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1 Introduction

Driven by consumer products, the technologies of electronics, motor and battery
have made tremendous progress in the last decades. They are now widely available
at prices which make affordable mobile robots a reality. This opens many new
opportunities, in particular in the contexts of collective robotics.

Collective and swarm robotics focus on the scalability of systems when the number
of robots increases. In that context, global localization is a challenge, whose solution
depends on the environment the robots evolve in. A common approach is to measure
the distance and orientation between robots [1], but this approach relies on beacons to
provide absolute measurements. Yet, several state of the art algorithms require global
positioning [2]. In experimental work, it is often provided by an external aid such
as a visual tracker, bringing a non-scalable single point of failure into the system,
and breaking the distributed aspect. Therefore, there is the need for a distributed and
affordable global localization system for collective robotics experiments.

This paper answers this need by providing a distributed system using only ap-
proximate dead-reckoning and inexpensive infrared sensors measuring the grayscale
intensity of the ground, without knowing the initial pose of the robots. As sensors are
mounted on the robot, the localization is a local operation, which makes the approach
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scalable. Our solution is based on the classical Markov [3] and Monte Carlo [4] Lo-
calization frameworks that can be seen as respectively a dense and a sampling-based
implementation of a recursive Bayesian filter. While these approaches are commonly
used in robots with extensive sensing capabilities such as laser scanners, their imple-
mentation on extremely low bandwidth sensors is novel, and raises specific questions,
such as which distance the robot must travel for the localization to converge.

In this paper, we deploy these algorithms on the Thymio II differential-wheeled
mobile robot. The robot reads the intensity of the ground using two infrared sensors
(Fig. 1, middle, circled red) and estimates the speed of its wheels by measuring
the back electromotive force, which is less precise than encoder-based methods.
For evaluation purposes, a Vicon tracking system (http://www.vicon.com/)
provides the ground-truth pose (Fig. 1, right). Our first contribution is a predictive
model of the necessary distance to travel to localize the robot. Our second contribution
is a detailed analysis of the performances of the two implementations in comparison
with ground-truth data. Our last contribution is an experimental validation of online,
real-time localization (Fig. 1, left). The source code and all experimental data are
available online1 and the system can be seen running in a video2.
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Fig. 1 The block scheme of the online system (left), the Thymio II robot with the placement of its
ground sensors (middle), and markers for tracking its ground-truth pose by a Vicon system (right).

2 Related work

The main challenges of solving the localization problem on affordable mobile robots
are the constraints on the environment and the limited information content that
inexpensive sensors can typically provide.

The work of Kurazume and Nagata [5] first raised the idea of performing inex-
pensive localization through the cooperative positioning of multiple robots. Prorok
et al. [1] is a modern work representative of this approach. These authors have used
an infrared-based range and bearing hardware along with a distributed Monte Carlo
Localization approach, allowing a group of robots to localize down to a precision

1 https://github.com/epfl-mobots/thymio-ground-localisation
2 https://www.youtube.com/watch?v=70euPzixzus

http://www.vicon.com/
https://github.com/epfl-mobots/thymio-ground-localisation
https://www.youtube.com/watch?v=70euPzixzus
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of 20 cm. However, this methods would require fixed robots acting as beacons to
provide absolute positioning. Moreover, both radio and infrared-based range and
bearing systems require complex electronics. Finally, when the cost of all robots is
added, the system is far from cheap.

A cheaper approach is to use walls around an experimental arena to localize. For
example, Zug et al. [6] have developed an algorithm using an array of triangulation-
based infrared distance sensors. A Kalman filter algorithm is applied to localize the
robot within a 2 by 1 m box. No experimental result is provided, but a simulation
shows the estimated error to be within 2 cm. Dias and Ventura [7] used two horizontal
lines from a VGA camera to read barcodes on the walls of an arena and localize an
e-puck robot. Their system employs an Extended Kalman Filter (EKF) algorithm
and reaches a precision of 1 cm and 5◦. However, these systems require no obstacles
between the robot and the walls, and thus are not scalable to a large number of robots.

