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Kirigami is like origami, but with cutting 
and (for us) rejoining of the paper.

Origami
ORIGIN   Japanese, from oru, -ori ‘fold’ + kami ‘paper’.

paper rabbit by Eric Demaine and Tomohiro Tachi.

Note the fiddly little folds, much smaller 
than the structural features.



Kirigami

ORIGIN   Japanese, from -kiri ‘cut’ + kami ‘paper’.

Image by Michael Tanis  
instagram.com/hyperqbert
www.flickr.com/photos/miketanis

The cuts and folds are on the same 
scale as the structural features.

http://instagram.com/hyperqbert
http://www.flickr.com/photos/miketanis


Kirigami

ORIGIN   Japanese, from -kiri ‘cut’ + kami ‘paper’.

Image by Michael Tanis  
instagram.com/hyperqbert
www.flickr.com/photos/miketanis

The cuts and folds are on the same 
scale as the structural features.

 

  

 

(a)

(c) (d)

(b)

 

http://instagram.com/hyperqbert
http://www.flickr.com/photos/miketanis


Kirigami produces structures more simply than origami, as there is 
no need for elaborate folds to mimic Gaussian curvature. 

From an origami perspective, the most obvious use for cutting is to remove 
extraneous material that would have had to be tucked out of sight.

But kirigami offers more than this.

metal rabbit by Eric Demaine and Tomohiro Tachi.



Two Kinds of Curvature

�1/κ2

Gaussian or Intrinsic 

K = κ1κ2

Mean or Extrinsic 

H =
1
2
(κ1+κ2)

K > 0
H > 0 H = 0

K < 0

K = 0
H > 0

1/κ1



Old-school Lattice Kirigami:
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Burgers vectors

Making the Cut: Lattice Kirigami Rules 
Phys. Rev. Lett. 113, 245502, 11 December 2014

climb
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5 edges

4 edges

Free Triangle Graph Paper from http://incompetech.com/graphpaper/triangle/
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Combining disclinations (points of non-zero Gaussian curvature) 
to create a dislocation. (Flat view)



J.-F. Sadoc, N. Rivier, and J. Charvolin, 
Acta Crystallogr. Sect. A 68, 470 (2012). 

Phyllotaxis: a non conventional crystalline solution to 
packing efficiency in situations with radial symmetry 

+
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Combining disclinations (points of non-zero 
Gaussian curvature) to create a dislocation.

(Buckled view)



The amount of material removed corresponds to the area of the 
wedges (shaded) plus the area of the dislocation (purple).

The area of the dislocation is the product of the Burgers vector 
and the climb.
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The language of lattice kirigami can be used to describe a variety of 
topological changes. If we use negative l then we can introduce new 
material by cutting a slit and glueing extra  connected wedges into it.

Additive Lattice Kirigami
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Figure 1: [This is not the final figure.] l lk l? b1 b2 A kirigami cut, as previously introduced.
CITE? Five degrees of freedom are shown show all d.o.f.

Results

Generalizing kirigami: area-preserving kirigami

There are natural generalizations of our earlier kirigami cutting patterns that make the kirigami

structures more versatile while still remaining in the kirigami rubric. Looking at Fig. 1(a), note Note that
we’re
going to
have to
replace
these fig
references
with hard-
coded
references
to, e.g.
”Fig. 1”,
etc.

that there are five degrees of freedom corresponding to changes in the excised hexagon: the

climb and glide of the displacement ` between the two wedges relative to the Burgers vector b,

the length of the Burgers vector ||b|| and the angles of each wedge (see Fig. 2).

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision

that when rejoined will generate a sheet with one point of angular excess centered between two

points of angle defect (Fig. 2(b)). This excised shaped can be further modified by changing the

wedge angles. These angles were previously presumed to be less than ⇡ in order to fit with

stepped structures, as a large excised angle creates a large angle deficit and an incompatibly

‘pointy’ cone. We now allow these angles to increase to ⇡, shrinking the excised diamond to a

simple slit (Fig. 2(c)). This second structure is notable because it is the first example where no

material is excised to perform the kirigami action – only a simple straight-line cut is made. Even

without including any rejoining of the sheet, this style of kirigami has been used to change the
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Figure 1: A kirigami cut with both climb and glide on a hexagonal lattice ⇤ and its dual (with
basis) ⇤̃. The two points along which the perimeter is pinched closed are marked with stars. We
break with the earlier nomenclature in (5) that tacitly assumed a uniform non-defected lattice
which would describe the left disclination as 2-4 and the right as 5̃-7̃. Instead we name them ±1
and ±1̃. Note the five degrees of freedom: The magnitude of the Burgers vector ||b1 = �b2||,
the glide and climb components of the displacement vector l = (lk, l?), and the two angles at
the starred points.
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the length of the Burgers vector ||b|| and the angles of each wedge (see Fig. 2).

