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Introduction

Probabilistic reasoning:

I transform uncertainty into probabilities,

I specify the joint probability distribution,

I generic form for the inference;

But:

I complexity of the joint probability distribution,

I need independence or conditional independence.
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Example

Let’s have:
P(X ,Y ,Vx ,Vz ,Ry ,Λ,T,Ω,Φ0,Φ1,Φ2)

With 10 cases for each dimension:

1020 − 1 = 9, 999, 999, 999, 999, 999, 999

With recursive application of Bayes’ rule:

= P(X )P(Y |X )P(Vx |X , Y )P(Vz |X , Y , Vx )P(Ry |X , Y , Vx , Vz )

× P(Λ|X , Y , Vx , Vz , Ry )P(T|X , Y , Vx , Vz , Ry , Λ)P(Ω|X , Y , Vx , Vz , Ry , Λ,T)

× P(Φ0|X , Y , Vx , Vz , Ry , Λ,T,Ω)P(Φ1|X , Y , Vx , Vz , Ry , Λ,T,Ω,Φ0)

× P(Φ2|X , Y , Vx , Vz , Ry , Λ,T,Ω,Φ0,Φ1)

Space complexity:

(10− 1) + (10− 1) ∗ 10 + (10− 1) ∗ 102 + (10− 1) ∗ 103 + (10− 1) ∗ 104

+ (10− 1) ∗ 105 + (103 − 1) ∗ 106 + (103 − 1) ∗ 109

+ (102 − 1) ∗ 1012 + (104 − 1) ∗ 1014

+ (102 − 1) ∗ 1018

= 9, 999, 999, 999, 999, 999, 999
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Adding conditional independence assumptions

Let’s assume:

P(X ,Y ,Vx ,Vz ,Ry ,Λ,T,Ω,Φ0,Φ1,Φ2)

= P(X )P(Y |X )P(Vx)P(Vz)P(Ry )

× P(Λ)P(T|Vx ,Vz ,Ry )P(Ω|Vx ,Vz ,Ry )

× P(Φ0|T,Ω)P(Φ1|X ,Y ,T,Ω)

× P(Φ2|X ,Y ,Λ,T,Ω)

Space complexity:

(10− 1) + (10− 1) ∗ 10 + (10− 1) + (10− 1) + (10− 1)

+ (10− 1) + (103 − 1) ∗ 103 + (103 − 1) ∗ 103

+ (102 − 1) ∗ 106 + (104 − 1) ∗ 108

+ (102 − 1) ∗ 109

= 1, 099, 000, 998, 135

� 9, 999, 999, 999, 999, 999, 999
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Structure

Probabilistic reasoning:

I specification of the joint distribution,

I using independence assumptions,

I structure of the model;

But:

I algebraic formulation,

I need for a graphical representation.
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Graphical models

Aim:

I diagrammatic representation of a joint probability distribution,

I represent the dependency structure,

I nodes to represent variables,

I edges to represent dependency;

Different forms:

I Bayesian networks (belief network): directed acyclic graph,

I Markov random fields (Markov network): undirected graph,

I factor graph: undirected bipartite graph,

I chain graph: directed and undirected without directed cycles,

I ...
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Why different forms?

Using graphical models:

I which probabilistic model for a given graph?

I which graph for a given probabilistic model?

I are there models that cannot be represented in a graph?