This problem can be alleviated by detecting a known pattern visible on the ceiling
and fusing this information with odometry. This approach was proven effective for
localization using high-quality cameras [4]. Focusing on a low cost, Gutmann et
al. [8] have developed a system using only 3 or 4 light detectors, able to localize a
mobile robot in a room with an accuracy of 10 cm. However, this method requires a
controlled ceiling arrangement and empty space over the robots.

Another approach is to exploit the ground for localization. Park and Hashimoto [9]
proposed to localize a mobile robot over a ground equipped with randomly distributed
passive RFID tags. The average localization error of this method is lower than 10 cm.
However, this approach requires the ground to be equipped with tags which can
become expensive and tedious to deploy when the area grows.

The system proposed in this paper builds on the idea of using information from the
ground for absolute localization, with performance comparable with related work. To
the best of our knowledge, existing solutions for localization of multi-robot systems
either rely on an expensive adaptation of the environment using markers or beacons,
or necessitate the embedding of expensive sensing capabilities on every robot. In
contrast, our system is affordable since it only requires a low number of inexpensive
infrared sensors onboard the robot (which are typically used as cliff detectors), and a
simple grayscale pattern on the ground that can be achieved using a printed poster.

3 Model

The generic Bayesian filter used to estimate the pose of a robot in its environment
uses the following variables:

• X1:t 2-D pose at times 1..t, consisting of x,y coordinates and an angle θ .
• Z1:t observations at times 1..t, consisting of the output of the sensors measuring

the grayscale intensity of the ground.
• U1:t odometry at times 1..t, consisting of the left and right wheel speeds.
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It is classically formulated as a recursive Bayesian filter with the following joint
probability distribution:

p(X1:t ,Z1:t ,U1:t) = p(Zt |Xt)p(Xt |Xt−1,Ut)p(Ut)p(X1:t−1,Z1:t−1,U1:t−1). (1)

This filter is based on a few assumptions. First it assumes that the current observation
is independent on the past observations, the past states and odometry commands
conditionally to the current state. It also features the Markov assumption: the next
state is independent on former states, commands and observations conditionally to
the previous state and the current command. Finally, it assumes that the actions are
independent from the past. All these assumptions are standard and can be found in
Kalman filtering and other classical models.

This joint probability distribution allows to formulate the problem as the estima-
tion of the pose Xt at time t given the observations Z1:t and the commands U1:t :

p(Xt |Z1:t ,U1:t) ∝ p(Zt |Xt) ∑
Xt−1

p(Xt |Xt−1,Ut)p(Xt−1|Z1:t−1,U1:t−1). (2)

This inference involves two distributions to be specified: the observation model
p(Zt |Xt) and the motion model p(Xt |Xt−1,Ut), whose parametrizations depend on the
robot. In addition, we define a self-confidence metrics and outline the implementation.

Observation model. Our observation model p(Zt |Xt) = ∏
Nsensors
i=0,1 p(Zi

t |Xt) as-
sumes all sensor noises to be independent, and the ground color to be in the range of
[0,1] (0 being black and 1 being white). We take p(Zi

t |Xt)∼N (v,σobs), for robot
pose Xt , sensor i, and a corresponding ground intensity v according to the map. The
parameter σobs is selected based on the knowledge of the sensor. Thymio II has two
sensors (Fig. 1, center). For binary (black and white) patterns, we chose σobs = 0.5.
For grayscale images, based on measurement on a Thymio II, we set σobs to 0.15.

