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Probability and Delaunay triangulations



2 - 1

Randomized algorithms for Delaunay triangulations

Poisson Delaunay triangulation
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• Randomized backward analysis of binary trees
• Randomized incremental construction of Delaunay
• Jump and walk
• The Delaunay hierarchy
• Biased randomized incremental order
• Chew algorithm for convex polygon

Randomized algorithms for Delaunay triangulations

Poisson Delaunay triangulation
• Poisson distribution
• Slivnyak-Mecke formula
• Blaschke-Petkanschin variables substitution
• Stupid analysis of the expected degree
• Straight walk expected analysis
• Catalog of properties
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Quicksort

Unbalanced binary tree History graph

Conflict graph

Same analysisO(n log n)

Backwards analysis

Analyse last insertion and sum

Last object is a random object

Sorting
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Randomization

Backwards analysis for Delaunay triangulation
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Delaunay triangulation

] of triangles during incremental construction?
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Delaunay triangulation

] of triangles during incremental construction?
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Delaunay triangulation

] triangles created/incident to last point?

] of triangles during incremental construction?
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Delaunay triangulation

] triangles created/incident to last point?

Last point?

] of triangles during incremental construction?
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Alternative analysis

Triangle � with j stoppers
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Alternative analysis

Triangle � with j stoppers

Probability that it exists in the triangulation of a sample of size ↵n
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Alternative analysis
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Alternative analysis

Triangle � with j stoppers
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Alternative analysis

Triangle � with j stoppers

Probability that it exists in the triangulation of a sample of size ↵n
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Alternative analysis

Triangle � with j stoppers

Probability that it exists during the construction

= 3
j+3

2
j+2

1
j+1
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Alternative analysis

Triangle � with j stoppers

Probability that it exists during the construction

= 3
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2
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j=0

P [� with j stoppers appears]⇥ ]� with j stoppers

] of created triangles
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Alternative analysis

Triangle � with j stoppers

Probability that it exists during the construction
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Alternative analysis

Triangle � with j stoppers

Probability that it exists during the construction

= 3
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Alternative analysis

Triangle � with j stoppers

It remains to analyze conflict location

Conflict graph / History graph
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Alternative analysis

Triangle � with j stoppers

Probability that it exists during the construction

= 3
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j ⇥ P [� with j stoppers appears]⇥ ]� with j stoppers

] of conflicts occuring
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Alternative analysis
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Alternative analysis

Triangle � with j stoppers

Probability that it exists during the construction
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History graph



12 - 2

History graph
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History graph
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Father

Stepfather

History graph
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Father

Stepfather

(Delaunay tree)History graph
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Father

Stepfather

(Delaunay tree)

if conflict

there was a conflict with

the father

or the stepfather

or both

History graph
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Conflict graph
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Conflict graph
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Conflict graph
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Conflict graph

Insert
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Conflict graph
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Conflict graph
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Conflict graph
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Walk
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Walk



15 - 3

Walk
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Walk

Complexity O(n)
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Walk

Complexity O(n)

Teaser probability lecture
Better bounds for random points
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Jump and walk
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Jump and walk
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Jump and walk
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Jump and walk

Hopefully shorter walk

Designed for random points

O( 3
p
n) expected location time
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Jump and walk (no distribution hypothesis)
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Jump and walk (no distribution hypothesis)
E [] of in ] = n

k
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Walk length = O
�
n

k

�
E [] of in ] = n

k
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Delaunay hierarchy

Walk length = O
�
n

k

�
E [] of in ] = n

k
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Delaunay hierarchy
n

k1

Walk length = O
�
n

k

�
E [] of in ] = n

k
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Delaunay hierarchy
n

k1
+k1

k2

Walk length = O
�
n

k

�
E [] of in ] = n

k
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Delaunay hierarchy
n

k1
+k1

k2

Walk length = O
�
n

k

�
E [] of in ] = n

k +k2
k3

+ . . .
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Delaunay hierarchy
n

k1
+k1

k2

Walk length = O
�
n
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�
E [] of in ] = n

k +k2
k3

+ . . .

choose ki
ki+1

= ↵
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Delaunay hierarchy
n

k1
+k1

k2

Walk length = O
�
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E [] of in ] = n

k +k2
k3

+ . . .

choose ki
ki+1

= ↵

point location in O (↵ log↵ n)
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Jump and walk (no distribution hypothesis)

choose k = 2
p
n

Delaunay hierarchy
n

k1
+k1

k2

Walk length = O
�
n

k

�
E [] of in ] = n

k +k2
k3

+ . . .

choose ki
ki+1

= ↵

point location in O (↵ log↵ n)

point location in O (
p
↵ log↵ n)
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How many randomness is necessary?

