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Modèles d’environnements

& planification de trajectoire

Delaunay (2 séances)
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Triangulations...
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Triangulation of a planar point set

Maximal family of
non-crossing segments
with endpoints in the set.

= covering of the convex hull
by (non-flat) triangles
with disjoint interiors.

A point set has many different triangulations.

They share some properties (e.g. size)...

... but some triangulations are better than others.
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Nontrivial, connected planar graphs
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Nontrivial, connected planar graphs

Triangulations are planar (family of non-crossing segments)

and connected (maximal families).

satisfy Euler’s relation.

t = # triangles

k = # vertices on the convex hull

n− e+ (t+ 1) = 2

k + 3t = 2e

Vertic
es

Edges
Faces

n e f = 2− +

t = 2n− k − 2 < 2n
e = 3n− k − 3 < 3n
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Nontrivial, connected planar graphs

Triangulations are planar (family of non-crossing segments)

and connected (maximal families).

satisfy Euler’s relation.

t = # triangles

k = # vertices on the convex hull

n− e+ (t+ 1) = 2

k + 3t = 2e

Vertic
es

Edges
Faces

n e f = 2− +

t = 2n− k − 2 < 2n
e = 3n− k − 3 < 3n

∑
p∈S

d◦(p) = 2e = 6n− 2k − 6

E(d◦(p)) = 1
n

∑
p∈S

d◦(p) < 6

average on the choice of point p in set of points S
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Delaunay...
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Delaunay Triangulation
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Delaunay Triangulation
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Delaunay Triangulation

• Tool: pencils of circles
• Definition: empty circle property
• Applications (practical and theoretical)
• Angle property, predicate

• AlgorithmS
• Lower bounds, 3D...
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Faisceaux de cercles
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Delaunay Triangulation: pencils of circles

Circle equation

x2 + y2 − 2ax− 2by + c = 0

x2 + y2 − 2a′x− 2b′y + c′ = 0

Another circle equation

Pencil of circles

α · (x2 + y2 − 2ax− 2by + c)

+β · (x2 + y2 − 2a′x− 2b′y + c′) = 0

A special ”circle: the radical axis

α = −β
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Imagine moving circles
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Delaunay Triangulation: pencils of circles

Imagine moving circles

fixed center

increasing radius

Cocentric pencil
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Delaunay Triangulation: pencils of circles

Imagine moving circles

two fixed points

radical axis

Pencil with base points
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Delaunay Triangulation: pencils of circles

Imagine moving circles

two fixed points

Pencil with limit points

radical axis

orthogonal
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Delaunay Triangulation: pencils of circles
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Delaunay Triangulation: pencils of circles

Imagine moving circles

a point on a line

radical axis Pencil with tangent point
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Delaunay Triangulation: pencils of circles

Imagine moving circles

a point on a line

radical axis Pencil with tangent point

orthogonal
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Définition de Delaunay

par la propriété du cercle vide
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Delaunay Triangulation: definition, empty circle property
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Delaunay Triangulation: definition, empty circle property

Point set

Query

Nearest neighbor
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Delaunay Triangulation: definition, empty circle property

Point set
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Voronoi diagram
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Delaunay Triangulation: definition, empty circle property

Point set

Empty circle property

Delaunay triangulation
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The Delaunay triangulation of a planar point set P
in general position is defined by (pick your favorite):

. every pair with the empty circle property forms an edge

. every triple with the empty circle property forms a triangle
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Un petit exercice...
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Quelques applications (pratiques)



18 - 1

Reconstruction

Input: a set of points on an unknown curve

Teaser reconstruction lecture
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Reconstruction

Input: a set of points on an unknown curve

Output: the curve (the points in order along the curve)
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Teaser reconstruction lecture



19 - 1

Reconstruction 3D

Input: a set of points on an unknown surface

Output: the surface (a triangulation of the points approximating the surface)

Teaser reconstruction lecture



19 - 2

Reconstruction 3D

Input: a set of points on an unknown surface

Output: the surface (a triangulation of the points approximating the surface)

If good sampling, ouput ∈ Delaunay

Teaser reconstruction lecture



19 - 3

Reconstruction 3D
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Teaser reconstruction lecture
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Reconstruction 3D
Teaser reconstruction lecture
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Meshing