Motion model. Based on the model of Eliazar et al. [10], we assume that the
motion has a Gaussian error model, hence p(Xt | Xt−1,Ut)∼N (µt ,Σt). The mean
µt is built by accumulating the estimated displacements by dead-reckoning between
times t−1 and t. Therefore, if ∆xt , ∆yt , ∆θt are the displacement between t−1 and
t, expressed in the robot local frame at t−1, µt is:

µt =

 xt
yt
θt

with

[
xt
yt

]
=

[
xt−1
yt−1

]
+R(θt−1)

[
∆xt
∆yt

]
θt = θt−1 +∆θt

(3)

where R(θ) is the 2-D rotation matrix of angle θ . The 3× 3 diagonal covariance
matrix Σt is a function of the distance traveled, the amount of rotation, and two
parameters αxy, αθ :

Σt =

σ2
xy,t 0 0
0 σ2

xy,t 0
0 0 (αθ |∆θt |)2

 (4)

with σxy,t = αxy
√

∆x2
t +∆y2

t .
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To cope with the possibility of the robot being kidnapped and therefore its pose
becoming unknown, a uniform distribution with a weight puniform is added to Xt . The
parameters αxy, αθ and puniform are estimated using maximum likelihood (Sect. 5).

Implementations. We compare two variants of this filter. In Markov Localization,
the distributions are discretized using regular grids [3]. For our experiments, the x,y
cell resolution is 1 cm and the angular resolution varies from 20◦ (18 discretization
steps for 360◦) to 5◦ (72 discretization steps for 360◦). The estimated pose is the
coordinates of the cell of maximum probability. In Monte Carlo Localization [4],
the distributions are represented using samples in a particle filter. In order to extract
a single pose estimate out of the many particles, we find a maximum density area
in which we average the particles. It is similar to a 1-point RANSAC scheme [11].
We implemented both algorithms in Python with some Cython (http://www.
cython.org) procedures used for time-critical inner loops. The algorithms run on
an embedded computer or laptop (Fig. 1, left). Thymio II is programmed through the
ASEBA framework [12], which connects to Python using D-Bus.

Self confidence. We define a self-confidence term that corresponds to the ratio of
the probability mass of p(Xt) that is within a distance dxy and an angle difference dθ

to the estimated pose. In our experiments, we use dxy = 3 cm and dθ = 10◦.

4 Theoretical analysis of convergence

One can estimate the time required for the robot to localize itself in a given space, by
comparing the information needed and the information gained while traveling.

Information need. For the Markov Localization approach, there is a given number
of discrete cells. The amount of information needed to unambiguously specify one
among them all is Hloc = log2(Ncells), with Ncells the number of cells.

Information gain. We can estimate the information gain at each time step. Let us
consider the case of a binary map and a binary sensor. This sensor ideally yields 1 bit
of information per measurement. In practice, there is a loss in information due to the
sensor noise, characterized by the pcorrect probability of the sensor to be correct:

Hnoise = Hb(1− pcorrect), (5)

where Hb is the binary entropy function: Hb(p) =−p log2(p)− (1− p) log2(1− p).
We also need to take into account that the sensor measurements are not completely

independent. For example, when the robot is not moving, it always observes the
same place and thus cannot really gain additional information besides being sure of
the intensity of the current pixel. In a discretized world, we thus need to estimate
the probability of having changed cell in order to observe something new, which
depends on the distance traveled and the size of the cells. This problem is equivalent
to the Buffon-Laplace needle problem of finding the probability for a needle thrown

http://www.cython.org
http://www.cython.org
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randomly on a grid to actually intersect the grid3 [13]. In our case, the probability of
changing cell is given by:

pdiff =
4dh−d2

πh2 , (6)

with d the distance traveled and h the size of the cells.
We can then compute the conditional entropy for two successive ideal binary

measurements Ot−1 and Ot separated by d based on the conditional probability.
There are two cases: either the robot has not moved enough to change cell (with
probability 1− pdiff) and the new observation is the same as the old, or the robot has
changed cell (with probability pdiff) and the new observation has the same probability
to be the same or the opposite of the old. This can be summarized by the following
conditional probability distribution (b/w = black/white):

p(Ot = {b/w} |Ot−1 = {b/w}) =
(
(1− pdiff)+ pdiff/2 pdiff/2

pdiff/2 (1− pdiff)+ pdiff/2

)
(7)

After rearranging the terms of the conditional entropy, the loss of information due to
redundancy in the traveled distance is:

Hloss,d = 1−Hb(pdiff/2). (8)

There is also redundancy between several sensors placed on the same robot. The
probability that they see the same cell based on the distance between them is exactly
the same as the probability of a sensor to see the same cell after a displacement
of the same distance. The information loss due to the redundancy from the sensor
placement is noted Hsensors and follows the same formula as Hloss,d, but with d being
the distance between the two sensors in Eq. 6.