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision

that when rejoined will generate a sheet with one point of angular excess centered between two

points of angle defect (Fig. 2(b)). This excised shaped can be further modified by changing the

wedge angles. These angles were previously presumed to be less than ⇡ in order to fit with

stepped structures, as a large excised angle creates a large angle deficit and an incompatibly

‘pointy’ cone. We now allow these angles to increase to ⇡, shrinking the excised diamond to a

simple slit (Fig. 2(c)). This second structure is notable because it is the first example where no

material is excised to perform the kirigami action – only a simple straight-line cut is made. Even

without including any rejoining of the sheet, this style of kirigami has been used to change the
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that there are five degrees of freedom corresponding to changes in the excised irregular hexagon:

the climb (`?) and glide (`k) of the displacement ` of the dislocation relative to the Burgers

vector b1 = �b2, the length of the Burgers vector ||b|| and the angles of each wedge (see

Fig. 2).

`? <0

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision
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Fig. 1. Extra matter (additional layer of cells) produced by successive mitoses, i.e. by climb of one dislocation (5/7) from the other; from [5], with permission.
(a) If the first division is symmetrical (6→ 5/5), the tissue remains topologically flat (it has a smooth fold, a ridge (!-shaped) or a groove (V-shaped) between
the two 7-sided cells). (b) If the first division is asymmetric (6→ 4/6), a bump or a dip is produced. (There are no 3-sided cells in mammalian epidermis or in
the crab’s cuticle.)

by a singularity in the mapping. In a two-dimensional foam,
the reference state is a honeycomb. An n ̸= 6-sided cell is a
plastic deformation from the 6-sided, reference cell. It car-
ries a topological charge q= 6− n. The coordinate z of the
reference state is non-holonomic1 in general: it only counts
the number of steps along a path. We will see (Section 4) that
the mapping is from a single-valued, meromorphic function2
of a continuous variable w, into a multivalued, geometrical,
equilateral triangulation.
In classical electromagnetism, a charge is identified by the

integral (Gauss) of the electric field over any contour (a sur-
face) enclosing it; a current, by the integral (Ampère) of the
magnetic field over any line contour enclosing it. Similarly,
a topological defect in elasticity is measured by the integral
of the deformation field over a closed contour surrounding
it. The closed contour in the actual state is mapped, in the
reference state, into a path that is generally no longer closed.
The mismatch between end points in the reference state also
measures the topological defect. If it is a missing number
of steps, the distance between end points is called Burgers
vector; it identifies a dislocation. If the mismatch involves a
rotation, the defect is a disclination.
In continuous materials, there are three types of topolog-

ical defects, disclination (source of curvature—the Riemann
tensor R), dislocation (source of torsion—the torsion tensor
T), and extra matter [3] (source of non-metricity Q, defined
by Dkgij =Qkij ̸=0, where D is the covariant derivative, and
g is the metric tensor, related in elasticity theory to the strain
tensor e= (1− g)/2 [4]. All these tensors can be expressed in
term of the mapping z(w).
In two-dimensional foams, discrete, random cellular ma-

terials, a disclination is a non-hexagonal cell: an n-sided cell
has topological charge qn = 6− n. The elementary disloca-

1 Not integrable: it depends on the path from an origin.
2 “A function is said to be meromorphic in a region if it is analytic in the
region except at a finite number of poles. The expression is used in contrast
to holomorphic, which is sometimes used instead of analytic” [18], p. 110.

tion (with smallest Burgers vector) is a dipole 5/7.3 Extra
matter consists of additional cell(s), for example through
cell division(s). The first division creates a pair of op-
posite dislocations. Then, one of the dislocations climbs
away from the other through successive divisions (Fig. 1).
Thus, in a cellular material like a biological tissue, growth,
the intrinsic production of extra matter by cellular divi-
sion, is plasticity, the motion (climb) of dislocations, in-
duced by very specific stresses (mitotic pressure and me-
chanical stress caused by overcrowding and rigid boundary
conditions).4 We consider crab moulting as an illustration
[5,6].
Plasticity is a global property of the foam as a cellular

network. Cells are simply the seat of elementary topological
transformations of specific types (T1, T2 in soap froths, cell
division as symmetrical as possible in the crab’s cuticle). At
this level, we take for granted the existence of stable inter-
faces between geometrical cells through interfacial tension
(surfactant in soap froths, magnetic interactions in ferrofluid
foams [7], belt desmosomes for the crab [8]).

