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Information Processing in Robotics
Exercise Sheet 5

Topic: Gaussian Process

Exercise 1: Implementation of a Gaussian Process for regression

In this exercise we will implement basic functionalities of a Gaussian Process. We will
start by handling data points and in a second step we will implement a service for pre-
diction. You can fill the provided code skeleton.

(a) What is a Gaussian process? How is a Gaussian Process specified? Deduce the
parameters needed to create a Gaussian Process. And implement such a initial-
izer.

(b) When a data point is observed, what should be done to update the Gaussian pro-
cess? We propose the following message type:

float64[] x

float64 t

Write the callback function for this message.

(c) In order to use our Gaussian process to do prediction, we propose the following
service type:

float64[] x

---

float64 mean

float64 std_dev

Write the handler for this service.

(d) We want to test our node with some data (data.csv provided in the archive). The
format is t,x where x can be multidimensional. Write a node that reads this file
and publish its content to the /observation topic.
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(e) How could you display the resulting Gaussian Process? Write a script that display
the data points, the mean function and the 2σ confidence interval.

(f) Change the parameters of the kernel and observe the differences.

Exercise 2: Sampling from a Gaussian Process

Recall that Gaussian distributions have several properties that make them very prac-
tical in probabilistic computations. Among them, the marginal of a multi-variate Gaus-
sian distribution is a Gaussian distribution. Also, the image of a Gaussian distribution
by a linear function remains a Gaussian distribution. Furthermore, the convolution of
a Gaussian distribution by another Gaussian distribution is also Gaussian. Mathemati-
cally, if:

• p(x) = N (x|µ,Λ−1),

• p(y | x) = N (y|Ax+ b,L−1),

then:

• p(y) = N (y|Aµ+ b,L−1 +AΛ−1AT ),

• p(x | y) = N
(
x|Σ

{
ATL(y − b) +Λµ

}
,Σ
)

with Σ = (Λ+ATLA)−1.

We have a Gaussian Process y(x) with given mean µ(x) and kernel k(x, x′), symmetric
definite positive. The aim of this exercise is to draw samples from this kernel.

(a) For x1 6= x2 two real values, what are the distributions p(y(x1)), p(y(x2)), and
p(y(x1), y(x2)).

(b) Let’s introduce a second Gaussian process u(x) with mean 0 and kernel k′(x, x′) =
δx,x′ (1 if x=x′, 0 otherwise). What are the distributions p(u(x1)), p(u(x2)), and
p(u(x1), u(x2))? What does that mean for the relation between u(x1) and u(x2)?,
for the Gaussian process u at large?

(c) What is the Gram matrix K for points x1 and x2?

(d) Let L be a lower triangular matrix such that K = LLT (Cholesky factorization). We
define z(x) = µ(x) + Lu(x). What is the shape of the distribution p(z(x1))? What
are the mean for p(z(x1)), p(z(x2)), and p(z(x1), z(x2))? What is the covariance of
p(z(x1), z(x2))?

(e) Deduce a general approach for sampling a Gaussian Process. Implement it in the
previous code, using the following service type:
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float64[] x

---

float64[] y
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