20 - 2

Meshing

sharp features
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Quelques applications algorithmiques
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Delaunay Triangulation: Nearest Neighbor Graph
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Delaunay Triangulation: Nearest Neighbor Graph

Has max degree 5

p = NN(q)

Not here: q better than p

Not here since p = NN(q)

Places for q′ such that NN(q′) = p ?

q

⇒ Not here ⇒ q̂pq′ > 2π
6

2π
6
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Delaunay Triangulation: Nearest Neighbor Graph

Has max degree 5

p = NN(q)

Not here: q better than p

Not here since p = NN(q)

Places for q′ such that NN(q′) = p ?

q

⇒ Not here ⇒ q̂pq′ > 2π
6

2π
6

⇒ degree is smaller than 6
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Delaunay Triangulation: EMST
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Delaunay Triangulation: EMST

A spanning tree
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Delaunay Triangulation: EMST

Another spanning tree
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Delaunay Triangulation: EMST

The Euclidean Minimum-length Spanning Tree

is included in Delaunay

Proof:

Choose an edge of EMST
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Delaunay Triangulation: EMST

Proof:

Split points

Is diametral circle empty ? assume ∃ blue point inside
better spanning tree

Empty circle =⇒
The edge is in Delaunay triangulation
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Delaunay Triangulation: EMST

Proof:

Split points

Is diametral circle empty ?

Empty circle =⇒
The edge is in Delaunay triangulation

Adding a red blue-edge create a cycle =⇒
The edge is the shortest red-blue edge
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Delaunay Triangulation: EMST

Algorithm
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Delaunay Triangulation: EMST

Algorithm
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Delaunay Triangulation: EMST

Algorithm choose shorter purple edge
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Delaunay Triangulation: EMST
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Delaunay Triangulation: EMST

Algorithm choose shorter purple edge

O(n log n) after Delaunay

Complexity
after Delaunay?
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Delaunay & angles
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Delaunay Triangulation: max-min angle
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Triangulation Delaunay
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Delaunay Triangulation: max-min angle

Triangulation Delaunay

smallest angle

second smallest angle
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Delaunay Triangulation: max-min angle

Proof
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Delaunay Triangulation: max-min angle

Delaunay edge
Definition



27 - 3

Delaunay Triangulation: max-min angle

Delaunay edge

∃ empty circle

Definition
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Delaunay Triangulation: max-min angle

Delaunay edgelocally w.r.t. a triangulation
Definition
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Delaunay Triangulation: max-min angle

Delaunay edgelocally w.r.t. a triangulation

∃ circle

not enclosing the two neighbors

Definition

neighbor = visible from the edge
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Delaunay Triangulation: max-min angle

Lemma (∀ edge: locally Delaunay) ⇐⇒ Delaunay
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Delaunay Triangulation: max-min angle

Lemma (∀ edge: locally Delaunay) ⇐⇒ Delaunay

Proof:

choose an edge

edges of the quadrilateral

are locally Delaunay

Vertices visible through one edge are outside circle
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Delaunay Triangulation: max-min angle

Lemma (∀ edge: locally Delaunay) ⇐⇒ Delaunay

Proof:

choose an edge

edges of the quadrilateral

are locally Delaunay

Vertices visible through one edge are outside circle

Induction → all vertices outside circle
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Delaunay Triangulation: max-min angle

Lemma For four points in convex position

Delaunay ⇐⇒ maximize the smallest angle

Two possible triangulation
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Delaunay Triangulation: max-min angle

Lemma For four points in convex position

Delaunay ⇐⇒ maximize the smallest angle

Case 1: smallest angle in corner

δ
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Delaunay Triangulation: max-min angle

Lemma For four points in convex position

Delaunay ⇐⇒ maximize the smallest angle

Case 1: smallest angle in corner

∃ a smaller angle ∈ other triangulation

δ
< δ
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Delaunay Triangulation: max-min angle

Lemma For four points in convex position

Delaunay ⇐⇒ maximize the smallest angle

Case 2: smallest angle

δ
along diagonal
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Delaunay Triangulation: max-min angle