Finally, we can approximate the information that our robot gathers at each time
step by assuming that the trajectory of the robot does not loop (no redundancy
between distant time steps) and that the trajectories of the sensors are independent.
The information gathered in a time step is then:

H(O1
t ,O

2
t | O1

1:t−1,O
2
1:t−1) = H(O1

t ,O
2
t | O1

t−1,O
2
t−1)

= H(O1
t | O1

t−1)+H(O2
t | O2

t−1)−H(O2
t | O1

t )

= 2 · (1−Hnoise−Hloss,d)−Hsensors

(9)

This formula also ignores the uncertainty in the robot motion. With these assumptions,
it is an upper bound on the average information gain.

Outlook. Faster localization can be achieved by moving at a greater speed to
reduce redundancy in the successive measurements, with proportional increase in
sampling frequency. If designing a new robot, better sensors would reduce cross-over
noise. Setting the sensors apart would also reduce the redundancy between their
information but, for our specific grid size, they are sufficiently separated in Thymio II.

3 The needle is the segment joining the start and end points of the robot movement and the grid is
the borders of the cells.
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5 Empirical analysis of performance

To evaluate the performance of our localization algorithms, we remotely controlled
the robot and recorded datasets covering all possible robot motions:

• trajectory 1 and 2: The robot alternates forward and backward movements
with rotations on spot, at a speed of 3–5 cm/s.

• linear trajectory: The robot simply goes straight ahead along the x-axis
of the map, at a speed of 3–5 cm/s.

• trajectory with kidnapping: The robot alternates phases of forward
movement, at a speed of 15 cm/s, and turning on spot. To test the algorithm’s
ability of recovering from catastrophic localization failures, we perform “robot
kidnapping” by relocating the robot to another part of the map every minute.

The robot moves on a 150×150 cm ground pattern containing 50× 50 cells of
3×3 cm, each randomly black or white (Fig. 1, right). The robot is connected to ROS
to synchronize its sensor values and odometry information with ground-truth data
from Vicon, sampled at a period of 0.3 s. We chose this period so that with basic
trajectories, at maximum speed the robot travels approximately half the length of one
cell between every sample.

Parameter estimation. We estimated the noise parameters of the motion model
using maximum likelihood, considering the error between the ground truth and the
odometry data in the local frame between two time steps. Using trajectory 1
and trajectory 2, we found the values for αxy and αθ to be in the order of 0.1.
Similarly, using trajectory with kidnapping, we also found the value for
puniform to be in the order of 0.1.

Basic localization. Fig. 2 shows the error in position and orientation for the first
two trajectories. In these plots, distance traveled represents the cumulative distance
traveled by the center point between the two ground sensors of the robot.

For the Markov Localization approach, all discretization resolutions allow the
robot to localize down to a precision of 3 cm and 5◦. However, in trajectory 1,
the resolution of 18 discretization steps is not enough to keep tracking the orientation
at a distance traveled of 50 cm and 80 cm. These both correspond to the robot rotating
on spot. Finer discretizations do not exhibit this problem, they are more robust and
have similar precision. Therefore, we see that an angular discretization of 36 (10◦

resolution) is sufficient to provide accurate tracking. In trajectory 2, we see
that an angular discretization of 54 allows for a better angular precision than 36, but
72 does not improve over 54. All discretizations provide equal position precision.

