
Computing hard-to-round cases of Gamma for binary64

Paul Zimmermann

December 2024

This note explains how we computed the hard-to-round cases of the Gamma function for
the binary64 format. We are looking for hard-to-round cases with at least 42 identical bits
after the round bit.

1 Case x ≥ 1

For x ≥ x0 := 0x1.573fae561f648p+7, Γ(x) > 21024, thus we can restrict to x < x0. We
first tried using BaCSeL with a degree-1 approximation of the Gamma function, but it was
too slow, especially for large x. For example, on a 48-core machine, it took 52 minutes of
real time to check the interval [23.598, 23.611]. To use a degree-2 approximation in BaCSeL,
we had to implement the trigamma function in GNU MPFR, which reduces the above time
to less than 8 minutes. We completed this search using the EXPLOR computing center,
and found 14,988 hard-to-round cases, including 23 exact cases (the integers 1...23). From
the non-exact values, the worst case in this range is x = 0x1.676921a72fecfp+6, with 55
identical bits after the round bit.

2 Case 0 < x < 1

Lemma 1 For 0 < x ≤ 2−106, Γ(x) rounds to the same value as 1/x in the binary64 format
(to nearest).

Proof: We first notice that for 0 < x < 1, we have

1/x− 0.578 < Γ(x) < 1/x.

If x is a power of 2, then y = RN(1/x) = 1/x, thus |y−Γ(x)| < 1 < 1
2
ulp(y), and Γ(x) rounds

to y to nearest. Now assume x is not a power of 2, with 0 < x < 2−106, and let y = RN(1/x).
We know from [2] that if x is a n-bit number, the longest runs of zeros or ones in 1/x have
length n − 1 (if 1/x is not exact). Since y = RN(1/x), we have |y − 1/x| ≤ 1

2
ulp(1/x).

Since we can have at most 52 identical bits after the upper 54 bits of 1/x, we deduce
that 1/x is at distance at least 2−54ulp(1/x) ≥ 1 from a rounding boundary. This implies

1

|y − 1/x| ≤ 1
2
ulp(1/x) − 1, and in turn |y − Γ(x)| < 1

2
ulp(1/x) ≤ 1

2
ulp(y), thus y is the

rounding to nearest of Γ(x).

The proof of this lemma extends to an n-bit format: for 0 < x ≤ 2−2n, Γ(x) rounds to
the same value as 1/x. For the binary64 number x1 := 0x1.fffffffffffffp-106, which
is about twice larger than the lemma threshold, Γ(x1) does not round to the same value
as 1/x1. Computing with BaCSeL hard-to-round cases with at least 51 identical bits after
the round bit in the binade [2−106, 2−105), we obtain 120 inputs; Γ(x) and 1/x round to the
same value (to nearest) for all of them, except for 0x1.fffffffffffffp-106. For inputs
not found by BaCSeL, we have less than 51 identical bits after the round bit, thus with the
notations from the above proof, 1/x is at distance at least 2−52ulp(1/x) ≥ 2 from a rounding
boundary, which implies |y − 1/x| ≤ 1

2
ulp(1/x)− 2, and in turn |y − Γ(x)| < 1

2
ulp(y). Thus

the smallest positive value for which Γ(x) and 1/x round to a different value (to nearest) is
0x1.fffffffffffffp-106. Thanks to Lemma 1, we can restrict the search with BaCSeL in
this case to 2−106 ≤ x < 1, which corresponds to 106 binades.

Corollary 1 For x a binary64 number, 0 < x < 0x1.fffffffffffffp-106, Γ(x) and
1/x round to the same value to nearest and with unbounded exponent range, where Γ(x) >
21024(1− 2−54) iff x ≤ 2−1024.

We performed a search with BaCSeL in the range [2−106, 1), which found 256,898 hard-to-
round cases, with a maximum of 62 identical bits after the round bit, obtained for x =
0x1.bb2278c9b2f97p-105 and x = 0x1.e1d6dce30863ap-32.

3 Case −1 < x < 0

For −0.3 < x < 0, we have 1/x − 1 < Γ(x) < 1/x, thus using the same argument as in
Lemma 1, we see that for |x| < 2−106, Γ(x) rounds to the same value as 1/x to nearest.
Like for 0 < x < 1, it thus remains 106 binades to check in this case: −1 < x ≤ −2−106.
We performed a search with BaCSeL in the range (−1,−2−106], which found 251,955 hard-
to-round cases, with a maximum of 63 identical bits after the round bit, obtained for x =
-0x1.86624b284baf5p-16.

4 Case −252 < x < −184

First when x < −252, ulp(x) ≥ 1, thus x is an integer (which also holds for x = −252). Since
Γ(x) is undefined for x integer, this case is easy.

Now assume −252 < x < −184. Let n be a negative integer. In the range (n, n+1), when
n is even, Γ(x) decreases from +∞ to a positive value, then increases to +∞; when n is odd,
Γ(x) increases from −∞ to a negative value, then decreases to −∞. Since Γ(x) is undefined
for n and n + 1, the largest absolute values of Γ(x) are thus obtained for nextabove(n)
and nextbelow(n + 1). Moreover, these largest absolute values are increasing with |n|. For
n = −185, we find that the largest absolute values are respectively ≈ 8.53 · 10−328 and
≈ 1.58 · 10−325, both smaller than 2−1075.