Lemma For four points in convex position

Delaunay ⇐⇒ maximize the smallest angle

Case 2: smallest angle

δ
along diagonal

δ
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Delaunay Triangulation: max-min angle

Lemma For four points in convex position

Delaunay ⇐⇒ maximize the smallest angle

Case 2: smallest angle

∃ a smaller angle ∈ other triangulation

δ

< δ

along diagonal

δ
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Delaunay Triangulation: max-min angle

Map: Triangulations −→ R6n−3k−4 smallest angle α1
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Delaunay Triangulation: max-min angle

Map: Triangulations −→ R6n−3k−4 smallest angle α1

second smallest angle α2
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Delaunay Triangulation: max-min angle

Map: Triangulations −→ R6n−3k−4 smallest angle α1

second smallest angle α2

third smallest angle α3
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Delaunay Triangulation: max-min angle

Map: Triangulations −→ R6n−3k−4 smallest angle α1

second smallest angle α2

third smallest angle α3
(α1, α2, α3, . . . , α6n−3k−4)
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Delaunay Triangulation: max-min angle

Map: Triangulations −→ R6n−3k−4 smallest angle α1

second smallest angle α2

third smallest angle α3
(α1, α2, α3, . . . , α6n−3k−4)

sort triangulations in lexicographic order
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Delaunay Triangulation: max-min angle

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)
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Delaunay Triangulation: max-min angle

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:
Let T be the triangulation maximizing angles
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Delaunay Triangulation: max-min angle

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:
Let T be the triangulation maximizing angles

=⇒ ∀ convex quadrilateral (from 2 triangles ∈ T )

the diagonal maximizes smallest angle (in quad)
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Delaunay Triangulation: max-min angle

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:
Let T be the triangulation maximizing angles

=⇒ ∀ convex quadrilateral (from 2 triangles ∈ T )

the diagonal maximizes smallest angle (in quad)

=⇒ ∀ edge, it is locally Delaunay



31 - 5

Delaunay Triangulation: max-min angle

Theorem:

Delaunay maximizes minimum angles (in lexicographic order)

Proof:
Let T be the triangulation maximizing angles

=⇒ ∀ convex quadrilateral (from 2 triangles ∈ T )

the diagonal maximizes smallest angle (in quad)

=⇒ ∀ edge, it is locally Delaunay

=⇒ T = Delaunay
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Indisk predicate
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Convex hull Orientation predicate

v

w
nvwn + ?

∣∣∣∣ xw − xv xn − xv
yw − yv yn − yv

∣∣∣∣ =
∣∣∣∣∣∣
1 1 1
xv xw xn
yv yw yn

∣∣∣∣∣∣ > 0

v

w

n

vwn - ?∣∣∣∣∣∣
1 1 1
xv xw xn
yv yw yn

∣∣∣∣∣∣ < 0

v

w

n

vwn 0 ?

∣∣∣∣∣∣
1 1 1
xv xw xn
yv yw yn

∣∣∣∣∣∣ = 0

Delaunay Triangulation: indisk predicate
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Delaunay Triangulation: indisk predicate

pqr ccw triangle

p
q

r

query s
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Delaunay Triangulation: indisk predicate

pqr ccw triangle

p
q

r

query s

s

inside circumcircle
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Delaunay Triangulation: indisk predicate

pqr ccw triangle

p
q

r

query s

s

cocircular
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Delaunay Triangulation: indisk predicate

pqr ccw triangle

p
q

r

query s

s

outside circumcircle
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Delaunay Triangulation: indisk predicate

pqr ccw triangle

p
q

r

query s
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Delaunay Triangulation: indisk predicate

Space of circles

p = (x, y) p? = (x, y, x2 + y2)
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Delaunay Triangulation: indisk predicate

Space of circles

p = (x, y) p? = (x, y, x2 + y2)

C : x2 + y2 − 2ax− 2by + a2 + b2 − r2 = 0

 C† : z − 2ax− 2by + a2 + b2 − r2 = 0

 C? = (a, b, a2 + b2 − r2)
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Delaunay Triangulation: indisk predicate

Space of circles

p = (x, y) p? = (x, y, x2 + y2)