For the Monte Carlo Localization approach, we see that on trajectory 1,
the robot localizes already with 50k particles, but in twice the distance it takes with
100k particles. Increasing the number of particles beyond this value only marginally
decreases localization time. While 50k particles are sufficient to localize on this
run on average, in some trials, the robot loses orientation when it turns on spot. On
trajectory 2, using 50k particles is not enough to localize the robot. Increasing
this number to 100k leads to a good localization, except after the robot has traveled
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Markov Localization, for different number of discretization angles
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Monte Carlo Localization, for different number of particles
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Fig. 2 The error between the estimation by the localization algorithm and the ground truth on
trajectory 1 and trajectory 2. For Monte Carlo Localization, the solid lines show the
average over 10 trials, while the light dots show the individual trials.

130 cm. This corresponds to a long moment during which the robot rotates on spot,
leading to less information acquisition, and therefore degraded performances.

Overall, both approaches have similar accuracy. When angular precision is critical,
the Monte Carlo Localization approach might achieve better performance, as the
Markov Localization approach is limited in precision by its angular discretization.
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Fig. 3 The error between the estimation by the localization algorithm and the ground truth on 10
segments from the first two trajectories. The solid lines show the median while the light dots show
the individual trials.
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Distance to converge. Fig. 3 shows the error in position for 5 different starting
points in each of the first two trajectories, in which the robot moves at a speed of
3–5 cm/s. We see that, with the Markov Localization approach, the correct pose
is found after about 20 cm. There are also outliers: this happens when the robot
is turning on spot, in which case there is not enough information to localize the
robot. With 400k particles, the Monte Carlo Localization approach also converges
after about 20 cm. Decreasing the number of particles quickly increases the distance
needed for convergence, reaching 60 cm for 100k particles. Using only 50k particles,
some trajectory segments fail to converge within 80 cm length.

It is interesting to compare these distances with theoretical estimates (see Sect. 4).
One difficulty is that the theoretical model specifies the probability pcorrect of the
sensor to be correct. In our observation model, instead, we specify σobs the noise
of the sensor. Therefore, we propose to compute pcorrect from σobs by considering
a sensor positioned over a black ground, and by assuming that all values below a
threshold of 0.5 (0 being black and 1 being white) are correctly read:

pcorrect = p(Z < 0.5|X = 0) =
∫ 0.5

−∞

N (0,σobs) (10)

In these runs, we have assumed σobs = 0.5, leading to pcorrect = 0.84 (Eq. 10) and
Hnoise = 0.63 (Eq. 5). Our robot moves at 3 cm/s with a time step of 0.3 s on a grid of
3 cm×3 cm cells in which the color is known to be similar; this yields Hloss,d = 0.33
(Eq. 8). Moreover, the sensors are 2.2 cm apart, which yields Hsensors = 0.041. As
such the robot gathers on average at most 0.036 bit per time step, or 0.040 bit/cm
(Eq. 9). With a 150 cm×150 cm environment discretized with cells of 1 cm and 5◦

angle, the amount of information needed for the localization is Hloc = 20.6. This
means that, on average, the robot should not be localized before traveling around
520 cm4. This distance is far larger than the observed one of about 20 cm. The reason
is that using σobs = 0.5 for the binary case was an arbitrary choice and therefore the
value of pcorrect does not correspond to the reality.

Computing the value of pcorrect to match the observed convergence distance by
inverting the computation, we find 0.97, corresponding to σobs = 0.26. If we use
σobs = 0.15 as measured on grayscale images, we have pcorrect = 0.99957. This
leads to a minimum theoretical localization distance of about 14.3 cm. This value
is slightly lower than our experimental results, which makes sense as it is a lower
bound. Moreover, this low bound would be attained with a perfect filter observing a
perfect pattern. Our filter is not perfect, because we have run it with an overestimated
σobs of 0.5. Nevertheless, the filter works well, showing that it degrades gracefully
with respect to imprecision in its parameters. This is important in practice, as users
might not be able to provide extremely precise parameters.

