Computing hard-to-round cases of Gamma for binary64

Paul Zimmermann

December 2024

This note explains how we computed the hard-to-round cases of the Gamma function for
the binary64 format. We are looking for hard-to-round cases with at least 42 identical bits
after the round bit.

1 Casezx>1

For x > xg := 0x1.573fae561£648p+7, ['(x) > 2!9%4 thus we can restrict to x < xy. We
first tried using BaCSeL. with a degree-1 approximation of the Gamma function, but it was
too slow, especially for large x. For example, on a 48-core machine, it took 52 minutes of
real time to check the interval [23.598,23.611]. To use a degree-2 approximation in BaCSeL,
we had to implement the trigamma function in GNU MPFR, which reduces the above time
to less than 8 minutes. We completed this search using the EXPLOR computing center,
and found 14,988 hard-to-round cases, including 23 exact cases (the integers 1...23). From
the non-exact values, the worst case in this range is x = 0x1.676921a72fecfp+6, with 55
identical bits after the round bit.

2 Casel<ax<l

Lemma 1 For 0 < z < 271% T'(z) rounds to the same value as 1/z in the binary6y format
(to nearest).

Proof: We first notice that for 0 < x < 1, we have
1/x — 0578 < I'(x) < 1/x.

If 2 is a power of 2, then y = RN(1/z) = 1/, thus [y—T'(z)| < 1 < sulp(y), and I'(z) rounds
to y to nearest. Now assume x is not a power of 2, with 0 < x < 271% and let y = RN(1/x).
We know from [2] that if  is a n-bit number, the longest runs of zeros or ones in 1/x have
length n — 1 (if 1/z is not exact). Since y = RN(1/z), we have |y — 1/z| < julp(1/z).
Since we can have at most 52 identical bits after the upper 54 bits of 1/z, we deduce
that 1/z is at distance at least 275*ulp(1/z) > 1 from a rounding boundary. This implies



ly = 1/z| < tulp(1/z) — 1, and in turn |y — ['(z)| < Sulp(1/z) < sulp(y), thus y is the
rounding to nearest of I'(z). |
The proof of this lemma extends to an n-bit format: for 0 < z < 272" T'(x) rounds to
the same value as 1/x. For the binary64 number z; := Ox1.fffffffffffffp-106, which
is about twice larger than the lemma threshold, I'(x;) does not round to the same value
as 1/x;. Computing with BaCSeL. hard-to-round cases with at least 51 identical bits after
the round bit in the binade [271%6 27195) " we obtain 120 inputs; I'(z) and 1/ round to the
same value (to nearest) for all of them, except for Ox1.fffffffffffffp-106. For inputs
not found by BaCSeL, we have less than 51 identical bits after the round bit, thus with the
notations from the above proof, 1/x is at distance at least 27°?ulp(1/z) > 2 from a rounding
boundary, which implies |y — 1/z| < Sulp(1/z) — 2, and in turn |y — I'(z)| < Julp(y). Thus
the smallest positive value for which I'(x) and 1/z round to a different value (to nearest) is
Ox1.fffffffffffffp-106. Thanks to Lemma 1, we can restrict the search with BaCSeL in
this case to 271 < z < 1, which corresponds to 106 binades.

Corollary 1 For x a binary6j number, 0 < x < Ox1.fffffffffffffp-106, ['(x) and

1/x round to the same value to nearest and with unbounded exponent range, where I'(x) >
21024(1 _ 2—54) Zﬁl’ < 2—1024_

We performed a search with BaCSeL in the range [271% 1), which found 256,898 hard-to-
round cases, with a maximum of 62 identical bits after the round bit, obtained for = =
0x1.bb2278c9b2f97p-105 and x = 0x1.e1d6dce30863ap-32.

3 Case —-1<x<0

For —0.3 < x < 0, we have 1/z — 1 < I'(z) < 1/, thus using the same argument as in
Lemma 1, we see that for |x] < 27'% T'(z) rounds to the same value as 1/x to nearest.
Like for 0 < x < 1, it thus remains 106 binades to check in this case: —1 < x < —27106,
We performed a search with BaCSeL in the range (—1,—271%] which found 251,955 hard-
to-round cases, with a maximum of 63 identical bits after the round bit, obtained for x =
-0x1.86624b284bafbp-16.

4 Case — 22 <1< —184

First when z < —2°2 ulp(z) > 1, thus z is an integer (which also holds for z = —252). Since
['(x) is undefined for z integer, this case is easy.

Now assume —2°2 < z < —184. Let n be a negative integer. In the range (n,n+1), when
n is even, I'(x) decreases from +oco to a positive value, then increases to +00; when n is odd,
['(z) increases from —oo to a negative value, then decreases to —oo. Since I'(x) is undefined
for n and n + 1, the largest absolute values of I'(z) are thus obtained for nextabove(n)
and nextbelow(n + 1). Moreover, these largest absolute values are increasing with |n|. For
n = —185, we find that the largest absolute values are respectively ~ 8.53 - 107%?® and
~ 1.58 - 1073?°, both smaller than 27107,



Corollary 2 For any non-integer x < —184, I'(z) underflows.