C : x2 + y2 − 2ax− 2by + a2 + b2 − r2 = 0

 C† : z − 2ax− 2by + a2 + b2 − r2 = 0

 C? = (a, b, a2 + b2 − r2)

p ∈ C ⇐⇒ p? ∈ C†
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 C† : z − 2ax− 2by + a2 + b2 − r2 = 0

 C? = (a, b, a2 + b2 − r2)

p ∈ C ⇐⇒ p? ∈ C†

circle through pqr
 plane through p?q?r?
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Delaunay Triangulation: indisk predicate

Space of circles

p = (x, y) p? = (x, y, x2 + y2)

C : x2 + y2 − 2ax− 2by + a2 + b2 − r2 = 0

 C† : z − 2ax− 2by + a2 + b2 − r2 = 0

 C? = (a, b, a2 + b2 − r2)

p ∈ C ⇐⇒ p? ∈ C†

circle through pqr
 plane through p?q?r?

s inside/outside of

above/below s?
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Delaunay Triangulation: indisk predicate

Space of circles

circle through pqr
 plane through p?q?r?

s inside/outside of

above/below s?

indisk predicate

 3D orientation predicate
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Delaunay Triangulation: indisk predicate

Space of circles

circle through pqr
 plane through p?q?r?

s inside/outside of

above/below s?

indisk predicate

 3D orientation predicate sign

∣∣∣∣∣∣∣∣
1 1 1 1
xp xq xr xs
yp yq yr ys

x2p + y2p x2q + y2q x2r + y2r x2s + y2s

∣∣∣∣∣∣∣∣



34 - 1

Delaunay Triangulation: indisk predicate

Degeneracies
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Delaunay Triangulation: indisk predicate

Degeneracies

Degree 4 vertex in Voronoi diagram
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Delaunay Triangulation: indisk predicate

Degeneracies

Degree 4 vertex in Voronoi diagram
d
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Delaunay Triangulation: indisk predicate

Degeneracies

Degree 4 vertex in Voronoi diagram

Delaunay quad ? random diagonal ?
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Delaunay Triangulation: indisk predicate

Degeneracies

Degree 4 vertex in Voronoi diagram

Delaunay quad ? random diagonal ?

assume no degeneracies for a while

Teaser robustness lecture
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Algorithm: flip!
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Delaunay Triangulation: Diagonal flipping



36 - 2

Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping

non locally Delaunay
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Delaunay Triangulation: Diagonal flipping

non locally Delaunay

locally Delaunay
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping

check edges of quadrilateral
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping



36 - 11

Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping
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Delaunay Triangulation: Diagonal flipping

Delaunay is obtained
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Delaunay Triangulation: Diagonal flipping

Complexity ?



37 - 2

Delaunay Triangulation: Diagonal flipping

Complexity ?
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Locally Delaunay

locally convex



37 - 4

Delaunay Triangulation: Diagonal flipping

Complexity ?

Delaunay

Convex
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex edge
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex

Flip
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex

Flip
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex

Flip
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex

Flip
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex

Flip

An hidden edge cannot be visible again
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex

Flip

An hidden edge cannot be visible again

At most n(n−1)
2 edges
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Non Delaunay

Non convex

Flip

An hidden edge cannot be visible again

At most n(n−1)
2 edges

Complexity of diagonal flipping is O(n2)
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Delaunay Triangulation: Diagonal flipping

Complexity ?
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Delaunay Triangulation: Diagonal flipping

Complexity ?
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Delaunay Triangulation: Diagonal flipping

Complexity ?
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Delaunay Triangulation: Diagonal flipping

Complexity ?
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Delaunay Triangulation: Diagonal flipping

Complexity ?
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Delaunay
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Delaunay

Do not care
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Encoding a triangulation

0 10 1 0101 01
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Delaunay

01 01 01 01 01
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Delaunay Triangulation: Diagonal flipping

Complexity ?

Encoding a triangulation

0 10 1 0101 01

Flip

swap
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Delaunay Triangulation: Diagonal flipping

Complexity ?

0 10 10 10 101
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Delaunay Triangulation: Diagonal flipping

Complexity ?