Effect of map size. Fig. 4 shows the effect on the distance of convergence when
the map size is reduced. The robot runs linearly on one quarter of the map, while
the Markov Localization is performed on the whole map, half of it, and a quarter of

4 see https://github.com/epfl-mobots/thymio-ground-localisation/
blob/master/theory/d_conv_from_pcorrect.py

https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from_pcorrect.py
https://github.com/epfl-mobots/thymio-ground-localisation/blob/master/theory/d_conv_from_pcorrect.py


10 S. Wang, F. Colas, M. Liu, F. Mondada, and S. Magnenat

it. We see that reducing the map size does reduce the distance traveled necessary to
converge, in accordance to the theory, because less information have to be acquired
to reduce the uncertainty of the pose.

0 5 10 15 20 25 30 35
distance traveled [cm]

0

10

20

30

40

50

po
si

tio
n

er
ro

r
[c

m
]

full map
1/2 map
1/4 map

0 5 10 15 20 25 30 35
distance traveled [cm]

0
10
20
30
40
50
60
70
80
90

an
gu

la
r

er
ro

r
[d

eg
re

es
]

full map
1/2 map
1/4 map

Fig. 4 The error between the estimation by the localization algorithm and the ground truth, using
Markov Localization, for different map sizes on linear trajectory. The solid lines show the
median over 3 different trajectory parts, while the light dots show the individual parts.
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Fig. 5 The error between the estimation by the localization algorithm and the ground truth, and the
self confidence of the algorithm, on the run with kidnapping. For Monte Carlo Localization, the
solid lines show the median over 10 trials, while the light dots show the individual trials. The gray
areas show the time during the robot is being held in the air at the occasion of kidnapping.
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Robot kidnapping. Fig. 5 shows the error in position, orientation and the self
confidence for the run with kidnapping. In this run, the robot is kidnapped twice,
after having traveled 550 cm and 1000 cm. It takes the robot approximately 100 cm to
re-localize, and does so successfully with both Markov and Monte Carlo Localization
approaches. This difference of distance with previous runs is mostly due to the speed
of the robot, which is about 5 times faster. With the Markov Localization approach,
all discretization resolutions are approximately equivalent in position performance,
but 18 leads to a lower orientation precision, as well as to a lower self confidence,
due to the large discretization step. Other resolutions have a confidence of about 0.5
when the robot is localized, and this value drops below 0.1 after kidnapping, clearly
showing that the algorithm is able to assess its status of being lost.

With the Monte Carlo Localization approach, the robot localizes most of the time
with 100k particles, and always with 200k particles or more. With 50k particles,
the robot eventually localizes, but this might take more than 2 meters of traveled
distance. We see that the self confidence increases with more particles, and, similarly
to the Markov Localization approach, drops after kidnapping. This confirms the
effectiveness of the self confidence measure.

duration [s] 0.64 1.43 2.15 2.94 1.97 2.97 6.08 12.22
algorithm Markov Localization Monte Carlo Localization
parameter 18 36 54 72 50k 100k 200k 400k

discretization angles particles

Table 1 The execution duration of one step for the two algorithms.

Computational cost. Table 1 shows the execution duration of one step for the two
algorithms with different parameters. These data were measured on a Lenovo laptop
T450s with an Intel Core i7 5600U processor running at 2.6 GHz, and are averages
over the two first trajectories. We see that with the Markov Localization approach,
the duration scales linearly with the number of discretization angles. With the Monte
Carlo Localization approach, the scaling is linear but amortized (50k particles is
not twice faster as 100k). This is due to the selection of pose estimate, which uses
a RANSAC approach and is therefore independent of the number of particles. For
similar localization accuracy, the Monte Carlo Localization approach is slower than
the Markov Localization approach, and therefore we suggest to use the former with
an angular discretization of 36 in practical applications. However, the Monte Carlo
Localization approach might be preferred if a high angular precision is required, but
at least 100k particles are necessary for proper localization.