2. Cell division, extra matter, and crab moulting

It is well-known that the basal layer of the epidermis (of
mammals), and epithelia (of plants), are two-dimensional
foams, random cellular materials subject to local topological
transformations [9–11]. The renewal of the epidermis of
mammals is a problem of establishing steady state (an
invariant population distribution of n-sided cells, pn, with a
number of cells N fluctuating but bounded above and below)
under the local topological transformations of cell division

3 M.F. Ashby [19] was the first to study the elasticity and plasticity of
ordered cellular solids, notably in terms of topological dislocations.
4 A foam under shear undergoes a more conventional kind of plasticity:
The shear stress creates first, through a T1 transformation, a pair of dislo-
cations. Then, one of the dislocations glides away from the other through
successive T1 [2,9].
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that when rejoined will generate a sheet with one point of angular excess centered between two
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wedge angles. These angles were previously presumed to be less than ⇡ in order to fit with
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‘pointy’ cone. We now allow these angles to increase to ⇡, shrinking the excised diamond to a
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that there are five degrees of freedom corresponding to changes in the excised irregular hexagon:

the climb (`?) and glide (`k) of the displacement ` of the dislocation relative to the Burgers

vector b1 = �b2, the length of the Burgers vector ||b|| and the angles of each wedge (see

Fig. 2).

`? <0

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision
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Fig. 1. Extra matter (additional layer of cells) produced by successive mitoses, i.e. by climb of one dislocation (5/7) from the other; from [5], with permission.
(a) If the first division is symmetrical (6→ 5/5), the tissue remains topologically flat (it has a smooth fold, a ridge (!-shaped) or a groove (V-shaped) between
the two 7-sided cells). (b) If the first division is asymmetric (6→ 4/6), a bump or a dip is produced. (There are no 3-sided cells in mammalian epidermis or in
the crab’s cuticle.)

by a singularity in the mapping. In a two-dimensional foam,
the reference state is a honeycomb. An n ̸= 6-sided cell is a
plastic deformation from the 6-sided, reference cell. It car-
ries a topological charge q= 6− n. The coordinate z of the
reference state is non-holonomic1 in general: it only counts
the number of steps along a path. We will see (Section 4) that
the mapping is from a single-valued, meromorphic function2
of a continuous variable w, into a multivalued, geometrical,
equilateral triangulation.
In classical electromagnetism, a charge is identified by the

integral (Gauss) of the electric field over any contour (a sur-
face) enclosing it; a current, by the integral (Ampère) of the
magnetic field over any line contour enclosing it. Similarly,
a topological defect in elasticity is measured by the integral
of the deformation field over a closed contour surrounding
it. The closed contour in the actual state is mapped, in the
reference state, into a path that is generally no longer closed.
The mismatch between end points in the reference state also
measures the topological defect. If it is a missing number
of steps, the distance between end points is called Burgers
vector; it identifies a dislocation. If the mismatch involves a
rotation, the defect is a disclination.
In continuous materials, there are three types of topolog-

ical defects, disclination (source of curvature—the Riemann
tensor R), dislocation (source of torsion—the torsion tensor
T), and extra matter [3] (source of non-metricity Q, defined
by Dkgij =Qkij ̸=0, where D is the covariant derivative, and
g is the metric tensor, related in elasticity theory to the strain
tensor e= (1− g)/2 [4]. All these tensors can be expressed in
term of the mapping z(w).
In two-dimensional foams, discrete, random cellular ma-

terials, a disclination is a non-hexagonal cell: an n-sided cell
has topological charge qn = 6− n. The elementary disloca-

1 Not integrable: it depends on the path from an origin.
2 “A function is said to be meromorphic in a region if it is analytic in the
region except at a finite number of poles. The expression is used in contrast
to holomorphic, which is sometimes used instead of analytic” [18], p. 110.

