Examen DEA SIC 2000-2001: géométrie algorithmique

14 à 17h, 6 mars 2001

Compléments

Le théorème suivant pourra être utilisé:

Théorème : Étant donné un ensemble de nombres réels A et $\epsilon > 0$ déterminer si $\exists x,y \in A$ tel que $|x-y| < \epsilon$ nécessite au moins $\Omega(n \log n)$ opérations, où |A| = n.

On rappelle aussi que:

 $\lambda_s(n)$ désigne la longueur d'une séquence de Davenport Schinzel d'ordre s sur un alphabet à n lettres (il n'y a pas de sous séquence $ababab\dots$ de longueur s+2).

1 Triangulation de Delaunay et triangulation de longueur minimale

Étant donné un ensemble S de n points, on appelle TD(S) la triangulation de Delaunay de S et TLM(S) la triangulation de longueur minimale c'est-à-dire la triangulation minimisant la somme des longueurs de toutes les arêtes.

- Trouver une exemple d'ensemble \mathcal{S} de 4 points tel que $\mathcal{TD}(\mathcal{S}) \neq \mathcal{TLM}(\mathcal{S})$.
- Quelle est la valeur maximale du rapport longueur de TD(S) sur longueur de TLM(S) si S a 4 points?
- Montrer que le rapport longueur de TD(S) sur longueur de TLM(S) peut atteindre $\Omega(n)$.
- On considère maintenant une triangulation qui minimise la plus longue arête. Cette arête est-elle de une arête de Delaunay?

2 Dominance

Soient p et q deux points du plan, on dit que p domine q si et seulement si $x_p > x_q$ et $y_p > y_q$ (on note $p \succ q$ et $p \not\succ q$ dans le cas contraire).

Soit S un ensemble de n points. On cherche l'ensemble $\mathcal{D}(S) = \{p; p \in S, \forall q \in S, q \not\succ p\}$ des points qui ne sont pas dominés.

- proposer un algorithme de calcul de $\mathcal{D}(\mathcal{S})$.
- donner sa complexité.
- donner une borne inférieure pour la complexité de ce problème.
- quelle est la taille minimale et maximale de $\mathcal{D}(\mathcal{S})$?
- si les points sont répartis avec une probabilité uniforme dans un rectangle, quelle est la probabilité que le point de plus petite abscisse soit un point de $\mathcal{D}(\mathcal{S})$?
 - sous la même hypothèse, quelle est la taille moyenne de $\mathcal{D}(\mathcal{S})$?

3 Enveloppe inférieure

On cherche à calculer l'enveloppe inférieure de demi-droites.

- Expliquer comment compléter les demi-droites pour se ramener à une enveloppe inférieure de fonctions définies sur R.
- En combien de points se coupent deux demi-droites «complétées»? En déduire une borne sur la taille de l'enveloppe inférieure de demi-droites.
- Même question si toutes les demi-droites ont leur coté infini vers les abcisses positives. Peux-t-on améliorer la complexité de la taille de l'enveloppe inférieure de demi-droites dans le cas général?
- Proposer un algorithme de calcul de l'enveloppe inférieure de demi-droites. Donner sa complexité et une borne inférieure.