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Fig. 1 left) 3D visualisation of a partially crystallised packing
containing 200,000 beads. right) MegaTwo

opents in topological data analysis has resulted in new tools
that allows us to interrogate the geometry, topology and me-
chanics of granular systems at the grain scale? ? ? .

In this paper we demonstrate that new ideas associated with
computational topology provide an efficient, robust and faith-
ful approach to implementing tractable models to decipher
the complexity of the spatial structures of the configurational
space of granular systems. More specifically, we present a
novel topological characterisation tool, Persistent Homology
(PH), to study dense granular systems. We show that PH
is able to explore and characterise the configurational phase
space of disordered and partially ordered macroscopic gran-
ular systems by identifying key features specific to granular
systems.

We first detail the experimental systems and the imaging
procedure followed by the mathematical description of the
persistent homology, and in particular its application for gran-
ular systems.

2 Experiment and methodology

In this section we briefly present the experimental procedure
and the tools that we utilise to acquire experimental data. Fur-
ther we describe the underlying mathematical technique to in-
terrogate the experimental data to reveal hidden topological
structure in data.

2.1 Experimental

We analyse two sets of experimental granular packings each
containing over 150,000 monosized acrylic beads (diameter d
= 1 mm, polydispersity = 0.025 mm): i) a partially ordered
packing produced using a vibrational protocol with a pack-
ing density of f = 0.685 (see Fig. ??a) and ii) a fully dis-
ordered packing produced by pouring beads into a cylindri-
cal container with a packing density of f = 0.635 (see Fig.
??b). Details of the experimental procedure can be found

elsewhere? ? . Our experiments harness X-ray Computed To-
mography (XCT) and three-dimensional (3D) image analysis
to accurately determine grain centres with the precision of
(< 10�3µm) and grain’s diameter with precisions greater than
⇡ 10�2µm? .

Figure ??(a) shows a 3D rendering of such a partially crys-
tallized structure. The bright regions correspond to locally dis-
ordered aggregates of beads; a disordered core and boundaries
between different crystal domains are thus highlighted. Both
random and crystalline phases coexist in the packing. Figure
??(b) shows the disordered packing.

Helical XCT is utilised to image the internal 3D structure of
the packings with a spatial resolution of 30 microns? ? ? . Our
analyses have been carried out over the entire packing struc-
ture as well as over non-overlapping cubical subsets each con-
taining 4000 beads. These subsets are from the inner region of
the packings, four sphere diameters away from the container
walls. Contrary to the disordered packing, the partially or-
dered packing shows spatial structural heterogeneity (see Fig
??a). Subsets from the partially ordered packing have a wide
range of volume fractions ranging from f = 0.58 to f = 0.73.

2.2 Persistant Homology

Persistent homology? is a technique for quantifying topolog-
ical structures in data? ? . In the past ten years it has become
an increasingly useful tool for studying shape in application
areas from dynamical systems? ? to high-dimensional data-
mining? ? to digital images? ? ? ? . Homology is an algebraic
tool for studying topological structure. The sizes of the ho-
mology groups are called the Betti numbers and these quan-
tify connectivity in each dimension. For objects embedded in
three-dimensional space, the 0-dimensional Betti number, b0
is the number of pieces the object has, b1 is the number of
independent 1-dimensional loops through the space, and b2
counts the number of enclosed voids in the object. Persistent
homology extends traditional homology by tracking how the
homology groups change as an object grows.

Each homology class has two values, which are calcuated
by varying a filtration parameter associated with it (see Sup-
plimental): a birth value and a death value. It is common
practice to represent this information in a Persistence Diagram
(PD) for each dimension of homology. PDk contains all pairs
(b,d), b  d, associated with a persistent homology class in
dimension k.

The bead packing data is specified by coordinates for the
centre of each bead (and its radius), extracted from micro-CT
images. For simplicity, assume the beads are mono-disperse,
with radius r = 0.5mm, and consider the union of balls of ra-
dius a growing around each bead centre, X(a) =

S
B(x,a).

The topology of X(a) is conveniently captured by the alpha
shape, a subset of the Delaunay tessellation (DT) (see Suppli-
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New math: Persistent homology

- each point (called generator) in PD expresses a hole in data 
- birth & death axes measure shapes of holes 
- points close to diagonal are noisy 
- points away from diagonal are robust

Persistence diagram of point cloud
Fattening (filtration)
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・characterize holes in data 
・describe number, size, and shapes 
・multi-scale analysis

Note: 2D histogram uncovers further geometry

inverse



Alpha filtration
Edelsbrunner & Mücke ‘94

: Voronoi decomp.