tion (with smallest Burgers vector) is a dipole 5/7.3 Extra
matter consists of additional cell(s), for example through
cell division(s). The first division creates a pair of op-
posite dislocations. Then, one of the dislocations climbs
away from the other through successive divisions (Fig. 1).
Thus, in a cellular material like a biological tissue, growth,
the intrinsic production of extra matter by cellular divi-
sion, is plasticity, the motion (climb) of dislocations, in-
duced by very specific stresses (mitotic pressure and me-
chanical stress caused by overcrowding and rigid boundary
conditions).4 We consider crab moulting as an illustration
[5,6].
Plasticity is a global property of the foam as a cellular

network. Cells are simply the seat of elementary topological
transformations of specific types (T1, T2 in soap froths, cell
division as symmetrical as possible in the crab’s cuticle). At
this level, we take for granted the existence of stable inter-
faces between geometrical cells through interfacial tension
(surfactant in soap froths, magnetic interactions in ferrofluid
foams [7], belt desmosomes for the crab [8]).

2. Cell division, extra matter, and crab moulting

It is well-known that the basal layer of the epidermis (of
mammals), and epithelia (of plants), are two-dimensional
foams, random cellular materials subject to local topological
transformations [9–11]. The renewal of the epidermis of
mammals is a problem of establishing steady state (an
invariant population distribution of n-sided cells, pn, with a
number of cells N fluctuating but bounded above and below)
under the local topological transformations of cell division

3 M.F. Ashby [19] was the first to study the elasticity and plasticity of
ordered cellular solids, notably in terms of topological dislocations.
4 A foam under shear undergoes a more conventional kind of plasticity:
The shear stress creates first, through a T1 transformation, a pair of dislo-
cations. Then, one of the dislocations glides away from the other through
successive T1 [2,9].
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A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision

that when rejoined will generate a sheet with one point of angular excess centered between two

points of angle defect (Fig. 2(b)). This excised shaped can be further modified by changing the

wedge angles. These angles were previously presumed to be less than ⇡ in order to fit with

stepped structures, as a large excised angle creates a large angle deficit and an incompatibly

‘pointy’ cone. We now allow these angles to increase to ⇡, shrinking the excised diamond to a

simple slit (Fig. 2(c)). This second structure is notable because it is the first example where no
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that there are five degrees of freedom corresponding to changes in the excised irregular hexagon:

the climb (`?) and glide (`k) of the displacement ` of the dislocation relative to the Burgers

vector b1 = �b2, the length of the Burgers vector ||b|| and the angles of each wedge (see

Fig. 2).

`? <0

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision
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Fig. 1. Extra matter (additional layer of cells) produced by successive mitoses, i.e. by climb of one dislocation (5/7) from the other; from [5], with permission.
(a) If the first division is symmetrical (6→ 5/5), the tissue remains topologically flat (it has a smooth fold, a ridge (!-shaped) or a groove (V-shaped) between
the two 7-sided cells). (b) If the first division is asymmetric (6→ 4/6), a bump or a dip is produced. (There are no 3-sided cells in mammalian epidermis or in
the crab’s cuticle.)

by a singularity in the mapping. In a two-dimensional foam,
the reference state is a honeycomb. An n ̸= 6-sided cell is a
plastic deformation from the 6-sided, reference cell. It car-
ries a topological charge q= 6− n. The coordinate z of the
reference state is non-holonomic1 in general: it only counts
the number of steps along a path. We will see (Section 4) that
the mapping is from a single-valued, meromorphic function2
of a continuous variable w, into a multivalued, geometrical,
equilateral triangulation.
In classical electromagnetism, a charge is identified by the

integral (Gauss) of the electric field over any contour (a sur-
face) enclosing it; a current, by the integral (Ampère) of the
magnetic field over any line contour enclosing it. Similarly,
a topological defect in elasticity is measured by the integral
of the deformation field over a closed contour surrounding
it. The closed contour in the actual state is mapped, in the
reference state, into a path that is generally no longer closed.
The mismatch between end points in the reference state also
measures the topological defect. If it is a missing number
of steps, the distance between end points is called Burgers
vector; it identifies a dislocation. If the mismatch involves a
rotation, the defect is a disclination.
In continuous materials, there are three types of topolog-

ical defects, disclination (source of curvature—the Riemann
tensor R), dislocation (source of torsion—the torsion tensor
T), and extra matter [3] (source of non-metricity Q, defined
by Dkgij =Qkij ̸=0, where D is the covariant derivative, and
g is the metric tensor, related in elasticity theory to the strain
tensor e= (1− g)/2 [4]. All these tensors can be expressed in
term of the mapping z(w).
In two-dimensional foams, discrete, random cellular ma-

terials, a disclination is a non-hexagonal cell: an n-sided cell
has topological charge qn = 6− n. The elementary disloca-

