Computing hard-to-round cases of Gamma for binary64

Paul Zimmermann

December 2024

This note explains how we computed the hard-to-round cases of the Gamma function for the binary64 format. We are looking for hard-to-round cases with at least 42 identical bits after the round bit.

1 Case $x \ge 1$

For $x \ge x_0 := 0x1.573fae561f648p+7$, $\Gamma(x) > 2^{1024}$, thus we can restrict to $x < x_0$. We first tried using BaCSeL with a degree-1 approximation of the Gamma function, but it was too slow, especially for large x. For example, on a 48-core machine, it took 52 minutes of real time to check the interval [23.598, 23.611]. To use a degree-2 approximation in BaCSeL, we had to implement the trigamma function in GNU MPFR, which reduces the above time to less than 8 minutes. We completed this search using the EXPLOR computing center, and found 14,988 hard-to-round cases, including 23 exact cases (the integers 1...23). From the non-exact values, the worst case in this range is x = 0x1.676921a72fecfp+6, with 55 identical bits after the round bit.

2 Case 0 < x < 1

Lemma 1 For $0 < x \le 2^{-106}$, $\Gamma(x)$ rounds to the same value as 1/x in the binary64 format (to nearest).

Proof: We first notice that for 0 < x < 1, we have

$$1/x - 0.578 < \Gamma(x) < 1/x.$$

If x is a power of 2, then y = RN(1/x) = 1/x, thus $|y - \Gamma(x)| < 1 < \frac{1}{2} \text{ulp}(y)$, and $\Gamma(x)$ rounds to y to nearest. Now assume x is not a power of 2, with $0 < x < 2^{-106}$, and let y = RN(1/x). We know from [2] that if x is a n-bit number, the longest runs of zeros or ones in 1/x have length n - 1 (if 1/x is not exact). Since y = RN(1/x), we have $|y - 1/x| \le \frac{1}{2} \text{ulp}(1/x)$. Since we can have at most 52 identical bits after the upper 54 bits of 1/x, we deduce that 1/x is at distance at least $2^{-54} \text{ulp}(1/x) \ge 1$ from a rounding boundary. This implies $|y - 1/x| \leq \frac{1}{2} \text{ulp}(1/x) - 1$, and in turn $|y - \Gamma(x)| < \frac{1}{2} \text{ulp}(1/x) \leq \frac{1}{2} \text{ulp}(y)$, thus y is the rounding to nearest of $\Gamma(x)$.

We performed a search with BaCSeL in the range $[2^{-106}, 1)$, which found 256,898 hard-toround cases, with a maximum of 62 identical bits after the round bit, obtained for x = 0x1.bb2278c9b2f97p-105 and x = 0x1.e1d6dce30863ap-32.

3 Case -1 < x < 0

For -0.3 < x < 0, we have $1/x - 1 < \Gamma(x) < 1/x$, thus using the same argument as in Lemma 1, we see that for $|x| < 2^{-106}$, $\Gamma(x)$ rounds to the same value as 1/x to nearest. Like for 0 < x < 1, it thus remains 106 binades to check in this case: $-1 < x \le -2^{-106}$. We performed a search with BaCSeL in the range $(-1, -2^{-106}]$, which found 251,955 hard-to-round cases, with a maximum of 63 identical bits after the round bit, obtained for x = -0x1.86624b284baf5p-16.

4 Case $-2^{52} < x < -184$

First when $x < -2^{52}$, $ulp(x) \ge 1$, thus x is an integer (which also holds for $x = -2^{52}$). Since $\Gamma(x)$ is undefined for x integer, this case is easy.

Now assume $-2^{52} < x < -184$. Let *n* be a negative integer. In the range (n, n+1), when *n* is even, $\Gamma(x)$ decreases from $+\infty$ to a positive value, then increases to $+\infty$; when *n* is odd, $\Gamma(x)$ increases from $-\infty$ to a negative value, then decreases to $-\infty$. Since $\Gamma(x)$ is undefined for *n* and n + 1, the largest absolute values of $\Gamma(x)$ are thus obtained for nextabove(n) and nextbelow(n + 1). Moreover, these largest absolute values are increasing with |n|. For n = -185, we find that the largest absolute values are respectively $\approx 8.53 \cdot 10^{-328}$ and $\approx 1.58 \cdot 10^{-325}$, both smaller than 2^{-1075} .

Corollary 2 For any non-integer x < -184, $\Gamma(x)$ underflows.

5 Case -184 < x < -1

For $-184 \leq n \leq -178$, the smallest absolute value of $\Gamma(x)$ over (n, n + 1) is smaller than 2^{-1075} , thus we split the search into $(n, x_1]$ and $[x_2, n + 1)$, where x_1 (resp. x_2) is the largest (resp. smallest) binary64 number such that $|\Gamma(x)| \geq 2^{-1075}$ over $(n, x_1]$ (resp. $[x_2, n + 1)$).