A(X, r) : dual of {Bi(r) � Vi | i = 1, . . . , n}Alpha shape

X2

X1

X3 X4

X5

X6

(simplicial complex)

X = {xi � Rm | i = 1, . . . , n}

Rm = [iVi

[iBi(r) = [i(Bi(r) \ Vi)

A(X, r) � A(X, s) for r < s

Nerve theorem: [iBi(r) ' A(X, r)
easy to analyze by computers

 filtration:  
changing resolution 

: point cloud



Persistent homology, diagram

filtration X : X1 � X2 � · · · � Xn

persistent homology

X1 X2 X4X3 X5

Edelsbrunner, Letscher, Zomorodian, Carlsson, de Silva

21 nrepresentations on An

H`(X ) : H`(X1) ! H`(X2) ! · · · ! H`(Xn)

Dk(X ) = {(bi, di) � R2
�0 : i = 1, . . . , p}

birth

death

b

d

persistence diagram

interval decomposition (Gabriel Thm, fin.gen. PID module)

I[b, d] : 0� · · ·� 0� K � · · ·� K � 0� · · ·� 0
Xb Xdat at

H`(X ) '
sM

i=1

I[bi, di]

H1(X ) ' I[3, 4]

Each interval represents birth & death of a topological feature

d - b : lifetime (or persistence)



Persistent homology of digital image

1. Grayscale persistence 2. Spatial persistence
grayscale

gray scale 
digital image

Xh := {x ∈ X | f(x) ≤ h}
Xh1 � Xh2 � · · · � XhT

h1  h2  · · ·  hT

sub-level set
fattening 
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Characterize grayscale/spatial persistent holes in images

Persistence diagram of digital images

birth scale = b death scale = d



Inverse AnalysisMD and PD1

Hierarchical Structural Analysis of Silica Glass
with Nakamura, Hirata, Escolar, Matsue, Nishiura      PNAS (2016)   CREST TDA, SIP
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Glass contains curves in PD
Curves express geometric constraints  
(orders) of atomic configurations
Inverse analysis reveals hierarchical ring 
structures
PD multi-scale analysis characterizes 
inter-tetrahedral O-O orders (curve Co)
universal tool for structural analysis
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Densified silica glass in high pressure and temperature

PP of O-O correlation becomes 
sharp with increasing 
temperature

inter-tetrahedral O-O 
ordering in 7.7GPa, 1200℃

ordering of oxygen  
in coesite

with Kohara (NIMS), Hirata, Obayashi (AIMR)      MI^2I (Innovation Hub), CREST TDA

what is the geometric origin?

conventional methods could 
not explain this behavior

Oxygen PDs ascribe for the first time O-O 
ordering between different SiO4 tetrahedra to PP
The geometric origin of PP ordering is coesite-
like rings

Black: 7.7Gpa, RT 
Red: 7.7GPa, 400℃ 
Blue: 7.7GPa, 1200℃ PDs become sharper like PP, and show the 

increase of packings of oxygens at high temp.



Kremer-Grest  model

uniaxial deformation

void coalescence during craze formation
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detect large voids from PD movie as generators with large death values

PD movie

explore initial config. of large voids by reversing time with inverse PD method

- gray voids are large voids observed after yielding 
- color voids are initial micro voids generating large voids

large voids are generated by coalescence of micro voids (void percolation)

Craze formation of polymers 
with Ichinomiya, Obayashi   PRE (2017)        SIP, NEDO



Background

Statistical inverse analysis on persistence diagram

Want to extract statistical features encoded in dataset of PDs
Vectorization of PDs are necessary for applying machine learnings 
(persistence landscape, persistence image, PSSK, PWGK, etc)

Dataset of inputs Dataset of PDs Machine learning

- PCA 
- Regression 
- Anomaly detection 
- Time series 
- etc

Want to study the original data space (inverse problems)

Study linear machine learning models based on persistence diagrams
Vectorization: persistence image
Linear ML: Logistic regression, Linear regression (LASSO/RIDGE)

with Obayashi (AIMR)     arXiv:1706.10082   CREST TDA, SIP, NEDO, MI^2

PDs are good descriptors for disordered systems



Linear regression of persistent homology 

Linear regression:
Given a training set                                                ,  
find optimal              and           for the model 

y = w · x+ b+ (noise)