1 Not integrable: it depends on the path from an origin.
2 “A function is said to be meromorphic in a region if it is analytic in the
region except at a finite number of poles. The expression is used in contrast
to holomorphic, which is sometimes used instead of analytic” [18], p. 110.

tion (with smallest Burgers vector) is a dipole 5/7.3 Extra
matter consists of additional cell(s), for example through
cell division(s). The first division creates a pair of op-
posite dislocations. Then, one of the dislocations climbs
away from the other through successive divisions (Fig. 1).
Thus, in a cellular material like a biological tissue, growth,
the intrinsic production of extra matter by cellular divi-
sion, is plasticity, the motion (climb) of dislocations, in-
duced by very specific stresses (mitotic pressure and me-
chanical stress caused by overcrowding and rigid boundary
conditions).4 We consider crab moulting as an illustration
[5,6].
Plasticity is a global property of the foam as a cellular

network. Cells are simply the seat of elementary topological
transformations of specific types (T1, T2 in soap froths, cell
division as symmetrical as possible in the crab’s cuticle). At
this level, we take for granted the existence of stable inter-
faces between geometrical cells through interfacial tension
(surfactant in soap froths, magnetic interactions in ferrofluid
foams [7], belt desmosomes for the crab [8]).

2. Cell division, extra matter, and crab moulting

It is well-known that the basal layer of the epidermis (of
mammals), and epithelia (of plants), are two-dimensional
foams, random cellular materials subject to local topological
transformations [9–11]. The renewal of the epidermis of
mammals is a problem of establishing steady state (an
invariant population distribution of n-sided cells, pn, with a
number of cells N fluctuating but bounded above and below)
under the local topological transformations of cell division

3 M.F. Ashby [19] was the first to study the elasticity and plasticity of
ordered cellular solids, notably in terms of topological dislocations.
4 A foam under shear undergoes a more conventional kind of plasticity:
The shear stress creates first, through a T1 transformation, a pair of dislo-
cations. Then, one of the dislocations glides away from the other through
successive T1 [2,9].
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that there are five degrees of freedom corresponding to changes in the excised hexagon: the

climb and glide of the displacement ` between the two wedges relative to the Burgers vector b,

the length of the Burgers vector ||b|| and the angles of each wedge (see Fig. 2).

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision

that when rejoined will generate a sheet with one point of angular excess centered between two

points of angle defect (Fig. 2(b)). This excised shaped can be further modified by changing the

wedge angles. These angles were previously presumed to be less than ⇡ in order to fit with

stepped structures, as a large excised angle creates a large angle deficit and an incompatibly

‘pointy’ cone. We now allow these angles to increase to ⇡, shrinking the excised diamond to a

simple slit (Fig. 2(c)). This second structure is notable because it is the first example where no

material is excised to perform the kirigami action – only a simple straight-line cut is made. Even

without including any rejoining of the sheet, this style of kirigami has been used to change the
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(a)

(c)
(d)

(b)

Image (a) from N. Rivier, M. F. Miri, C. Oguey, Plasticity and topological defects in cellular 
structures: Extra matter, folds and crab moulting. Colloids Surf. A 263, 39–45 (2005). 
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that there are five degrees of freedom corresponding to changes in the excised irregular hexagon:

the climb (`?) and glide (`k) of the displacement ` of the dislocation relative to the Burgers

vector b1 = �b2, the length of the Burgers vector ||b|| and the angles of each wedge (see

Fig. 2).