Issue:

I some probabilistic relationships may not be represented by
some kinds of graphs,

I different kind of graphs can represent different kind of
relationship,

I standard graphical representation don’t represent all,

I but still useful.
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Bayesian neworks

Definition:

I nodes for variables,

I edges for dependencies,

I directed acyclic graph;

Example:
Joint P(A,B,C )

Bayes’ rule P(A)P(B|A)P(C |A,B)

Cond. ind. P(A)P(B)P(C |A,B)
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Bayesian network

Relationship between a Bayesian network and probabilities:

P(V1,V2, . . . ,Vn) =
n∏

i=1

P(Vi |Pa(Vi )),

where Pa(Vi ) is the set of parents of Vi .
This implies:

I for the graph:
I directed edges (to have parents),
I no directed loop (iterated Bayes’ rule);

I for the joint:
I only one variable on the left.
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More complex example

Algebraic formulation:

P(X ,Y ,Vx ,Vz ,Ry ,Λ,T,Ω,Φ0,Φ1,Φ2)

= P(X )P(Y |X )P(Vx)P(Vz)P(Ry )

× P(Λ)P(T|Vx ,Vz ,Ry )P(Ω|Vx ,Vz ,Ry )

× P(Φ0|T,Ω)P(Φ1|X ,Y ,T,Ω)

× P(Φ2|X ,Y ,Λ,T,Ω)

Graphical representation:

10/34 — ETH–ASL–Dr. Francis Colas — Information Processing for Robotics



Introduction Graphical models Hidden Markov Models

Additional elements

Plate:

I series of variables with equal dependencies:

For example:

P(M,O1, · · · ,ON) = P(M)
N∏
i=1

P(Oi |M)

can be drawn:
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Additional elements

Hyperparameters:

I probability distribution which depends on explicit parameters:

For example:
P(S ,O|σ2) = P(S)P(O|S , σ2)
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Additional elements

Observed variables:

I signaling which variables are observed:

For example:
P(S |O) ∝ P(S)P(O|S)
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Examples

Back to the doors:

P(D|S) ∝ P(D)P(S |D)
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Examples

Back to the doors:

P(D|S) ∝ P(D)P(S |D) P(D|S ,T ) ∝ P(D)P(S |D)P(T |D)
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Independence in Bayesian networks

P(A,B,C ,D,E )

= P(A)P(B)P(C |A,B)

× P(D|B)P(E |C )P(F |D) Assumptions:

I A ⊥⊥ B,

I D ⊥⊥ A,C | B,

I E ⊥⊥ A,B,D | C ,

I F ⊥⊥ A,B,C ,E | D;
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Independence in Bayesian networks

P(A,B,C ,D,E )

= P(A)P(B)P(C |A,B)

× P(D|B)P(E |C )P(F |D)

Assumptions:

I A ⊥⊥ B,

I D ⊥⊥ A,C | B,

I E ⊥⊥ A,B,D | C ,

I F ⊥⊥ A,B,C ,E | D;

We have, for example:

I F ⊥⊥ B | D,

I E ⊥⊥ F | B,

I A ⊥⊥ B | F ,

I A ⊥⊥ D,

I ...
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Independence in Bayesian networks

P(A,B,C ,D,E )

= P(A)P(B)P(C |A,B)

× P(D|B)P(E |C )P(F |D)

Assumptions:

I A ⊥⊥ B,

I D ⊥⊥ A,C | B,

I E ⊥⊥ A,B,D | C ,

I F ⊥⊥ A,B,C ,E | D;

But not:

I A ⊥⊥ B | C ,

I F ⊥⊥ B | E ,

I C ⊥⊥ D | E ,

I ...
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d-separation

In a graph:

I S1, S2, S3 non intersecting subsets of nodes;
I a path from S1 to S2 is blocked by S3 if it contains a node

such that either:
I the node is in S3 and is head-to-tail or tail-to-tail,
I or the node is head-to-head and neither the node or its

descendants are in S3;

I if all paths between S1 and S2 are blocked by S3 then S1 and
S2 are d-separated by S3;

For a Bayesian network:

I d-separation ⇔ conditional independence of associated model.

Not true for arbitrary graphs and models.
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Markov random fields

Bayesian networks:

I partial ordering between all variables,

I d-separation to indicate (cond.) independence,

I great in a lot of cases;

What with: pixels of a camera?

I pixels of a camera?

I cells in space?

