
Dr. Francis Colas

Institute of Robotics and Intelligent Systems

Autonomous Systems Lab

ETH Zürich

CLA E 26

Tannenstraße 3

8092 Zürich Switzerland

fcolas@mavt.ethz.ch

www.asl.ethz.ch

Information Processing in Robotics
Exercise Sheet 6

Topic: Support vector machines

Exercise 1: Implementation of a Support Vector Machine

(a) The input is a set of points with their target value: (xn, tn)n

(b) The support vectors are vectors for which the Lagrange multiplier is not 0. They
are the points closest to the border between the classes. Additionally to the sup-
port vectors, the bias is learned during the training phase. We propose the follow-
ing signature:

float64[] x_vector

int8[] t_vector

---

SupportVector[] support_vectors

float64 bias

Where SupportVector is a message type:

float64[] x

int8 t

float64 a

(c) • P = (ti ∗ tj ∗ k(xi,xj))i,j,
• q = −1,
• G = −I,
• h = 0,
• A = ∅,
• b = ∅.

(d) See code.

(e) sign(
∑

n∈S antnk(x,xn) + b)

See code.

1



Exercise 2: Experimenting with SVMs and kernel

We want a SVM classifier to discriminate points that are inside a disk centered on (0, 0)
with radius 1 from points that are outside this disk.

(a) SVMs allow for the supervised classification of binary data that is linearly sepa-
rable in some feature space. In this case the separation is a circle (which is not
linear) in the data space but using the kernel trick to project the data into a higher
dimension space we can probably separate the two classes.

(b) In this case we can use:

φ(x) = φ(

(
x
y

)
) =

 x
y

x2 + y2

 .

We went from a 2-dimensions space to a 3-dimensions one. However, the data
points won’t be anywhere in this space, but are restricted to the paraboloid of rev-
olution that we defined.

The associated kernel function is:

k(x,x′)

= φ(x)T .φ(x′)

= x.x′ + y.y′ + (x2 + y2)(x′2 + y′2).

(c) The boundary is always a hyperplane of the feature space; in this case, as the
feature space is 3D, the boundary will be a 2D plane. Furthermore, the projection
on paraboloid of revolution keep the center point in the lower part of the space,
and the exterior point outside. Therefore the ideal boundary is simply a horizontal
plane. The definition of this plane is simply z = 1.

To project that boundary in the data space, we have to consider that for the data
points, z = x2 + y2 by the definition of our feature transformation function φ. Plug-
ging this expression into the plane equation, we get x2 + y2 = 1 which is indeed
the equation of a circle centered on (0, 0) with radius 1.

(d) Now the boundary is an ellipsis with equation x2 + 2y2 = 4. We can quickly see
that it cannot be expressed as a linear combination of x, y, and z = x2 + y2, that
means that in the current feature space, the data is not linearly separable.

2



(e) In order to solve that, we need to change kernel. In this case, the simplest method
is to distort our paraboloid:

φ′(x) =

 x
y

x2 + 2y2

 .

For quadrics, we can also define a 5D space general enough to handle all cases:

φ′′(x) =
(
x, y, x2, xy, y2

)T
.

We could also define the surface on which we project our points to be a cone, as
quadrics are intersections of a cone and a plane (that solve the aspect ratio issue,
but not the position of the center).

(f) See demo.

3


