
git
Basic concepts and usage

Francis Colas



What is git?

git concepts

Standard commands

Feature branch workflow

Conclusion

2 – Francis Colas – git basics



01
What is git?



Source code:
▶ everything is source code,
▶ usually written in an iterative process,
▶ sometimes by several persons;

Revision control:
▶ management of versions of documents,
▶ tracking of changes,
▶ restoration of previous state,
▶ similar concepts to a database;

Some generic concepts:
▶ atomicity: ensuring consistency of state,
▶ distributed/centralized: communication model of changes,
▶ branches and tags: development direction and milestones,
▶ locking/merging: handling of concurrent changes.

Revision control

What is git?

4 – Francis Colas – git basics



Timeline:
before hand-numbered or date-stamped copies,

1990 CVS: centralized and non atomic,
2000 Subversion: centralized and atomic,

2000s GNU Arch, Monotone, Darcs: decentralized and atomic,
2005 Linux cannot use BitKeeper anymore,
2005 answer: mercurial and git.

History of git

What is git?

5 – Francis Colas – git basics



02
git concepts



Repositories:
▶ monolithic and self-sufficient,
▶ everybody has a full clone,
▶ in particular: no need for a connexion to commit.

Concepts:
▶ git handles files (no empty directory),
▶ central objects are commits:

▶ set of file changes,1
▶ applied on top of a given [list of] commit[s],

▶ tags and branches just point to a commit,
▶ remotes are pointers to other clones (github, gitlab, other clone

somewhere...).

1actually, they are more a snapshot of the state

General characteristics

git concepts

7 – Francis Colas – git basics



Three (conceptual) places:
▶ working directory: the files in the filesystem,
▶ staging area: the files as how they’ll be committed,
▶ git repository: committed files.

What it means:
▶ changes happen in working directory,
▶ need for preparation of the commit using the staging area,
▶ actual commit is a frozen snapshot of the staging area.

Staging area

git concepts

8 – Francis Colas – git basics



03
Standard commands



Initialization:
▶ git init <name>: initialize an empty repository ,
▶ git clone <url>: clone a repository,

Manipulating the staging area:
▶ git add <files>: add current state of files to next commit,
▶ git rm <files>: delete files,
▶ git mv <oldname> <newname>: move/rename a file.

Looking at status:
▶ git status: list state of working copy with respect to last

commit.
Commit and transmission:
▶ git commit -m "commit message": record changes into a

commit,
▶ git pull [<url|remote>]: get changes and merge them,
▶ git push [<url|remote>]: sends commit to remote/url.

Basic commands

Standard commands

10 – Francis Colas – git basics



Initialization:
▶ git init <name>: initialize an empty repository ,
▶ git clone <url>: clone a repository,

Manipulating the staging area:
▶ git add <files>: add current state of files to next commit,
▶ git rm <files>: delete files,
▶ git mv <oldname> <newname>: move/rename a file.

Looking at status:
▶ git status: list state of working copy with respect to last

commit.
Commit and transmission:
▶ git commit -m "commit message": record changes into a

commit,
▶ git pull [<url|remote>]: get changes and merge them,
▶ git push [<url|remote>]: sends commit to remote/url.

Basic commands

Standard commands

10 – Francis Colas – git basics



Initialization:
▶ git init <name>: initialize an empty repository ,
▶ git clone <url>: clone a repository,

Manipulating the staging area:
▶ git add <files>: add current state of files to next commit,
▶ git rm <files>: delete files,
▶ git mv <oldname> <newname>: move/rename a file.

Looking at status:
▶ git status: list state of working copy with respect to last

commit.

Commit and transmission:
▶ git commit -m "commit message": record changes into a

commit,
▶ git pull [<url|remote>]: get changes and merge them,
▶ git push [<url|remote>]: sends commit to remote/url.

Basic commands

Standard commands

10 – Francis Colas – git basics



Initialization:
▶ git init <name>: initialize an empty repository ,
▶ git clone <url>: clone a repository,

Manipulating the staging area:
▶ git add <files>: add current state of files to next commit,
▶ git rm <files>: delete files,
▶ git mv <oldname> <newname>: move/rename a file.