{(xi, yi) : xi 2 Rn
, yi 2 R}Mi=1

w 2 Rn b 2 R

find the minimizer
x1 x2 xM

yM

y2

y1

y = w · x+ bFind 

Learned vector     can be expressed by PD (called learned PD)

explanatory variable             : (vectorized) persistence diagramx 2 Rn

response variable           : conductivity, elasticity, crack area, etcy 2 R

w

showing relevant generators in PDs to the response variable
inverse of those generators explicitly shows relevant geometric features

Suppress overfitting:
LASSO PD: RIDGE PD: R(w) = ||w||1 R(w) =

1

2
||w||22

(sparse PD analysis) (nice math property)

with Obayashi (AIMR)     arXiv:1706.10082

E(w, b) =
1

2M

MX

i=1

(w · xi + b� yi)
2 + �R(w)



Given a training set                                                     ,  
find optimal              and           for the model 

Logistic regression of persistent homology 

L(w, b) = � 1

M

MX

i=1

{yi log ŷi + (1� yi) log(1� ŷi)}+ �R(w)

ŷi = g(w · xi + b)

Logistic regression:
{(xi, yi) : xi 2 Rn

, yi 2 {0, 1}}Mi=1

w 2 Rn b 2 R

find the minimizer

g(z) = 1/(e�z + 1)
P (y = 1 | w, b) = g(w · x+ b),

P (y = 0 | w, b) = 1� P (y = 1 | w, b) = g(�w · x� b),

Learned vector     can be expressed by PD (called learned PD)

explanatory variable             : (vectorized) persistence diagramx 2 Rn

response variable                 : (binary) classification
w

y 2 {0, 1}

generators in PDs with its inverse identify the relevant geometric  
features for classification

Suppress overfitting:
LASSO PD: RIDGE PD: R(w) = ||w||1 R(w) =

1

2
||w||22

(sparse PD analysis) (nice math property)



Performance of RIDGE logistic regressions: Easy example

Model A (200 trainings, 100 tests) Model B (200 trainings, 100 tests)

y = 0 y = 1

Classification result (mean accuracy) = 100%



Performance of RIDGE logistic regressions: Easy example

Red (resp. blue) generators 
contribute to 1 (resp. 0) for 
classification

(a)

(c-1) (c-2) (c-3) (c-4)

(b)

(a)

(c-1) (c-2) (c-3) (c-4)

(b)

Geometric features contributing for classification (via inverse prob.)

Learned persistence diagram and its thresholding (with RIDGE)

P (y = 1 | w, b) = g(w · x+ b),

P (y = 0 | w, b) = 1� P (y = 1 | w, b) = g(�w · x� b),

g(z) = 1/(e�z + 1)Logistic regression model:

with Obayashi (AIMR)     arXiv:1706.10082



(simple)

Performance of LASSO/RIDGE logistic regressions: Easy example

(a) (b) (c)

<LASSO>

<RIDGE>
RIDGE/LASSO learned PDs and overfitting parameters

�(complex)

sparse persistence diagram shows most effective generators for learning



Performance of logistic regressions: Hard example

Classification result (mean accuracy) = 92%



(simple)

Performance of RIDGE logistic regressions: Hard example

<RIDGE>

RIDGE learned PDs and overfitting parameters

�(complex)

(a) (b)

(cross validation)



Performance comparison

Method Mean accuracy

PI, logistic regression, `2-penalty 0.92

PI, SVM classifier with RBF kernel 0.935

Bag of keypoints using sift with grid sampling, SVM

classifier with �2
kernel

0.85

# of connected components of black pixels 0.73

# of connected components of white pixels 0.50

# of white pixels 0.50



(a) (b)

(c) (d)

(a) (b)

(c) (d)

Performance of linear regressions

(a)

(b)

random images with parameters                    

predict     from the learned PD

S = 0, . . . , 9

S

PI-RIDGE 
(score=0.86)

PI-LASSO 
(score=0.86)

Both-RIDGE 
(score=0.93)

Both-LASSO 
(score=0.94)



Conclusion

Persistence diagrams (PD) can be a promising 
descriptor for materials structural analysis

The software HomCloud enables an easy access to PD

Combination of PD and ML provides a new and powerful 
tool for materials informatics

PD accepts standard inputs in materials science 
(point cloud and digital images) 

THANK YOU


