Workshop on "Geometric aspects of materials science"

Topological Data Analysis on Materials Science

Yasu Hiraoka

WPI-AIMR, Tohoku University

Supported by

JST CREST SIP Structural Materials for Innovation JST Innovation Hub MI^2I, NIMS NEDO

Materials TDA

Supported by AIMR, CREST, SIP, MI^2I, NEDO

New math: Persistent homology

Edelsbrunner & Mücke '94

X4

X5

Хз

X2

Alpha filtration

- $X = \{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\}$: point cloud
- $\mathbf{R}^m = \cup_i V_i$: Voronoi decomp.
- $\cup_i B_i(r) = \cup_i (B_i(r) \cap V_i)$
- Alpha shape $\mathcal{A}(X, r)$: dual of $\{B_i(r) \cap V_i \mid i = 1, ..., n\}$ (simplicial complex)

• Nerve theorem: $\cup_i B_i(r) \simeq \mathcal{A}(X, r)$

easy to analyze by computers

• $\mathcal{A}(X, r) \subset \mathcal{A}(X, s)$ for r < s

filtration: changing resolution

Edelsbrunner, Letscher, Zomorodian, Carlsson, de Silva

Persistent homology of digital image

- sub-level set $X_h := \{x \in X \mid f(x) \le h\}$
- fattening $X_{h_1} \subset X_{h_2} \subset \cdots \subset X_{h_T}$ by $h_1 \leq h_2 \leq \cdots \leq h_T$

2. Spatial persistence

black-white image

Characterize grayscale/spatial persistent holes in images

Hierarchical Structural Analysis of Silica Glass with Nakamura, Hirata, Escolar, Matsue, Nishiura PNAS (2016) CREST TDA, SIP

MD and PD₁

Inverse Analysis

- Glass contains curves in PD
- Curves express geometric constraints (orders) of atomic configurations
- Inverse analysis reveals hierarchical ring structures
- PD multi-scale analysis characterizes inter-tetrahedral O-O orders (curve Co)
- universal tool for structural analysis

Densified silica glass in high pressure and temperature with Kohara (NIMS), Hirata, Obayashi (AIMR) MI^2I (Innovation Hub), CREST TDA

- PDs become sharper like PP, and show the increase of packings of oxygens at high temp.
- Oxygen PDs ascribe for the first time O-O ordering between different SiO4 tetrahedra to PP
- The geometric origin of PP ordering is coesitelike rings

Craze formation of polymers

with Ichinomiya, Obayashi PRE (2017) SIP, NEDO

detect large voids from PD movie as generators with large death values

• explore initial config. of large voids by reversing time with inverse PD method

large voids are generated by coalescence of micro voids (void percolation)

Background

- PDs are good descriptors for disordered systems
- Want to extract statistical features encoded in dataset of PDs
- Vectorization of PDs are necessary for applying machine learnings (persistence landscape, persistence image, PSSK, PWGK, etc)
- Want to study the original data space (inverse problems)

Study linear machine learning models based on persistence diagrams Vectorization: persistence image Linear ML: Logistic regression, Linear regression (LASSO/RIDGE)

- explanatory variable $x \in \mathbf{R}^n$: (vectorized) persistence diagram
- response variable $y \in \mathbf{R}$: conductivity, elasticity, crack area, etc
- Learned vector w can be expressed by PD (called learned PD)

showing relevant generators in PDs to the response variable
inverse of those generators explicitly shows relevant geometric features
Suppress overfitting:

LASSO PD: $R(w) = ||w||_1$ (sparse PD analysis)

RIDGE PD:
$$R(w) = \frac{1}{2}||w||_2^2$$

(nice math property)

Logistic regression of persistent homology

Logistic regression:

Given a training set $\{(x_i, y_i) : x_i \in \mathbf{R}^n, y_i \in \{0, 1\}\}_{i=1}^M$,

find optimal $w \in \mathbf{R}^n$ and $b \in \mathbf{R}$ for the model

 $P(y = 1 | w, b) = g(w \cdot x + b),$ $P(y = 0 | w, b) = 1 - P(y = 1 | w, b) = g(-w \cdot x - b),$

find the minimizer

$$L(w,b) = -\frac{1}{M} \sum_{i=1}^{M} \{y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i)\} + \lambda R(w)$$
$$\hat{y}_i = g(w \cdot x_i + b)$$

- explanatory variable $x \in \mathbf{R}^n$: (vectorized) persistence diagram
- response variable $y \in \{0, 1\}$: (binary) classification
- Learned vector w can be expressed by PD (called learned PD)

generators in PDs with its inverse identify the relevant geometric features for classification

Suppress overfitting:

LASSO PD: $R(w) = ||w||_1$ (sparse PD analysis)

RIDGE PD: $R(w) = \frac{1}{2}||w||_2^2$ (nice math property)

Classification result (mean accuracy) = 100%

Geometric features contributing for classification (via inverse prob.)

Performance of LASSO/RIDGE logistic regressions: Easy example

RIDGE/LASSO learned PDs and overfitting parameters <RIDGE>

sparse persistence diagram shows most effective generators for learning

Performance of logistic regressions: Hard example

Classification result (mean accuracy) = 92%

RIDGE learned PDs and overfitting parameters

<RIDGE>

(complex)

(simple) λ

Performance comparison

Method	Mean accuracy
PI, logistic regression, ℓ^2 -penalty	0.92
PI, SVM classifier with RBF kernel	0.935
Bag of keypoints using sift with grid sampling, SVM classifier with χ^2 kernel	0.85
# of connected components of black pixels	0.73
# of connected components of white pixels	0.50
# of white pixels	0.50

- random images with parameters $S = 0, \ldots, 9$
- \bullet predict S from the learned PD

Conclusion

- Persistence diagrams (PD) can be a promising descriptor for materials structural analysis
- PD accepts standard inputs in materials science (point cloud and digital images)
- The software HomCloud enables an easy access to PD
- Combination of PD and ML provides a new and powerful tool for materials informatics

THANK YOU