If the data are not known in advance

shuffle locally

Randomization
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Drawbacks of random order

non locality of memory access

data structure for point location

Hilbert sort

Randomization
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Drawbacks of random order

non locality of memory access

data structure for point location

Hilbert sort

Last point is not at all a random point

Walk should be fast

no control of degree of last point
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Triangle � with j stoppers
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Triangle � with j stoppers

Size (order  k Voronoi)  ↵n

↵3 = nk
2
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Triangle � with j stoppers

Probability that it exists during the construction

= 3
j+3

2
j+2

1
j+1
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Triangle � with j stoppers

Probability that it exists during the construction

= 3
j+3

2
j+2

1
j+1 remains ⇥(j�3)
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Triangle � with j stoppers

Probability that it exists during the construction

= 3
j+3

2
j+2

1
j+1

=
nX

j=0

P [� with j stoppers appears]⇥ ]� with j stoppers

] of created triangles

' O(
X nj
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j4
) = O(n)

remains ⇥(j�3)
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Triangle � with j stoppers

Probability that it exists during the construction

= 3
j+3

2
j+2

1
j+1

=
nX

j=0

j ⇥ P [� with j stoppers appears]⇥ ]� with j stoppers

] of conflicts occuring

' O(
X

j
nj

2

j4
) = O(n log n)

remains ⇥(j�3)
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random order (visibility walk)

x-order

Hilbert order

Biased order (Spatial sorting)

locate using Delaunay hierarchy

0.7 seconds

157 seconds

3 seconds

0.8 seconds

6 seconds

Delaunay 2D 1M random points
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random order (visibility walk)

x-order

Hilbert order

Biased order (Spatial sorting)

locate using Delaunay hierarchy

Delaunay 2D 100K parabola points

128 seconds

632 seconds

46 seconds

0.3 seconds

0.3 seconds
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3D
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Degree of a random point?

O(n) worst case

Final size of the triangulation is not enough

O(1) in practical cases ?

O(log n) for random points on a cylinder

O(
p
n) for “good” samples

3D
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Randomization

Avoiding point location
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Delaunay randomized construction

O(n)
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Delaunay randomized construction

O(n) + point location
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Delaunay randomized construction

O(n) + point location

Use additional information to save on point location
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Delaunay randomized construction

O(n) + point location

Use additional information to save on point location

e.g. points are sorted by spatial sort
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Delaunay randomized construction

O(n) + point location

Use additional information to save on point location

e.g. points are sorted by spatial sort

Delaunay of points in convex position

Splitting Delaunay
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Delaunay of points in convex position
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Delaunay of points in convex position
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choose a point at random

Delaunay of points in convex position
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choose a point at random

remove it from convex polygon

Delaunay of points in convex position
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choose a point at random

remove it from convex polygon

remember its place

Delaunay of points in convex position
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choose a point at random

remove it from convex polygon

remember its place

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

Delaunay of points in convex position
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choose a point at random

remove it from convex polygon

remember its place

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

insert point, (location known)

Delaunay of points in convex position
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choose a point at random

remove it from convex polygon

remember its place

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

insert point, (location known)

Delaunay of points in convex position
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choose a point at random

remove it from convex polygon

remember its place

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

insert point, (location known)

Delaunay of points in convex position
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choose a point at random

remove it from convex polygon

remember its place

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

insert point, (location known)

Delaunay of points in convex position
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1) [model]
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1)}
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1)

O(d�p)

}
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1)

O(d�p) = O(1)

}
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1)

O(d�p) = O(1)

}
f(n� 1)



30 - 7

Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1)

O(d�p) = O(1)

}
f(n� 1)

f(n) = f(n� 1) +O(1)
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1)

O(d�p) = O(1)