01 01 01 01 01

0 10 10 10 101

Delaunay

at least
(
n
2

)2
flips
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Borne inférieure de complexité
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Delaunay Triangulation: lower bound

Convex hull Lower bound

A stupid algorithm for sorting numbers

project on parabola

compute convex hull

find lowest point

enumerate x coordinates
in ccw CH order

O(n)

f(n)

O(n)

O(n)

Lower bound on sorting

=⇒ f(n) +O(n) ≥ Ω(n log n)
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Delaunay Triangulation: lower bound

Convex hull Lower bound

A stupid algorithm for sorting numbers

project on parabola

compute convex hull

find lowest point

enumerate x coordinates
in ccw CH order

O(n)

f(n)

O(n)

O(n)

Lower bound on sorting

=⇒ f(n) +O(n) ≥ Ω(n log n)

Delaunay
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Point location in Delaunay



42 - 1

Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

x2 + y2 − 2ax− 2by + c
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Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

x2 + y2 − 2ax− 2by + c

= 0 on the circle

< 0 inside the circle

> 0 outside the circle
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Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

x2 + y2 − 2ax− 2by + c

blue yields smaller power

black yields smaller power

equal power

(x2 + y2 − 2a′x− 2b′y + c′)λ

+(1− λ) ( ) = 0
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Delaunay Triangulation: incremental algorithm
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Delaunay Triangulation: incremental algorithm

New point
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Delaunay Triangulation: incremental algorithm

New point

Locate
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: straight walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: straight walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: straight walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: straight walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: straight walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: straight walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk



43 - 16

Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk

not unique
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Delaunay Triangulation: incremental algorithm

New point

Locate

e.g.: visibility walk

not unique
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Visibility walk terminates

Delaunay Triangulation: incremental algorithm
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Visibility walk terminates

Delaunay Triangulation: incremental algorithm
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Visibility walk terminates

Delaunay Triangulation: incremental algorithm

May loop
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Visibility walk terminates

Delaunay Triangulation: incremental algorithm

May loop

Not Delaunay
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Delaunay Triangulation: pencils of circles

Power of a point w.r.t a circle

x2 + y2 − 2ax− 2by + c

blue yields smaller power

black yields smaller power

equal power

(x2 + y2 − 2a′x− 2b′y + c′)λ

+(1− λ) ( ) = 0

Visibility walk terminates

Delaunay Triangulation: incremental algorithm
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Delaunay Triangulation: incremental algorithm

Visibility walk terminates

Delaunay Triangulation: incremental algorithm
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Delaunay Triangulation: incremental algorithm

Visibility walk terminates

Delaunay Triangulation: incremental algorithm

Green power Red power<
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Delaunay Triangulation: incremental algorithm

Visibility walk terminates

Delaunay Triangulation: incremental algorithm

Green power Red power<
Power decreases
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Delaunay Triangulation: incremental algorithm

Visibility walk terminates

Delaunay Triangulation: incremental algorithm

Green power Red power<
Power decreases
Visibility walk terminates
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Algorithm: incremental
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts



45 - 2

Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts



45 - 6

Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts



45 - 11

Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

New point
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Delaunay Triangulation: incremental algorithm

New point
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts ] triangles in conflict

] triangles neighboring triangles in conflict
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts ] triangles in conflict

] triangles neighboring triangles in conflict

degree of new point in new triangulation

< n
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

degree of new point in new triangulation

< n

Walk may visit all triangles
< 2n
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

O(n) per insertion
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

O(n) per insertion

O(n2) for the whole construction
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

half-parabola and circle



46 - 8

Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

half-parabola and circle
Delaunay triangle
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

Insertion: Ω(n)

Whole construction: Ω(n2)
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Delaunay Triangulation: incremental algorithm

Complexity

Locate

Search conflicts

In practice

Many possibilities (walk, Delaunay hierarchy)

Randomized

Teaser randomization lecture
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Algorithm: sweep line
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Certified Delaunay triangles
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Delaunay Triangulation: sweep-line algorithm
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Certified Delaunay triangles
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Certified Delaunay triangles

Certified Delaunay edges
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Boundary edges
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Boundary edges