5 Case -1 <z < —1

For —184 < n < —178, the smallest absolute value of I'(z) over (n,n + 1) is smaller than
271075 thus we split the search into (n,x;] and [z2,n + 1), where z; (resp. x3) is the largest
(resp. smallest) binary64 number such that |T'(z)| > 27197 over (n, 1] (resp. [z2,n + 1)).
In this range, the SLZ algorithm used by BaCSeL fails near integers. The reason is that
the higher derivatives of I' are much larger in absolute value than I' itself. Thus if we use
the degree-d approximation given by the Taylor expansion around some zy, the error term
of degree d + 1 is large, and only allows small intervals to be checked at once (see Fig. 1).

d|1 2 3 4 5 6
T[1 2547 91,804 788,649 3,307,983 9,211,582

Figure 1: For Taylor approximations of degree d around zy = —178 — 2713, largest interval
T in term of ulp(xy) such that the mathematical error is bounded by 27'%ulp(T'(z)).

By the explicit Lagrange theorem, we have for a binary64 number zy and an integer i,
0<i<t:
[(xg +iu) = a + ib + i*c + i°d,

where u = ulp(w), a = (), b = ul(zg), ¢ = u’I"(20)/2, and d = u’T'®(£)/6 for
¢ € [x0, 70 + tu]. From a bound on [T'®| in [zg, z¢ + tu], we deduce a bound &, on the term
|i3d|. If we want that I'(zg+iu) is within say at most 2716 ulps from a rounding boundary, this
gives another bound ;. With € = g5+¢1, using the table of difference method already used in
[1], we can update the approximation of I'(xg+iu) from i to i+ 1 in only two additions. Only
when this approximation is within € of a rounding boundary, which happens with probability
about 271, we perform a full check. We have implemented this algorithm using GNU MPFR
to compute the coefficients a, b, ¢, and the Pari/GP library to compute a bound on d (MPFR
does not provide the 3rd derivative of the I' function, and the 2nd derivative is so far imple-
mented in the trigamma branch). We found 15,144 hard-to-round cases in that range, with a
maximal of 54 identical bits after the round bit, obtained for x = -0x1.2c0358d14dacep+6,
x = -0x1.d97de88bda2dfp+5, and x = -0x1.5ac06a291806bp+3.

6 Subnormal output

In the above sections, we did not consider gradual underflow, thus the values produced with
either BaCSeL. or the algorithm described in §5 might not be real hard-to-round cases for
the binary64 format.

For 2¢7! < |I'(z)| < 2¢, —1074 < e < —1022, we should consider an output precision of
1021+ 53 + e instead of 53, thus ranging from 0 to 52, or from 1 to 53 if we take into account
the round bit.



For each value of e, we have only a few ranges (k, k+1) where |I'(z)| crosses [2¢71,2¢). In
total we found 300 sub-ranges to check depending on k and e. We found 26 hard-to-round
cases with at least 42 identical bits after the round bit (which has weight 27197° in the sub-
normal range). The largest number of identical bits after the round bit is 46, obtained for
x = -0x1.63fd90fb983d2p+7 in the range (—178, —177), x = -0x1.5£d732a09e52cp+7 €
(—176,—175), and z = -0x1.57£7b9e290bc3p+7 € (—172,—171). Since this search pro-
duced only few inputs, we extended it to numbers with at least 37 identical bits after the
round bit. We found 760 additional values, thus a total of 786 inputs with output in the
subnormal range.

7 Conclusion

In total we found 539,771 hard-to-round cases, some of which with an unbounded exponent
range, and some of which with less than 42 identical bits after the round bit.

Acknowledgements. Many thanks to Jean-Michel Muller for fruitul discussions and who
suggested several nice ideas. This work was made possible by France 2030 project number 22-
PECY-0010, and by the use of the EXPLOR computing center from University of Lorraine.

References

[1] DE DINECHIN, F., MULLER, J., PascA, B., AND PLEscOo, A. An FPGA architec-
ture for solving the table maker’s dilemma. In 22nd IEEE International Conference
on Application-specific Systems, Architectures and Processors, ASAP 2011, Santa Mon-
ica, CA, USA, Sept. 11-14, 2011 (2011), J. R. Cavallaro, M. D. Ercegovac, F. Hannig,
P. Ienne, E. E. S. Jr.; and A. F. Tenca, Eds., IEEE Computer Society, pp. 187-194.

[2] LaNG, T., AND MULLER, J.-M. Bounds on runs of zeros and ones for algebraic func-
tions. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic (2001), IEEE
Computer Society, pp. 13—20.