`? <0

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision
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Fig. 1. Extra matter (additional layer of cells) produced by successive mitoses, i.e. by climb of one dislocation (5/7) from the other; from [5], with permission.
(a) If the first division is symmetrical (6→ 5/5), the tissue remains topologically flat (it has a smooth fold, a ridge (!-shaped) or a groove (V-shaped) between
the two 7-sided cells). (b) If the first division is asymmetric (6→ 4/6), a bump or a dip is produced. (There are no 3-sided cells in mammalian epidermis or in
the crab’s cuticle.)

by a singularity in the mapping. In a two-dimensional foam,
the reference state is a honeycomb. An n ̸= 6-sided cell is a
plastic deformation from the 6-sided, reference cell. It car-
ries a topological charge q= 6− n. The coordinate z of the
reference state is non-holonomic1 in general: it only counts
the number of steps along a path. We will see (Section 4) that
the mapping is from a single-valued, meromorphic function2
of a continuous variable w, into a multivalued, geometrical,
equilateral triangulation.
In classical electromagnetism, a charge is identified by the

integral (Gauss) of the electric field over any contour (a sur-
face) enclosing it; a current, by the integral (Ampère) of the
magnetic field over any line contour enclosing it. Similarly,
a topological defect in elasticity is measured by the integral
of the deformation field over a closed contour surrounding
it. The closed contour in the actual state is mapped, in the
reference state, into a path that is generally no longer closed.
The mismatch between end points in the reference state also
measures the topological defect. If it is a missing number
of steps, the distance between end points is called Burgers
vector; it identifies a dislocation. If the mismatch involves a
rotation, the defect is a disclination.
In continuous materials, there are three types of topolog-

ical defects, disclination (source of curvature—the Riemann
tensor R), dislocation (source of torsion—the torsion tensor
T), and extra matter [3] (source of non-metricity Q, defined
by Dkgij =Qkij ̸=0, where D is the covariant derivative, and
g is the metric tensor, related in elasticity theory to the strain
tensor e= (1− g)/2 [4]. All these tensors can be expressed in
term of the mapping z(w).
In two-dimensional foams, discrete, random cellular ma-

terials, a disclination is a non-hexagonal cell: an n-sided cell
has topological charge qn = 6− n. The elementary disloca-

1 Not integrable: it depends on the path from an origin.
2 “A function is said to be meromorphic in a region if it is analytic in the
region except at a finite number of poles. The expression is used in contrast
to holomorphic, which is sometimes used instead of analytic” [18], p. 110.

tion (with smallest Burgers vector) is a dipole 5/7.3 Extra
matter consists of additional cell(s), for example through
cell division(s). The first division creates a pair of op-
posite dislocations. Then, one of the dislocations climbs
away from the other through successive divisions (Fig. 1).
Thus, in a cellular material like a biological tissue, growth,
the intrinsic production of extra matter by cellular divi-
sion, is plasticity, the motion (climb) of dislocations, in-
duced by very specific stresses (mitotic pressure and me-
chanical stress caused by overcrowding and rigid boundary
conditions).4 We consider crab moulting as an illustration
[5,6].
Plasticity is a global property of the foam as a cellular

network. Cells are simply the seat of elementary topological
transformations of specific types (T1, T2 in soap froths, cell
division as symmetrical as possible in the crab’s cuticle). At
this level, we take for granted the existence of stable inter-
faces between geometrical cells through interfacial tension
(surfactant in soap froths, magnetic interactions in ferrofluid
foams [7], belt desmosomes for the crab [8]).

2. Cell division, extra matter, and crab moulting

It is well-known that the basal layer of the epidermis (of
mammals), and epithelia (of plants), are two-dimensional
foams, random cellular materials subject to local topological
transformations [9–11]. The renewal of the epidermis of
mammals is a problem of establishing steady state (an
invariant population distribution of n-sided cells, pn, with a
number of cells N fluctuating but bounded above and below)
under the local topological transformations of cell division

3 M.F. Ashby [19] was the first to study the elasticity and plasticity of
ordered cellular solids, notably in terms of topological dislocations.
4 A foam under shear undergoes a more conventional kind of plasticity:
The shear stress creates first, through a T1 transformation, a pair of dislo-
cations. Then, one of the dislocations glides away from the other through
successive T1 [2,9].

 

M

M
V

V

2
4

5̃
7̃

d

e1

e2

�̃�

�1

�2

�3

`

b

Figure 1: [This is not the final figure.] l lk l? b1 b2 A kirigami cut, as previously introduced.
CITE? Five degrees of freedom are shown show all d.o.f.