G

K

N

A

B C
E

F

H

I

J

L

O

P

M
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Boundary edges

Empty circles
tangent to sweep line
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Boundary edges

Empty circles
tangent to sweep line

in order

D

E
F

G

I

J

K
L

N

A

B C D
E

F G=H
H

I

J

K

L

MO

P

M



48 - 11

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Empty circles
tangent to sweep line

New point
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right
New point

I

H

Locate vertically

I

H
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right
New point

I

H

Locate vertically

I

H

Create edge
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right
New point

I

H

Locate vertically

I

H

Create edge

Modify boundary edges

α = βα
β
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right
New point

I

H

Locate vertically

I

H

Create edge

Modify boundary edges

α = βα
β

Modify circle events

to be defined now
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Closing a triangle ?
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Closing a triangle ?
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Closing a triangle ?

Circle events
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Closing a triangle ?

Circle events

Next circle event



48 - 20

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Closing a triangle ?

Next circle event



48 - 21

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Next circle event

Close triangle



48 - 22

Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Next circle event

Close triangle

Modify boundary edges

K

J

γ
K=J=γ
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Next circle event

Close triangle

Modify boundary edges

Modify circle events

K

J

γ
K=J=γ
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Delaunay Triangulation: sweep-line algorithm

Discover the points from left to right

Summary:

Process circle events
and point events
in x order

Three data structures
Triangulation
List of events (x sorted)
List of boundary edges

(ccw sorted)
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Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number
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Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number

processed



49 - 3

Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number 2n n
processed
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Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number 2n n
create

2 triangles
create

one edge
per event per event

processed
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Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number 2n n
create

2 triangles
create

one edge

≤ 3 deletions
≤ 2 insertions

per event

≤ 2 deletions
≤ 2 insertions

per event

per event per event

processed
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Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number 2n n
create

2 triangles
create

one edge

≤ 3 deletions
≤ 2 insertions

per event

≤ 2 deletions
≤ 2 insertions

per event

replace
2 edges by 1

per event per event

locate, then
insert 2 edges

per event per event

processed
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Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number 2n n
create

2 triangles
create

one edge

≤ 3 deletions
≤ 2 insertions

per event

≤ 2 deletions
≤ 2 insertions

per event

replace
2 edges by 1

per event per event

locate, then
insert 2 edges

per event per event
O(1) per operation

O(log n) per operation

O(log n) per operation

processed



49 - 8

Delaunay Triangulation: sweep-line algorithm

Complexity

Triangulation

List of events (x sorted)

List of boundary edges

(ccw sorted)

Circle events Point events

Number 2n n
create

2 triangles
create

one edge

≤ 3 deletions
≤ 2 insertions

per event

≤ 2 deletions
≤ 2 insertions

per event

replace
2 edges by 1

per event per event

locate, then
insert 2 edges

per event per event
O(1) per operation

O(log n) per operation

O(log n) per operation

O(n log n)

processed
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Algorithm: divide and conquer
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Delaunay Triangulation: divide & conquer (sketch)
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Delaunay Triangulation: divide & conquer (sketch)

Divide
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Delaunay Triangulation: divide & conquer (sketch)

Recurse

Divide
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Conquer

Delaunay Triangulation: divide & conquer (sketch)

Recurse

Divide
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Conquer

Delaunay Triangulation: divide & conquer (sketch)

Recurse

O(n log n)

Divide
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Conquer

Delaunay Triangulation: divide & conquer (sketch)

Recurse

O(n log n)

Divide

balanced

linear time

easier conquer
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Deleting a point
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Delaunay Triangulation: deletion algorithm (sketch)
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Delaunay Triangulation: deletion algorithm (sketch)

Delaunay Triangulation: incremental algorithm

New point
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Delaunay Triangulation: deletion algorithm (sketch)
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Delaunay Triangulation: deletion algorithm (sketch)
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Delaunay Triangulation: deletion algorithm (sketch)
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Delaunay Triangulation: deletion algorithm (sketch)

Extract hole
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Delaunay Triangulation: deletion algorithm (sketch)

Extract hole

Triangulate
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Delaunay Triangulation: deletion algorithm (sketch)

