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Information Processing in Robotics

Exercise Sheet 6
Topic: Support vector machines

Exercise 1: Implementation of a Support Vector Machine
(a) The input is a set of points with their target value: (x,,t,),

(b) The support vectors are vectors for which the Lagrange multiplier is not 0. They
are the points closest to the border between the classes. Additionally to the sup-
port vectors, the bias is learned during the training phase. We propose the follow-
ing signature:

float64[] x_vector
int8[] t_vector

SupportVector[] support_vectors
float64 bias

Where SupportVector is a message type:

float64[] x
int8 t
float64 a

() o P = (t;xt;*k(xmixj))j

e g=—1,
e G=-1I,
e h =0,
o A=,
e b= (.

(d) See code.

(e) sign(X,es antnk(x, xy,) + b)
See code.



Exercise 2: Experimenting with SVMs and kernel

We want a SVM classifier to discriminate points that are inside a disk centered on (0, 0)
with radius 1 from points that are outside this disk.

(@)

SVMs allow for the supervised classification of binary data that is linearly sepa-
rable in some feature space. In this case the separation is a circle (which is not
linear) in the data space but using the kernel trick to project the data into a higher
dimension space we can probably separate the two classes.

In this case we can use:

¢<w>¢<(§)>($2§y2).

We went from a 2-dimensions space to a 3-dimensions one. However, the data
points won’t be anywhere in this space, but are restricted to the paraboloid of rev-
olution that we defined.

The associated kernel function is:

k(x,x)
= ¢(x)".9(x)
= 22’ +yy + (@ + )" +y7).

The boundary is always a hyperplane of the feature space; in this case, as the
feature space is 3D, the boundary will be a 2D plane. Furthermore, the projection
on paraboloid of revolution keep the center point in the lower part of the space,
and the exterior point outside. Therefore the ideal boundary is simply a horizontal
plane. The definition of this plane is simply z = 1.

To project that boundary in the data space, we have to consider that for the data
points, z = 22 + y? by the definition of our feature transformation function ¢. Plug-
ging this expression into the plane equation, we get z* + y*> = 1 which is indeed
the equation of a circle centered on (0,0) with radius 1.

Now the boundary is an ellipsis with equation z? + 2y* = 4. We can quickly see
that it cannot be expressed as a linear combination of z, y, and z = 22 + 4?2, that
means that in the current feature space, the data is not linearly separable.



(e) In order to solve that, we need to change kernel. In this case, the simplest method

is to distort our paraboloid:
xZ
¢ (x) = y :
.’13‘2 + 2y2

For quadrics, we can also define a 5D space general enough to handle all cases:
T
¢'(x) = (v,y,2% 2y, 4?) .

We could also define the surface on which we project our points to be a cone, as
quadrics are intersections of a cone and a plane (that solve the aspect ratio issue,
but not the position of the center).

(f) See demo.