Results

Generalizing kirigami: area-preserving kirigami

There are natural generalizations of our earlier kirigami cutting patterns that make the kirigami

structures more versatile while still remaining in the kirigami rubric. Looking at Fig. 1(a), note Note that
we’re
going to
have to
replace
these fig
references
with hard-
coded
references
to, e.g.
”Fig. 1”,
etc.

that there are five degrees of freedom corresponding to changes in the excised hexagon: the

climb and glide of the displacement ` between the two wedges relative to the Burgers vector b,

the length of the Burgers vector ||b|| and the angles of each wedge (see Fig. 2).

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision

that when rejoined will generate a sheet with one point of angular excess centered between two

points of angle defect (Fig. 2(b)). This excised shaped can be further modified by changing the

wedge angles. These angles were previously presumed to be less than ⇡ in order to fit with

stepped structures, as a large excised angle creates a large angle deficit and an incompatibly

‘pointy’ cone. We now allow these angles to increase to ⇡, shrinking the excised diamond to a

simple slit (Fig. 2(c)). This second structure is notable because it is the first example where no

material is excised to perform the kirigami action – only a simple straight-line cut is made. Even

without including any rejoining of the sheet, this style of kirigami has been used to change the

4

M

M
V

V

2
4

5̃
7̃

d

e1

e2

�̃�

�1

�2

�3

`

b

Figure 1: [This is not the final figure.] l lk l? b1 b2 A kirigami cut, as previously introduced.
CITE? Five degrees of freedom are shown show all d.o.f.

Results

Generalizing kirigami: area-preserving kirigami

There are natural generalizations of our earlier kirigami cutting patterns that make the kirigami

structures more versatile while still remaining in the kirigami rubric. Looking at Fig. 1(a), note Note that
we’re
going to
have to
replace
these fig
references
with hard-
coded
references
to, e.g.
”Fig. 1”,
etc.

that there are five degrees of freedom corresponding to changes in the excised hexagon: the

climb and glide of the displacement ` between the two wedges relative to the Burgers vector b,

the length of the Burgers vector ||b|| and the angles of each wedge (see Fig. 2).

A simple variation sets the climb and glide to zero, resulting in a diamond-shaped excision

that when rejoined will generate a sheet with one point of angular excess centered between two

points of angle defect (Fig. 2(b)). This excised shaped can be further modified by changing the

wedge angles. These angles were previously presumed to be less than ⇡ in order to fit with

stepped structures, as a large excised angle creates a large angle deficit and an incompatibly

‘pointy’ cone. We now allow these angles to increase to ⇡, shrinking the excised diamond to a

simple slit (Fig. 2(c)). This second structure is notable because it is the first example where no

material is excised to perform the kirigami action – only a simple straight-line cut is made. Even

without including any rejoining of the sheet, this style of kirigami has been used to change the

4

(a)

(c)
(d)

(b)

Material lost or gained in the dislocation

material loss material gain

gain through dislocation = loss from wedgesno loss through dislocation



Material neutral cuts

Material lost (wedges)

Material gained 
(negative climb)

=



5
5

7

7

Material neutral cuts

z cuts (similar to z-plasty used by plastic surgeons)



General result:

• any cut made in the lattice, 
• followed by any consistent addition or 

removal of material, 
• followed by any manner of rejoining the 

cut edges

is (additive lattice) kirigami



Combining additive and subtractive 
kirigami elements

subtractive
additive



Slit-cut kirigami

   

    

(a) (c)(b)

e f gd

follows the rules of reglueing boundaries



 

  

 

(a)

(c) (d)

(b)

 



Creating curvature by glueing together 
mismatched shapes

The dream

The reality



Flat plane to high genus





from RCSR from epinet

{6,6} tiling on the D surfacecristobalite/pyrochlore

our image

Coxeter-Petrie regular skew polyhedron 
{6,6|3} from schoengeometry.com

ours

http://schoengeometry.com


recall…

The dream

The reality



(flat) plane diamond packing vertex arrangements

3 4 5 6

























this time look at the numbers



3
2

4

5

4

4

4 4 4

44

4
5 5

5
3

3

33

3

3

3 3

3

3

2 2 2 2

2

22

2

2

2
1

1

1

4

4
3

4

3

4

3

we can interpret our height-labelled diamond packing as a non-
overhanging cube packing viewed from the 111 direction
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