6 Real-time localization

Fig. 6 shows the performance of the online, real-time localization of a Wireless
Thymio II (Fig. 1, left). We tested different grayscale images of 59× 42 cm, printed
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Fig. 6 The image, estimated trajectory and self confidence for different 59× 42 cm grayscale
patterns printed on A2 papers with a resolution of 1 pixel/cm. The robot is remotely controlled to
draw a 8-shape figure, with similar motor commands for each image. Markov Localization with 36
discretization angles used. The color of the lines vary from red (confidence 0) to green (confidence
1). Trajectories are plotted starting from a confidence level of 0.2.

on A2 paper sheets with a resolution of 1 pixel/cm. We used Markov Localization
with an angular discretization of 36 and a spatial resolution of 1 cm; the localization
is performed every 0.4 s. The localization algorithm runs on a Lenovo laptop X1 3rd
generation with an Intel Core i7-5500U processor running at 2.4 GHz, at a CPU load
of approximately 80 %. The algorithm localizes the robot globally on all images. The
images with more contrast lead to a more robust and faster localization, while the
ones with lower contrast lead to more imprecise trajectories. In Fig. 6, we see that
the parts of trajectories in red are less precise than the ones in green. This shows that
the self confidence measure is effective in assessing the quality of the localization.

Embedded use. The runtime cost is dominated by the motion model, as it involves
convoluting a small window for every cell of the probability space. With the current
parameters, this leads to approximately 250 floating-point multiplications per cell.
For comparison, VideoCore R© IV, the built-in GPU in the Raspberry Pi 3 (costing
e 33), has a peak processing power of 28 GFLOPS. Assuming that, due to limitations
in bandwidth and dependencies between data, it can only be used at 10 % of its peak
floating point throughput, it could run a GPU version of our algorithm at 10 Hz on
a map of 1.8 by 1.8 meters with a resolution of 1 cm. Therefore, our approach can
truely be used for distributed collective experiments with affordable robots.

Scalability. The computational speed of the system and the necessary distance to
converge scale linearly with the size of the localized area. Also, a prolonged use of
the robot might wear off the ground, slightly shifting the grayscale intensities and
jeopardizing the localization. Nevertheless, modern printing options allow to use
strong supports that only degrade slowly with time. Therefore, our system can be
helpful for conducting collective experiments in a laboratory environment.

Optimality. An interesting question is what is an optimal pattern. However, this
question has two sides. On the one hand, a pattern could be optimal in term of
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quantity of information, allowing the robot to localize as fast as possible. In that
case, a white-noise pattern would be ideal. On the other hand, if the robot has to
interact with humans, or only be monitored by humans, such a pattern would be
highly disturbing. Our experimental results with paintings and drawings show that,
even with a pattern having a lot of regularities and symmetries, our system is still
able to localize. Therefore, we believe it is usable with natural patterns such as
photographies, drawings and grayscale schematics.

7 Conclusion

In this paper, we have implemented and empirically evaluated Markov- and Monte
Carlo-based approaches for localizing mobile robots on a known ground visual
pattern. Each robot requires only inexpensive infrared sensors and approximate
odometry information. We have shown that both approaches allow successful local-
ization without knowing the initial pose of the robot, and that their performances
and computational requirements are of a similar order of magnitude. Real-time lo-
calization was successful with a large variety of A2 grayscale images, using the
Markov Localization approach with 36 discretization steps for angle. Should larger
patterns be desired, the code could be further optimized by implementing it in the
GPU, allowing it to run on inexpensive boards such as the Raspberry Pi.

In addition, we have outlined, and empirically validated, a method to estimate
the localization performance in function of the sensor configuration. This method
provides a guide for taking decisions about the placement of sensors in a future robot
design: localization performance can be improved by placing the sensors far apart
on a line perpendicular to the direction of movement of the robot; moreover, more
sensors allow for collecting more information, if they are separated by the size of the
smallest visual structure in the map.

These contributions to the state of the art enable absolute positioning of inexpen-
sive mobile robots costing in the e 100 range. In the context of distributed collective
robotics, they provide a solid base on which to build navigation or behavioral algo-
rithms.
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