Looking at status:
▶ git status: list state of working copy with respect to last

commit.
Commit and transmission:
▶ git commit -m "commit message": record changes into a

commit,
▶ git pull [<url|remote>]: get changes and merge them,
▶ git push [<url|remote>]: sends commit to remote/url.

Basic commands

Standard commands

10 – Francis Colas – git basics



Handling branches (because it’s cool):
▶ git branch <branch>: create branch,
▶ git branch -d <branch>: delete a branch,
▶ git checkout <branch>: change to a different branch,
▶ git checkout -b <branch>: create and change to branch,
▶ git push -u <remote> <branch>: create and push branch to

remote,
▶ git merge <branch>: merge changes of the given branch into the

current one (used by pull).

Branching commands

Standard commands

11 – Francis Colas – git basics



Temporary changes:
▶ git stash: save current changes aside,
▶ git stash pop: restore saved changes.

Seeing branches and commits:
▶ gitk [--all]: good tool when lost in branches,
▶ git gui: makes it easy to pick individual changes in a file.

Ignore file:
▶ .gitignore: list of patterns of filenames that will be ignored.

Fixing the last commit before sending it:
▶ git commit --amend: replaces commit with current staging area.

Additional information

Standard commands

12 – Francis Colas – git basics



04
Feature branch workflow



General idea:
▶ features get developed in individual branches,
▶ when ready: merge into master branch,

Advantages:
▶ master always consistent and (hopefully) working,
▶ less merges while concurrent development,
▶ easier to manage,
▶ interesting commit tree. :-)

Merging:
▶ open merge request,
▶ have somebody review changes,
▶ ideally review and test code before accepting merge.

Feature branch workflow

Feature branch workflow

14 – Francis Colas – git basics



General idea:
▶ features get developed in individual branches,
▶ when ready: merge into master branch,

Advantages:
▶ master always consistent and (hopefully) working,
▶ less merges while concurrent development,
▶ easier to manage,
▶ interesting commit tree. :-)

Merging:
▶ open merge request,
▶ have somebody review changes,
▶ ideally review and test code before accepting merge.

Feature branch workflow

Feature branch workflow

14 – Francis Colas – git basics



General idea:
▶ features get developed in individual branches,
▶ when ready: merge into master branch,

Advantages:
▶ master always consistent and (hopefully) working,
▶ less merges while concurrent development,
▶ easier to manage,
▶ interesting commit tree. :-)

Merging:
▶ open merge request,
▶ have somebody review changes,
▶ ideally review and test code before accepting merge.

Feature branch workflow

Feature branch workflow

14 – Francis Colas – git basics



In practice:
▶ git checkout -b new_feature
▶ code, test, code more, test even more...
▶ git status
▶ git add <files>
▶ git status
▶ git commit -m "new feature"
▶ git pull
▶ git push -u origin new_feature
▶ merge request
▶ get it accepted
▶ git checkout master
▶ git pull
▶ git branch -d new_feature
▶ git remote prune origin

Practically

Feature branch workflow

15 – Francis Colas – git basics



From the command line:
▶ git stash
▶ git checkout master
▶ git checkout -b merging_new_feature
▶ git fetch
▶ git merge new_feature
▶ code review
▶ test (compilation, unit tests, etc.)
▶ git checkout master
▶ git merge new_feature
▶ git push
▶ git checkout your_branch
▶ git stash pop

Merge request

Feature branch workflow

16 – Francis Colas – git basics



05
Conclusion



git:
▶ not complex to use,
▶ good for one or many people,
▶ good for connected or offline work;

Feature branch model:
▶ convenient in big projects,
▶ state-of-the-art use of git.

Conclusion

Conclusion

18 – Francis Colas – git basics



+

Thanks for your attention.

18 – Francis Colas – git basics


	What is git?
	git concepts
	Standard commands
	Feature branch workflow
	Conclusion
	Thanks for your attention.