I ...
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Markov random fields

Markov random field:

I undirected graphical model;

d-separation and independence:

I no head-to-head issue,

I a path is blocked by S3 if it contains a node in S3,

I Markov blanket: set of neighbors;

Joint probability:

I not using Bayes’ rule,

I product of potential functions over cliques.
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Joint probability distribution

Factorization:

P(V1,V2, . . . ,Vn) =

∏
C φC (VC )∑

V′
∏

C φC (V′C )
=

1

Z

∏
C

φC (VC )

where VC are the variables in each of the maximal cliques C and
φC the potential function of C .
Clique: set of nodes all connected to each other.
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Joint probability distribution

Factorization:

P(V1,V2, . . . ,Vn) =

∏
C φC (VC )∑
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where VC are the variables in each of the maximal cliques C and
φC the potential function of C .
Clique: set of nodes all connected to each other.
Maximal clique: clique not contained into another clique.

P(A,B,C ,D,E ,F ) =
1

Z
φABCD(A,B,C ,D)φCDEF (C ,D,E ,F )
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∏
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where VC are the variables in each of the maximal cliques C and
φC the potential function of C .
Clique: set of nodes all connected to each other.
Maximal clique: clique not contained into another clique.

P(A, B, C ,D, E , F ) =
1

Z
φAB (A, B)φAC (A, C)φBD (B,D)φCD (C ,D)φCE (C , E)φDF (D, F )φEF (E , F )
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Expressivity

Some models can be perfectly expressed by:

I Bayesian networks,

I Markov random fields,

I both,

I none;
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Expressivity
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Expressivity

A ⊥/⊥ B | C
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Expressivity

A ⊥/⊥ B | C

A ⊥⊥ B | C
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Expressivity

A ⊥/⊥ B | C A ⊥⊥ B | C ,D

A ⊥⊥ B | C

18/34 — ETH–ASL–Dr. Francis Colas — Information Processing for Robotics



Introduction Graphical models Hidden Markov Models

Expressivity

A ⊥/⊥ B | C A ⊥⊥ B | C ,D

A ⊥⊥ B | C A ⊥/⊥ B | C ,D
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Inference

Inference in graphical models:

I similar to algebraic representation:

I summation over free variables,

I exploit independence,

I rearrange sums;

On trees:

I message passing,

I sum-product algorithm,

I belief propagation;

On general graphs:

I junction tree (exact but can be slow),

I loopy belief propagation (approximate).
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Summary on graphical models

Graphical models:

I graphical representation of probabilistic models,

I represent dependencies,

I different types,

I same inference problems;

Bayesian networks:

I directed acyclic graphs,

I direct link with Bayes’ rule;

Markov random fields:

I undirected graphs,

I factorization using potentials on cliques.
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Time

So far:

I probabilistic models,

I graphical representation,

I inference on variables;

What about:

I data series,

I time,

I ...
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Dynamic Bayesian networks

Often you need to:

I take change into account,

I have variables whose value change with time,

I specify that relations are similar whichever instant you
consider;

Solution:

I one variable per instant:

P(S0,D0, S1,D1,S2,D2, . . . ,ST ,DT )

But:

I specify huge joint distribution,

I inference by summing over many variables.
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Markov assumption

Reduce dependency using Markov assumption:

I distribution over a state at time t is independent of former
timesteps given the state at t − 1.

(Markov random fields have a similar property but with their
neighbors: the Markov blanket.)
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Hidden Markov Model

H.M.M.:

I hidden: state are not observed directly,

I Markov: order-1 Markov assumption,

I discrete variables;

P(S0,O0, . . . ,ST ,Ot) = P(S0)P(O0|S0)
T∏
t=1

P(S t |S t−1)P(Ot |S t)
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Hidden Markov Model

P(S0,O0, . . . ,ST ,Ot) = P(S0)P(O0|S0)
T∏
t=1

P(S t |S t−1)P(Ot |S t)

You need:

I P(S0): prior π0,

I ∀t,P(S t |S t−1): transition matrix At (constant for
homogeneous HMMs: A),

I ∀t,P(Ot |S t): observation matrix Bt (constant for
homogeneous HMMs: B):

I parameters θ = (π,A,B).
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Hidden Markov Models

You can:

I distribution over current state based on all observations:
P(ST |O0, . . . ,OT , θ): forward algorithm,

I probability value of a given observation or a series of
observations: P(OT |θ), P(O0, . . . ,OT |θ): forward algorithm,

I probability distribution over a state given past and future
observation (smoothing): P(S t |O0, . . . ,OT ):
forward-backward algorithm,

I most likely state sequence:
arg maxS0,...,ST P(S0, . . . ,ST |O0, . . . ,OT , θ): Viterbi
algorithm,

I learning parameters θ based on an observation sequence:
Baum-Welch algorithm,

I ...
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Iterative formulation

Distribution over the last state:

P(ST |O0, . . . ,OT )

=

∑
S0,...,ST−1 P(S0)P(O0|S0)

∏T
t=1 P(S t |S t−1)P(Ot |S t)∑

S0,...,ST P(S0)P(O0|S0)
∏T

t=1 P(S t |S t−1)P(Ot |S t)

Huge complexity: O(NTT ) but...
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Iterative formulation

Distribution over the last state:

P(ST |O0, . . . ,OT )

=

∑
S0,...,ST−1 P(S0)P(O0|S0)

∏T
t=1 P(S t |S t−1)P(Ot |S t)∑

S0,...,ST P(S0)P(O0|S0)
∏T

t=1 P(S t |S t−1)P(Ot |S t)

Huge complexity: O(NTT ) but...
Iterative expression:

P(ST |O0, . . . ,OT )

∝ P(OT |ST )P(ST |O0, . . . ,OT−1)

∝ P(OT |ST )
∑
ST−1

P(ST |ST−1)P(ST−1|O0, . . . ,OT−1)

Same result but only O(N2T ).
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Forward algorithm

Let’s define:
α(S t) = P(S t ,O0, . . . ,Ot)

We have:

α(S t+1) = P(Ot+1|S t+1)
∑
S t

P(S t+1|S t)α(S t)
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Forward algorithm

Let’s define:
α(S t) = P(S t ,O0, . . . ,Ot)

We have:

α(S t+1) = P(Ot+1|S t+1)
∑
S t

P(S t+1|S t)α(S t)

And:
P(S t |O0, . . . ,Ot) ∝ α(S t)
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Forward algorithm

Let’s define:
α(S t) = P(S t ,O0, . . . ,Ot)

We have:

α(S t+1) = P(Ot+1|S t+1)
∑
S t

P(S t+1|S t)α(S t)

And:
P(S t |O0, . . . ,Ot) ∝ α(S t)

And also:
P(O0, . . . ,Ot) =

∑
St

α(S t)
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Forward-backward algorithm

Let’s define:
β(S t) = P(Ot+1, . . . ,OT |S t)

We have similarly:

β(S t) =
∑
S t+1

P(Ot+1|S t+1)P(S t+1|S t)β(S t+1)
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Forward-backward algorithm

Let’s define:
β(S t) = P(Ot+1, . . . ,OT |S t)

We have similarly:

β(S t) =
∑
S t+1

P(Ot+1|S t+1)P(S t+1|S t)β(S t+1)

Then, smoothing:

P(S t |O0, . . . ,OT )

∝ P(Ot+1, . . . ,OT |S t)P(S t |O0, . . . ,Ot)

∝ β(S t)α(S t)
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Viterbi algorithm

Most probable sequence of states given observations:

arg max
S0,...,ST

P(S0, . . . ,ST |O0, . . . ,OT , θ)

= arg max
S0,...,ST

P(S0, . . . ,ST ,O0, . . . ,OT , θ)
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Viterbi algorithm