Extract hole

Triangulate
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Delaunay Triangulation: deletion algorithm (sketch)

Extract hole

Triangulate
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Delaunay Triangulation: deletion algorithm (sketch)

Extract hole

Triangulate

and sew
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Delaunay Triangulation: deletion algorithm (sketch)

Extract hole

Triangulate

and sew

Be careful

Hole may be not convex
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Delaunay Triangulation: deletion algorithm (sketch)

Extract hole

Triangulate

and sew

Be careful

Hole may be not convex
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Delaunay Triangulation: deletion algorithm (sketch)

Ear queue
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Delaunay Triangulation: deletion algorithm (sketch)

Ear queue

Ear with largest power is added
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Delaunay Triangulation: deletion algorithm (sketch)

Ear queue

Ear with largest power is added
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Delaunay Triangulation: deletion algorithm (sketch)

Ear queue

Ear with largest power is added

Iterate
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Delaunay Triangulation: deletion algorithm (sketch)

Ear queue

Ear with largest power is added

Iterate
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Triangulate and flip

Delaunay Triangulation: deletion algorithm (sketch)
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Triangulate and flip

Delaunay Triangulation: deletion algorithm (sketch)
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Triangulate and flip

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≥ 8
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Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≤ 7
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Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≤ 7

degree 3

nothing to do
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Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≤ 7

degree 4
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Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≤ 7

degree 4

only one predicate
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Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≤ 7

degree 5

3∈012

4∈023
4∈013

yesno

4∈1234∈012

v0 v2 v1

v3

v4v4

v0

v2
v1

v3
v4
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Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≤ 7

degree 6

v2

”manual” d&conquer
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Decision tree for small holes

Delaunay Triangulation: deletion algorithm (sketch)

for degree ≤ 7

degree 7

symmetric tree

”manual” d&conquer
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Delaunay Triangulation: 3D

Same as 2D

Dual Voronoi diagram

Empty sphere property

Triangle Tetrahedron

Duality with 4D convex hull

Incremental algorithm (find the hole and star)
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Delaunay Triangulation: 3D

Same as 2D

Dual Voronoi diagram

Empty sphere property

Triangle Tetrahedron

Duality with 4D convex hull

Incremental algorithm (find the hole and star)

Convex hull Higher dimensions

Dehn Sommerville relations fi = ](faces of dim i)

Euler: f0 − f1 + f2 − . . . fd−1 = (−1)d−1 + 1

∑
j

= kd−1 − 1j
(
j + 1
k + 1

)
fj = (−1)d−1fk

f−1 = fd = 1−1 ≤ k ≤ d− 2⌊
d+ 1

2

⌋
independent equations
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Delaunay Triangulation: 3D

Same as 2D

Dual Voronoi diagram

Empty sphere property

Triangle Tetrahedron

Duality with 4D convex hull

Incremental algorithm (find the hole and star)

Convex hull Higher dimensions

Dehn Sommerville relations fi = ](faces of dim i)

Euler: f0 − f1 + f2 − . . . fd−1 = (−1)d−1 + 1

∑
j

= kd−1 − 1j
(
j + 1
k + 1

)
fj = (−1)d−1fk

f−1 = fd = 1−1 ≤ k ≤ d− 2⌊
d+ 1

2

⌋
independent equations

quadratic
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Delaunay Triangulation: 3D

Quadratic examples
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Delaunay Triangulation: 3D

Quadratic examples
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Delaunay Triangulation: 3D

Quadratic examples
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Delaunay Triangulation: 3D

Quadratic examples
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Delaunay Triangulation: 3D

Quadratic examples
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Delaunay Triangulation: 3D

Quadratic examples

Better results for random points
Teaser probability lecture
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Delaunay Triangulation: 3D

Algorithms

4D convex hull duality

Flip

Incremental
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Delaunay Triangulation: 3D

Algorithms

4D convex hull duality

Flip

Incremental

practical

O(f log n+ n
4
3 ) or Θ(n2)

Θ(n3)

Teaser randomization lecture
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Delaunay Triangulation:higher dimensions

d+ 1 convex hull duality

Incremental practical

O
(
nb

d+1
2 c
)

O (n)

coeff exponential in d

for random points
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The end


