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Bayesian filtering

Objective:

I estimate value,

I along time,

I according to an observation,

I taking control into account;

Hidden Markov Models:

I time series,

I discrete states,

I no control.
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Baysian filtering

Adding control Ut :
HMM Baysian filter

P(S t+1|O0:t+1)
∝ P(Ot+1|S t+1)

×
∑

S t P(S t+1|S t)P(S t |O0:t)

P(xt+1|z0:t+1,u0:t+1)
∝ P(zt+1|xt+1)
×
∑

xt
P(xt+1|xt ,ut)P(xt |z0:t ,u0:t)
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Bayesian filtering

Estimation:

P(xt |z0:t ,u0:t)

∝ P(zt |xt)
×

∑
xt−1

P(xt |xt−1,ut−1)P(xt−1|z0:t−1,u0:t−1)

Distributions:
I P(zt |xt): observation model,
I P(xt |xt−1,ut−1): transition model including command,
I P(xt−1|z0:t−1,u0:t−1): previous state estimate;

Characteristics:
I more general than HMM,
I can work with continuous state space,
I inference is integrating on the state space.
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Bayesian filtering

P(xt |z0:t ,u0:t)

∝ P(zt |xt)
×

∑
xt−1

P(xt |xt−1,ut−1)P(xt−1|z0:t−1,u0:t−1)

Problem:

I complexity of the integration;

Solutions:

I make assumptions to find a closed-form expression,

I approximate (class 9).
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Kalman filter

Kalman filter:

I specific case of Bayesian filter,

I linear and Gaussian assumptions,

I closed-form expression for inference;

Uses (with variants):

I signal processing,

I attitude estimation,

I pose estimation,

I map estimation,

I computer vision,

I rockets,

I ...
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Kalman filter

Assumptions:
I states and observations: vectors of real numbers,
I all distributions are Gaussian,
I linear dynamic model,
I linear observation model,
I Markov assumption (Bayesian filter);

In other words:
I P(xt |xt−1,ut) = N (Fxt−1 + But ,Q),
I P(zt |xt) = N (Hxt ,R)

where:
I N (µ,Σ) is the Gaussian distribution with mean µ and

covariance matrix Σ,
I F, B and H are matrices,
I Q is the covariance matrix on the state transition model,
I R is the covariance matrix on the observation model.
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Models

Transition model:

P(xt |xt−1,ut) = N (Fxt−1 + But ,Q)

xt = Fxt−1 + But + wt

where wt ← N (0,Q).
Observation model:

P(zt |xt) = N (Hxt ,R)

zt = Hxt + vt

where vt ← N (0,R).
Both models:

I linear,

I Gaussian noise.
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Inference

Inference:

P(xt |z0:t ,u0:t)

∝ P(zt |xt)
∑
xt−1

P(xt |xt−1,ut−1)P(xt−1|z0:t−1,u0:t−1)

∝ N (Hxt ,R)

∫
xt−1

N (Fxt−1 + But ,Q)P(xt−1|z0:t−1,u0:t−1)

Note:
I convolution by a Gaussian,
I product with a Gaussian;

Consequence:
I if prior is Gaussian: posterior also,
I mean and covariance are sufficient,
I closed-form expression for mean and covariance.
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Inference

More notations:

I x̂t|t : mean of P(xt |z0:t ,u0:t),

I Pt|t : covariance of P(xt |z0:t ,u0:t),

I x̂t|t−1: mean of P(xt |z0:t−1,u0:t−1),

I Pt|t−1: covariance of P(xt |z0:t−1,u0:t−1),

I ỹt : mean of innovation,

I St : covariance of innovation,

I Kt : Kalman gain.
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Kalman filter algorithm

Prediction:

x̂t|t−1 ← Fx̂t−1|t−1 + But

Pt|t−1 ← FPt−1|t−1FT + Q

Update:

ỹt ← zt −Hx̂t|t−1
St ← HPt|t−1HT + R

Kt ← Pt|t−1HTS−1t

x̂t|t ← x̂t|t−1 + Kt ỹt
Pt|t ← (I −KtH)Pt|t−1
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Example

Train:

I estimate 1D position xt ,

I linear speed command ut ,

I noisy distance observation zt ;

Specifications:
I Transition model:

I F = 1,
I B = ∆t = 1,
I Q = 1;

I Observation model:
I H = 1,
I R = 1.
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Example

Start:

I x̂0|0 = 0,

I P0|0 = 1;
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Example

Start:

I x̂0|0 = 0,

I P0|0 = 1;

I u1 = 1,

I z1 = 1.1;
Prediction:

I x̂1|0 = Fx̂0|0 + Bu1 = 1

I P1|0 = FP0|0FT + Q = 2
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Limitations

Limitations:

I planar pose update: xt+1

yt+1

θt+1

 =

 xt + vt
ωt

(sin(θt + ωt∆t)− sin θt)

yt − vt
ωt

(cos(θt + ωt∆t)− cos θt)

θt + ωt∆t


I uncertainty for distance measurements:

I throttle or acceleration command: x = x and u = a

xt+1 = xt+???
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Hypotheses and extensions

Hypotheses:

I linearity,

I Gaussian distributions,

I Order-1 Markov;

Extensions:

I Extended Kalman Filter (EKF) when slightly non-linear,

I Unscented Kalman Filter (UKF) when highly non-linear,

I enrich the state to transform order-k Markov into order-1
Markov,

I Kalman-Bucy filter for continuous time,

I (Extended) Information Filter for efficiency for several
measurements,

I ...
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Extended Kalman Filter

Kalman Filter:
xt = Fxt−1 + But + wt

zt = Hxt + vt

Extended Kalman Filter:

xt = f (xt−1,ut) + wt

zt = h(xt) + vt

Define:

I Ft = ∂f
∂x |x̂t−1|t−1,ut

I Ht = ∂h
∂x |x̂t|t−1
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Extended Kalman Filter

Kalman filter algorithm
Prediction:

x̂t|t−1 ← Fx̂t−1|t−1 + But

Pt|t−1 ← FPt−1|t−1FT + Q

Update:
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T + Q
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Kt ← Pt|t−1Ht
TS−1t
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Summary

Kalman filter:

I Bayesian filter with Markov assumption,

I Linear models for update and observation,

I Gaussian distributions;

Extensions:

I Extended Kalman Filter for small non-linearities;

Uses:

I estimation,

I control,

I filtering,

I localization and mapping,

I GPS,

I ...
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Localization and Mapping

Localization:
I definition:

I find out where the robot is,
I estimate the pose in a given reference frame given the sensor

values;

I requirement:
I map of the environment;

Mapping:
I definition:

I build a map,
I estimate a representation of the environment given the sensor

values;

I requirement:
I localization of the robot.
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Simultaneous Localization and Mapping

Simultaneous Localization and Mapping:

I localize in and map an unknown environment,

I jointly estimate pose and map given the sensor values.

Parallel Tracking and Mapping:

I localize in a partial map and update the map,

I computer vision and graphics.
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Markov Localization

Definition:

I localization with a Bayesian filter,

I state is the position of the robot,

I prediction based on actions,

I update based on observation;
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Markov Localization

courtesy D. Fox
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Markov Localization

Definition:

I localization with a Bayesian filter,

I state is the position of the robot,

I prediction based on actions,

I update based on observation;

Features:

I iterative computation,
I represent the state distribution:

I Gaussian → Kalman filters,
I histogram on fixed discretization,
I samples: Monte-Carlo localization.
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Simultaneous Localization and Mapping

Problem statement:

I joint estimation of pose and map;
I map parametrization:

I dense: occupancy grid,
I ...
I sparse: landmarks;

I transition model;

I observation model;
I representation of the probablity distributions:

I Gaussians: EKF-SLAM,
I samples: fast-slam, Rao-Blackwellized Particle Filter...
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Simultaneous Localization and Mapping

Common structure: EKF-SLAM:

I landmarks: (xi , yi )

I map is the set of landmarks,

I include map into state vector,

I state: x =



x
y
θ
x1
y1
...
xN
yN


,

I apply EKF.
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Summary on Localization and Mapping

Localization:

I estimate pose,

Mapping:

I estimate map,

SLAM:

I estimate both,
I several kinds of map:

I occupancy grids,
I landmarks,

I several algorithms:
I EKF-SLAM,
I Fast-SLAM,
I Rao-Blackwellized Particle Filter (class 9),
I PTAM,
I ...
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Summary

Bayesian filtering:

I generic estimation,

I Markov assumption,

I iterative inference;

Kalman filter:

I Bayesian filter,

I linear and Gaussian assumptions,

I extensions;

Localization and mapping:

I estimation problem,

I several variants.
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