or two triangles and replace them with
their complementary in a tetrahedron.
n-sphere:

I n + 2 n-simplices forming a clique
I No twists

u0 u1

u2u3

:1 S01 :0

:2

S20

:0

:0

S01

:1

:2

S21

:1

:1

S01

:0

:2

S01

:2
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Bistellar move
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Bistellar move

Odd

Odd

Even
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Bistellar move

Symmetry

Odd

Odd
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Bistellar move
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Elementary Shellings
Idea: Extend (or reduce) the border of the complex by adding a
new n-simplex.

What is allowed?
Everything but filling holes and adding twists.
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Pachner moves - homemorphism (Current work)
Pachner moves = Bistellar moves + Elementary Shellings +
Rotations
Conjecture

Pachner moves corresponds exactly to homeomorphisms.

This allows us to:
I Look at the neighbourhood of each 0-simplex (its star).
I Decide if its a ball of dimension n.

If the previous conjecture holds, we have:

Conjecture

Given a finite graph X it is decidable to know if its interpretation as
a complex is a manifold.

In particular we can define:

Definition (Manifold preserving)

A function F : X{0,...,n} → X{0,...,n} said to be manifold preserving,
if

X manifold⇒ F (X ) manifold

This can be decided if F is causal and of bounded star.
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Causal Dynamics of Discrete Manifolds

F : X{0,...,n} → X{0,...,n} causal dynamics :

I Continuous

I Translation invariant

I Vertex rotation commuting

I Bounded star

I Manifold preserving (Current work)
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