Delaunay Triangulation: Applications

Reconstruction

Meshing



Reconstruction

From points

M .. . .
¢’ . . '
» b
" K .
- - - .
N ' ' v
"
4Tl - . ® -
(. . - ’
- . - - .
‘-\,. ; ) .
' ' -
s . . N r
' .
' ey “" Y
L . _ro
v : -
1% . . é
_ o g -
Py P 25 e e
s R . ad . v
-~ L YPLY — o~ N oaEa. .8 =&/ 4 . L ..
“r e - 3 - — .
A X 1 » P >
" . - . "
B b . - ¥ T
o o y LT
- . - o - ® ' A
g . » ' '
- P il .- o L
St M 3 < . % .
> 0 i . (< ; i
» ' ' by
2 A 1 .3 L= -
. L .
' e o . < .
- - T o
ot »
.. ‘" . . . .
Yo e
\ )
ol .
< 'S 1
4 »
' l:’ ' A > . ' ’
P .
- 3 y '.I I
- .
. '
- ’ ] . »
> s '
p . .
. . '.
o
- -
. » . . '
- . - LR ’
i .
' ° .
en !t - *r . < -
e
- ] . °
- e nis -t *
v - » ‘. ' 1%
Pt ' . -t '
o
0 e LY
= . §a s :
. .
a .
L %« .
C .
. » ] r .
- /- .
'
o .
'
s o
.
. . . » s \
» - eyt =4 .-
-~ PR T v ey
‘.I LT
- .
ot = y . ~e

a4 o R R AL



Reconstruction

From points

to shape

2 -2



Reconstruction

n
=
=
@)
o
=
O
—
LL

2-3



Reconstruction

From points

to shape

24



Reconstruction

From points

2-5



Reconstruction

From points

to shape




Reconstruction

Context
Delaunay is a good start (wanted result C Delaunay)
Crust 2D Algorithm
0.4 sample = wanted result C crust
0.25 sample = crust C wanted result
3D
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Sensor =———3> Point set (no structure or unknown)
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Reconstruction Context

Childbirth simulation
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Childbirth simulation
Surgery planning
Radiotherapy planing

Endoscopy simulation
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Sensor =——3> Point set (no structure or unknown)
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Reconstruction Context

Sensor =——3> Point set (no structure or unknown)

Endoscope Endoscope
is inserted
through the
mouth into
the duodenum
Scanner
Endoscope
® o o

Duodenum

Pancreatic
duct

4.7



Reconstruction Context

Cultural heritage

4-8



Context

Reconstruction

Cultural heritage

4-9



Context

Reconstruction

4 - 10



Reconstruction Context

Reverse engineering




Reconstruction Context

Reverse engineering
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Reconstruction Context

Sensor =——3> Point set (no structure or unknown)

Laser illuminate in a plane

Camera

Get 3D position
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Reconstruction Context

Sensor =——3> Point set (no structure or unknown)

Geology
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Abstract 3D problem that we can solve in 2D section
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%_> Point set (no structure or unknown)
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Reconstruction Delaunay is a good start

Sample is an
e-sample of a curve if VY, Disk(z, e-Ifs(z))NSample ()

Local feature size: Ifs(z) =
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or DisknMedial axis# ()
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Reconstruction Delaunay is a good start
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Reconstruction Delaunay is a good start

Lemma:

V Disk, DisknCurve has a single connected component
or DisknMedial axis=# ()

% /
C \ \
DiskNCurve has 2 cc A and B

a = closest of ¢ on Curve(wlog on A)
b = closest of c on B

Moving from c to a dist to B~
reach center of bitangent disk
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Theorem
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Reconstruction Crust 2D Algorithm
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Keep Vorono | vertices
Compute Delaunay triangulation

Keep edges between original points
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Reconstruction Crust 2D Algorithm

Keep edges between original points
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Theorem: 0.25 sample = crust C wanted result

Assume empty circle

No Voronoi vertices there

'\A
\

—

No sample points there

14 -



Reconstruction 3D

15-1



Reconstruction 3D

Difficulty: sliver

15 -2



Reconstruction 3D

Difficulty: sliver

small sphere

15 -3



Reconstruction 3D

Difficulty: sliver

small sphere four sample points

15-4



Reconstruction 3D

Difficulty: sliver

small sphere four sample points

almost flat Delaunay tetrahedron

15-5



Reconstruction 3D

Difficulty: sliver
small sphere four sample points

almost flat Delaunay tetrahedron
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Reconstruction 3D

Difficulty: sliver
small sphere four sample points

almost flat Delaunay tetrahedron

Which triangle belongs to reconstruction 7

Crust: Voronoi vertices may kill useful triangles
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Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole
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Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole

Approximate normal

Approximate medial axis — crust
16 - 6



Reconstruction 3D

Pole = farthest of seed

2nd pole= farthest of 1st pole

Approximate normal

Approximate medial axis — crust Do not kill slivers
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Meshing

Discretize space to solve (differential) equations
Finite elements

Finite differences
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Meshing

Discretize space to solve (differential) equations
Finite elements
Finite differences
Good mesh:
Control shape of elements (no small angles)
Control size of elements (adjust to function variability)

Minimize number of elements
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Meshing

Gallery

Structured meshes (advancing front, deformation)

Delaunay mesh refinement
|[Ruppert]
protecting small angles
off-centers

Delaunay mesh optimization

3D
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Shape
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Unstructured mesh
Use Delaunay (good angles property)

Add vertices
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Def: Edge encroached by vertex

if inside diametral circle
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Meshing Del

Input: PSLG

3y mesh refinement  [Ruppert]

Delaunay

Split at middle
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Input: PSLG

Delaunay refinement

Small angle

Add circumcenie !
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Input: PSLG
Delaunay refinement
Small angle ‘
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay refinement
Angle is multiplied by 2 ‘
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Meshing Delaunay mesh refinement  [Ruppert]
Input: PSLG

Delaunay refinement

Output: Mesh with angle guaranties “ r
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Meshi Nng Delaunay mesh refinement  [Ruppert]

Small angles means < o < 20°

Theorem: algorithm terminates with mesh of size O(optimal)
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M@Sh | Nng Delaunay mesh optimization

L Loyd iteration Move to barycenter

Clip by some boundary
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M@Sh | Nng Delaunay mesh optimization

| Loyd iteration Reach a nice point distribution
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Meshing Delaunay mesh optimization

Alternate
Delaunay mesh refinement

Lloyd smooting  or different kind of smoothing
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Figure 1.6

M3’s Voronoi diagram. In 3D (bottom), (left) a 3D Delaunay mesh M3 generated
by Delaunay refinement, (center) M3 optimized with CVT, and (right) M3’s slivers

generated by Delaunay refinement, (center
30 - (tetrahedra with dihedral angles smaller than 5°).
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Delaunay mesh optimization

Delaunay Refinement (DR)
Approximation: 0.001

1256 slivers < 15 deg g 4

0.72 178.56

506 171.2

DR + Optimization (NODT)
+ Sliver perturbation

15.03 157.22
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Meshing 3D
Constraints: edges and faces

Point to insert may be encroached by edges or faces







