Design of hinged 3D auxetic mechanisms

Elisabetta Matsumoto Georgia Tech Henry Segerman Oklahoma State University

Auxetic mechanisms

Source: <u>https://smartstructures.wikispaces.com/Auxetic+Materials</u>

Source: Wang et al, Materials and Design, 2015 Designable dual-material auxetic metamaterials using three-dimensional printing

Diamond plate mechanism

Kagome mechanism

Jitterbug Atom, by Buckminster Fuller

3D auxetic mechanisms

Chaneli Luotoniemi 2015 SD Auxetic Material

Jitterbox, by Taneli Luotoniemi

Source: http://now.lincoln.com/movement-by-design-an-interview-with-chuck-hoberman/

Hoberman sphere the ambient space is 3D, but this is still a surface

Questions

A. How can we make a regular (planar) tiling auxetic?

- B. How can we make an arbitrary (planar) graph auxetic?
- C. Can we answer these questions in 3D?
- D. Are there constraints on the possible values of the Poisson ratio (tensor)?
- E. Are there constraints on the possible values of the expansion factor?
- F. Can we achieve these things in real-life?

Hoberman's polygon mechanism

Octopieces, by Negar Kalantar

New ideas: from 2D to 3D

- 1. The one degree of freedom hexagon
- 2. Counterrotating elements
- 3. Branched scissor linkages
- 4. Additional linearly dependent supports

1. One degree of freedom hexagon

2. Counterrotating kagome

Layered kagome

Layered kagome

Counterrotating jitterbug

Counterrotating jitterbug

Counterrotating jitterbug

Octet/tatoh auxetic mechanism

Octet/tatoh auxetic mechanism

3. Branched scissor linkages

Turning corners with scissor linkages

Turning corners with branched scissor linkages

Branched scissor cube

Branched scissor cube

Branched scissor cube

Branched scissor diamond

Branched scissor diamond

Branched scissor diamond

Non-planar vertex links

Planar vertex links

Counterrotating

NbO lattice

Auxetic NbO lattice

Auxetic NbO lattice

Future work: another auxetic NbO lattice

Future work: another lattice with planar vertex links

Thanks!