In this range, the SLZ algorithm used by BaCSeL fails near integers. The reason is that the higher derivatives of Γ are much larger in absolute value than Γ itself. Thus if we use the degree-*d* approximation given by the Taylor expansion around some x_0 , the error term of degree d + 1 is large, and only allows small intervals to be checked at once (see Fig. 1).

Figure 1: For Taylor approximations of degree d around $x_0 = -178 - 2^{-13}$, largest interval T in term of $ulp(x_0)$ such that the mathematical error is bounded by $2^{-10}ulp(\Gamma(x_0))$.

By the explicit Lagrange theorem, we have for a binary64 number x_0 and an integer i, $0 \le i < t$:

$$\Gamma(x_0 + iu) = a + ib + i^2c + i^3d,$$

where $u = ulp(x_0)$, $a = \Gamma(x_0)$, $b = u\Gamma'(x_0)$, $c = u^2\Gamma''(x_0)/2$, and $d = u^3\Gamma^{(3)}(\xi)/6$ for $\xi \in [x_0, x_0 + tu]$. From a bound on $|\Gamma^{(3)}|$ in $[x_0, x_0 + tu]$, we deduce a bound ε_0 on the term $|i^3d|$. If we want that $\Gamma(x_0+iu)$ is within say at most 2^{-16} ulps from a rounding boundary, this gives another bound ε_1 . With $\varepsilon = \varepsilon_0 + \varepsilon_1$, using the table of difference method already used in [1], we can update the approximation of $\Gamma(x_0+iu)$ from i to i+1 in only two additions. Only when this approximation is within ϵ of a rounding boundary, which happens with probability about 2^{-15} , we perform a full check. We have implemented this algorithm using GNU MPFR to compute the coefficients a, b, c, and the Pari/GP library to compute a bound on d (MPFR does not provide the 3rd derivative of the Γ function, and the 2nd derivative is so far implemented in the trigamma branch). We found 15,144 hard-to-round cases in that range, with a maximal of 54 identical bits after the round bit, obtained for x = -0x1.2c0358d14dacep+6, x = -0x1.d97de88bda2dfp+5, and x = -0x1.5ac06a291806bp+3.

6 Subnormal output

In the above sections, we did not consider gradual underflow, thus the values produced with either BaCSeL or the algorithm described in §5 might not be real hard-to-round cases for the binary64 format.

For $2^{e-1} \leq |\Gamma(x)| < 2^e$, $-1074 \leq e \leq -1022$, we should consider an output precision of 1021 + 53 + e instead of 53, thus ranging from 0 to 52, or from 1 to 53 if we take into account the round bit.

For each value of e, we have only a few ranges (k, k+1) where $|\Gamma(x)|$ crosses $[2^{e-1}, 2^e)$. In total we found 300 sub-ranges to check depending on k and e. We found 26 hard-to-round cases with at least 42 identical bits after the round bit (which has weight 2^{-1075} in the subnormal range). The largest number of identical bits after the round bit is 46, obtained for x = -0x1.63fd90fb983d2p+7 in the range $(-178, -177), x = -0x1.5fd732a09e52cp+7 \in (-176, -175), and <math>x = -0x1.57f7b9e290bc3p+7 \in (-172, -171)$. Since this search produced only few inputs, we extended it to numbers with at least 37 identical bits after the round bit. We found 760 additional values, thus a total of 786 inputs with output in the subnormal range.

7 Conclusion

In total we found 539,771 hard-to-round cases, some of which with an unbounded exponent range, and some of which with less than 42 identical bits after the round bit.

Acknowledgements. Many thanks to Jean-Michel Muller for fruitul discussions and who suggested several nice ideas. This work was made possible by France 2030 project number 22-PECY-0010, and by the use of the EXPLOR computing center from University of Lorraine.

References

- DE DINECHIN, F., MULLER, J., PASCA, B., AND PLESCO, A. An FPGA architecture for solving the table maker's dilemma. In 22nd IEEE International Conference on Application-specific Systems, Architectures and Processors, ASAP 2011, Santa Monica, CA, USA, Sept. 11-14, 2011 (2011), J. R. Cavallaro, M. D. Ercegovac, F. Hannig, P. Ienne, E. E. S. Jr., and A. F. Tenca, Eds., IEEE Computer Society, pp. 187–194.
- [2] LANG, T., AND MULLER, J.-M. Bounds on runs of zeros and ones for algebraic functions. In *Proceedings of the 15th IEEE Symposium on Computer Arithmetic* (2001), IEEE Computer Society, pp. 13–20.