2

Corollary 2 For any non-integer x < −184, Γ(x) underflows.

5 Case −184 < x < −1

For −184 ≤ n ≤ −178, the smallest absolute value of Γ(x) over (n, n + 1) is smaller than
2−1075, thus we split the search into (n, x1] and [x2, n+ 1), where x1 (resp. x2) is the largest
(resp. smallest) binary64 number such that |Γ(x)| ≥ 2−1075 over (n, x1] (resp. [x2, n+ 1)).

In this range, the SLZ algorithm used by BaCSeL fails near integers. The reason is that
the higher derivatives of Γ are much larger in absolute value than Γ itself. Thus if we use
the degree-d approximation given by the Taylor expansion around some x0, the error term
of degree d+ 1 is large, and only allows small intervals to be checked at once (see Fig. 1).

d 1 2 3 4 5 6
T 1 2,547 91,804 788,649 3,307,983 9,211,582

Figure 1: For Taylor approximations of degree d around x0 = −178 − 2−13, largest interval
T in term of ulp(x0) such that the mathematical error is bounded by 2−10ulp(Γ(x0)).

By the explicit Lagrange theorem, we have for a binary64 number x0 and an integer i,
0 ≤ i < t:

Γ(x0 + iu) = a+ ib+ i2c+ i3d,

where u = ulp(x0), a = Γ(x0), b = uΓ′(x0), c = u2Γ′′(x0)/2, and d = u3Γ(3)(ξ)/6 for
ξ ∈ [x0, x0 + tu]. From a bound on |Γ(3)| in [x0, x0 + tu], we deduce a bound ε0 on the term
|i3d|. If we want that Γ(x0+iu) is within say at most 2−16 ulps from a rounding boundary, this
gives another bound ε1. With ε = ε0+ε1, using the table of difference method already used in
[1], we can update the approximation of Γ(x0+iu) from i to i+1 in only two additions. Only
when this approximation is within ϵ of a rounding boundary, which happens with probability
about 2−15, we perform a full check. We have implemented this algorithm using GNU MPFR
to compute the coefficients a, b, c, and the Pari/GP library to compute a bound on d (MPFR
does not provide the 3rd derivative of the Γ function, and the 2nd derivative is so far imple-
mented in the trigamma branch). We found 15,144 hard-to-round cases in that range, with a
maximal of 54 identical bits after the round bit, obtained for x = -0x1.2c0358d14dacep+6,
x = -0x1.d97de88bda2dfp+5, and x = -0x1.5ac06a291806bp+3.

6 Subnormal output

In the above sections, we did not consider gradual underflow, thus the values produced with
either BaCSeL or the algorithm described in §5 might not be real hard-to-round cases for
the binary64 format.

For 2e−1 ≤ |Γ(x)| < 2e, −1074 ≤ e ≤ −1022, we should consider an output precision of
1021+53+e instead of 53, thus ranging from 0 to 52, or from 1 to 53 if we take into account
the round bit.

3

For each value of e, we have only a few ranges (k, k+1) where |Γ(x)| crosses [2e−1, 2e). In
total we found 300 sub-ranges to check depending on k and e. We found 26 hard-to-round
cases with at least 42 identical bits after the round bit (which has weight 2−1075 in the sub-
normal range). The largest number of identical bits after the round bit is 46, obtained for
x = -0x1.63fd90fb983d2p+7 in the range (−178,−177), x = -0x1.5fd732a09e52cp+7 ∈
(−176,−175), and x = -0x1.57f7b9e290bc3p+7 ∈ (−172,−171). Since this search pro-
duced only few inputs, we extended it to numbers with at least 37 identical bits after the
round bit. We found 760 additional values, thus a total of 786 inputs with output in the
subnormal range.

7 Conclusion

In total we found 539,771 hard-to-round cases, some of which with an unbounded exponent
range, and some of which with less than 42 identical bits after the round bit.

Acknowledgements. Many thanks to Jean-Michel Muller for fruitul discussions and who
suggested several nice ideas. This work was made possible by France 2030 project number 22-
PECY-0010, and by the use of the EXPLOR computing center from University of Lorraine.

References

[1] de Dinechin, F., Muller, J., Pasca, B., and Plesco, A. An FPGA architec-
ture for solving the table maker’s dilemma. In 22nd IEEE International Conference
on Application-specific Systems, Architectures and Processors, ASAP 2011, Santa Mon-
ica, CA, USA, Sept. 11-14, 2011 (2011), J. R. Cavallaro, M. D. Ercegovac, F. Hannig,
P. Ienne, E. E. S. Jr., and A. F. Tenca, Eds., IEEE Computer Society, pp. 187–194.

[2] Lang, T., and Muller, J.-M. Bounds on runs of zeros and ones for algebraic func-
tions. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic (2001), IEEE
Computer Society, pp. 13–20.

4