}
f(n� 1)

f(n) = f(n� 1) +O(1) = O(n)
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Delaunay of points in convex position

Analysis

choose a point at random

remove it from convex polygon

remember its place

insert point, (location known)

compute Delaunay of n� 1 points

with relevant vertex-triangle pointers

O(1)

O(d�p) = O(1)

}
f(n� 1)

f(n) = f(n� 1) +O(1) = O(n)
[Chew 86]
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Randomization
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Randomization

Simple algorithms

Randomized incremental constructions

non trivial analysis

good complexities

efficient in practice
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Randomization

Simple algorithms

Randomized incremental constructions

non trivial analysis

good complexities

efficient in practice Delaunay hierarchy

Spatial sorting
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Randomization

Simple algorithms

Randomized incremental constructions

non trivial analysis

good complexities

efficient in practice Delaunay hierarchy

Spatial sorting
Other tools

divide and conquer

✏ nets Good sample with high probability
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Poisson Delaunay triangulation
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Poisson Delaunay triangulation

• Poisson distribution
• Slivnyak-Mecke formula
• Blaschke-Petkanschin variables substitution
• Stupid analysis of the expected degree
• Straight walk expected analysis
• Catalog of properties
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Poisson distribution

Distribution in A independent from distribution in B.

Unit uniform rate

when A \ B = ?

P [|X \A| = k] =
vol(A)k

k!
e
� vol(A)

X a Poisson point process



36 - 2

Poisson distribution

Distribution in A independent from distribution in B.

Unit uniform rate

when A \ B = ?

P [|X \A| = k] =
vol(A)k

k!
e
� vol(A)

Very convenient

X a Poisson point process
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Poisson distribution

Distribution in A independent from distribution in B.

Unit uniform rate

when A \ B = ?

P [|X \A| = k] =
vol(A)k

k!
e
� vol(A)

E [|X \ A|] =
1X

0

k
vol(A)k

k!
e
� vol(A) = vol(A)

P [|X \A| = 0] = e
� vol(A)

X a Poisson point process
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Slivnyak-Mecke formula

X a Poisson point process of density n

Sum Integral



37 - 2

Slivnyak-Mecke formula

X a Poisson point process of density n

Sum Integral

E

2

4
X

q2X

1[P (X,q)]

3

5
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Slivnyak-Mecke formula

X a Poisson point process of density n

Sum Integral

E

2

4
X

q2X

1[P (X,q)]

3

5 = n

Z

R2

P [P (X [ {q}, q)] dq
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Slivnyak-Mecke formula

X a Poisson point process of density n

Sum Integral

E

2

4
X

q2X

1[P (X,q)]

3

5 = n

Z

R2

P [P (X [ {q}, q)] dq

e.g.,

E

2

4
X

q2X

1[NNX(0)=q]

3

5
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Slivnyak-Mecke formula

X a Poisson point process of density n

Sum Integral

E

2

4
X

q2X

1[P (X,q)]

3

5 = n

Z

R2

P [P (X [ {q}, q)] dq

e.g.,

E

2

4
X

q2X

1[NNX(0)=q]

3

5 = n

Z

R2

P [D(0, kqk) \X = ;] dq
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Slivnyak-Mecke formula

X a Poisson point process of density n

Sum Integral

E

2

4
X

q2X

1[P (X,q)]

3

5 = n

Z

R2

P [P (X [ {q}, q)] dq

e.g.,

E

2

4
X

q2X

1[NNX(0)=q]

3

5 = n

Z

R2

P [D(0, kqk) \X = ;] dq

= n

Z

R2

e
�n⇡kqk2

dq
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Slivnyak-Mecke formula

X a Poisson point process of density n

Sum Integral

E

2

4
X

q2X

1[P (X,q)]

3

5 = n

Z

R2

P [P (X [ {q}, q)] dq

e.g.,

E

2

4
X

q2X

1[NNX(0)=q]

3

5 = n

Z

R2

P [D(0, kqk) \X = ;] dq

= n

Z

R2

e
�n⇡kqk2

dq

= n

Z 2⇡

0

Z 1

0
e
�n⇡r

2

rd✓ dr = n⇥ 2⇡ ⇥ 1
2n⇡ = 1
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The end