Most probable sequence of states given observations:

arg max
S0,...,ST

P(S0, . . . ,ST |O0, . . . ,OT , θ)

= arg max
S0,...,ST

P(S0, . . . ,ST ,O0, . . . ,OT , θ)

Let:
δ(S t) = max

S0,...,S t−1
P(S0, . . . ,S t ,O0, . . . ,Ot)

then:
δ(S t+1) = P(Ot+1|S t+1) max

S t
P(S t+1|S t)δ(S t)
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Viterbi algorithm

Most probable sequence of states given observations:

arg max
S0,...,ST

P(S0, . . . ,ST |O0, . . . ,OT , θ)

= arg max
S0,...,ST

P(S0, . . . ,ST ,O0, . . . ,OT , θ)

Let:
δ(S t) = max

S0,...,S t−1
P(S0, . . . ,S t ,O0, . . . ,Ot)

then:
δ(S t+1) = P(Ot+1|S t+1) max

S t
P(S t+1|S t)δ(S t)

Same as α but with max instead of
∑

.
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Viterbi algorithm

Most probable sequence of states given observations:

arg max
S0,...,ST

P(S0, . . . ,ST |O0, . . . ,OT , θ)

= arg max
S0,...,ST

P(S0, . . . ,ST ,O0, . . . ,OT , θ)

Let:
δ(S t) = max

S0,...,S t−1
P(S0, . . . ,S t ,O0, . . . ,Ot)

then:
δ(S t+1) = P(Ot+1|S t+1) max

S t
P(S t+1|S t)δ(S t)

For the states:

ψ(S t) = arg max
S t−1

P(S t |S t−1)δ(S t−1)

that allows backtracking.
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Parameter estimation

Previous algorithms require parameters θ = (π,A,B). Where:

I π prior probability over the state: P(S0),

I A transition matrix: P(S t+1|S t),

I B observation matrix: P(Ot |S t);

Can we get parameters from a sequence of observations?

arg max
θ

P(O0, . . . ,OT |θ)

I not directly (no closed form solution),

I iterative “hill climbing” approximation,

I Baum-Welch algorithm.
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Baum-Welch algorithm

Basic idea:

I take some parameters θold ,

I compute the distribution over state sequences,

I compute new parameters θ based on this distribution,

I loop taking the new parameters;
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Baum-Welch algorithm

Basic idea:

I take some parameters θold ,

I compute the distribution over state sequences,

I compute new parameters θ based on this distribution,

I loop taking the new parameters;

Each time: P(O0, . . . ,OT |θ) > P(O0, . . . ,OT |θold).
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Baum-Welch algorithm

Basic idea:

I take some parameters θold ,

I compute the distribution over state sequences,

I compute new parameters θ based on this distribution,

I loop taking the new parameters;

More details:

I take some parameters θold ,
I (E) compute:

Q(θ, θold ) =
∑

S0,...,ST

log
(

(P(S0
, . . . , ST

,O0
, . . . ,OT |θ)

)
P(S0

, . . . , ST |O0
, . . . ,OT

, θ
old )

I (M) optimize Q(θ, θold) to get the new θ,

I loop.
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Summary on H.M.M.

Aims:
I time series,
I discrete variables,
I several uses:

I probability of an observation, a sequence of observations,
I probability of a state after several observations,
I smoothing (state in the middle of observations),
I most likely sequence,
I most likely parameters;

Algorithms:
I forward: iterative inference in Bayesian filters,
I forward backward: similar to message passing in chains or

trees,
I Viterbi: max-product,
I Baum-Welch: specific case of Expectation-Maximization

(class 11).
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Summary

Graphical models:

I graphical representation of dependencies,

I Bayesian networks (directed acyclic graphs): follow Bayes’
rule, difficult independence,

I Markov random fields (undirected graphs): easy independence,
potential functions instead of (cond.) probability distributions;

H.M.M.:

I time series,

I discrete variables,

I inference algorithms: simpler versions than on general models.
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