MODULE BakeryDeconstructedNonAtomic

This is the PlusCal specification of the deconstructed bakery algorithm in the paper
Deconstructing the Bakery to Build a Distributed State Machine

In this version of the specification, the choice of a ticket number is performed non-atomically,
using an explicit loop over processes. There is one simplification that has been made in the
PlusCal version: the registers localCh[i][j] have been made atomic, a read or write being a single
atomic action. This doesn’t affect the derivation of the distributed bakery algorithm from the
deconstructed algorithm, which also makes the simplifying assumption those registers are atomic
because they disappear from the final algorithm.

Here are some of the changes made to the paper’s notation to conform to PlusCal/TLA+. Tuples
are enclosed in (), so we write (%, j) instead of (i,7). There’s no upside down “?” symbol in TLA+,
so that’s replaced by the identifier gm.

The pseudo-code for main process ¢ has two places in which subprocesses (i, j) are forked and
process i resumes execution when they complete. PlusCal doesn’t have subprocesses. This is
represented in PlusCal by having a single process (i, j) executing concurrently with process 1,
synchronizing appropriately using the variable pc.

Here is the basic idea:

This pseudo-code for process i:

main code ;

process j # i \in S
sl: subprocess code

end process

p2: more main code

is expressed in PlusCal as follows:

In process @
main code ;
p2: await \A j # i : pcl<<i,j>>] = "s2"
more main code
In process (%, j)
sl: await pc[i] = "p2"
subprocess code ;
s2:

Also, processes have identifiers and, for reasons that are not important here, we can’t use ¢ as
the identifier for process ¢, so we use (i). So, pc[i] in the example above should be pc[(3)]. In the
pseudo-code, process ¢ also launches asynchronous processes (4, j) to set localNum[j][i] to 0. In

the code, these are another set of processes with ids (z, 7, “wr").

We could simplify this algorithm by not waiting for localNum|j][¢] to equal 0 in subprocess (i, j)
and having the asynchronous write of 0 not do anything if process ¢ has begun the write to
localCh[i][j] that sets its value to number[:]. However, I think I like the algorithm in the paper
the way it is because it makes the pseudo-code more self-contained.

EXTENDS Data, Integers
3k >k sk >k ok ok sk sk ok ok >k ok ok sk ok sk sk sk sk ok ok sk sk ok sk sk >k sk sk ok sk sk sk sk ok >k ok sk sk ok sk sk sk sk ok >k sk ok sk sk sk sk sk ok sk sk sk sk ok sk ok sk sk ok sk sk sk sk kok sk ok

--algorithm Decon{
variables number = [p € Procs — 0],
localNum = [p € Procs — [q € OtherProcs(p) — 0]],



localCh = [p € Procs — [q € OtherProcs(p) — 0]] ;

fair process ( main € Proclds )
variable unRead = {}, v =0;

ncs:- while ( TRUE ) {
skip; noncritical section
M: await Vp € SubProcsOf (self[1]) : pc[p] = "test” ;
unRead := OtherProcs(self[1]) ;
MO: while ( unRead # {} ) {
with ( j € unRead ) {
if ( localNum/[self [1]][j] # qm ) {
v := Maz (v, localNum[sel 1ED ¥ s
unRead := unRead \ {j}

}

}s
with (n € {m € Nat: m > v} ) {
number|[self[1]] :=n;

localNum := [j € Procs —
[¢ € OtherProcs(j) —
IF | = self[1] THEN gm
ELSE localNum/[j][i]]] 5
b
v:=0;
: await Vp € SubProcsOf (self[1]) : pc[p] = “ch” ;
cs: skip; critical section
P: number[self[1]] :==0;
localNum := [j € Procs
[¢ € OtherProcs(j) —
IF i = self[1] THEN gm
ELSE localNum/[j][i]]] 5

}

fair process ( sub € SubProcs ) {
ch: while ( TRUE ) {
await pc[(self[1])] = “M"
localCh[self [2]][self [1 ]] =1;
test: await pe[(self[1])] = “L" ;
localNum|self [2]][self [1]] := number[self[1]] ;
Lb: localCh[self[2]][self[1]] := 03
L2: await localCh[self[1]][self [2 ]] 0;
L3:- See below for an explanation of why there is no fairness here.

await (localNum][self[1]][self[2]] ¢ {0, gm}) =
((number|[self[1]], self[1]) <



(localNum |[self [1]][self [2]], self[2]))

The await condition is written in the form A = B rather than A V B because
when TLC is finding new states, when evaluating A V B it evaluates B even when
A is true, and in this case that would produce an error if localNum|self [1]][self[2]]

equals gm.

}

We allow process (7, 7, “wr") to set localNum/[j][i] to O only if it has not already been set to gm
by process (%) in action M0. We could also allow it to write 0 after that write of gm but before
process (i, j) executes statement test. Such a write just decreases the possible executions, so
eliminating this possibility doesn’t forbid any possible executions.
fair process ( wrp € WrProcs ) {
wr: while ( TRUE ) {
await A localNum|[self [2]][self [1]] = qm
A pel(self[1])] € {“ncs”, “M", “MO"} ;
localNum|self [2]][self [1]] := 0;

}
}

sk ok o o sk ok ok ok o sk ok o ok sk sk o sk ok o ok sk ok ok sk sk sk ok o ok sk ok sk ok s sk ok o ok sk ok sk ok o sk sk ok sk ok sk ok s ok sk sk sk ok ok ok sk ok ok

BEGIN TRANSLATION (chksum(pcal) = “ffdaa638” A chksum(tla) = “814037¢2”)
VARIABLES number, localNum, localCh, pc, unRead, v

vars = (number, localNum, localCh, pe, unRead, v)

ProcSet = (Proclds) U (SubProcs) U (WrProcs)

Init £ |Global variables

A number = [p € Procs — 0]

A localNum = [p € Procs — [q¢ € OtherProcs(p) — 0]]

A localCh = [p € Procs — [q € OtherProcs(p) — 0]]

Process main

A unRead = [self € Proclds — {}]

A v = [self € Proclds — 0]

A pc = [self € ProcSet — CASE self € Proclds — *“ncs”
O  self € SubProcs — “ch”
O  self € WrProcs — “wr"]

nes(self) = A pe[self] = “ncs”
N\ TRUE
A pc’ = [pc EXCEPT ![self] = "M"]
A UNCHANGED (number, localNum, localCh, unRead, v)

M(self) = A pe[self] = “M”
AY p € SubProcsOf (self[1]) : pc[p] = “test”
A unRead’ = [unRead EXCEPT ![self] = OtherProcs(self[1])]



A pc’ = [pc EXCEPT ![self] = “M0"]
A UNCHANGED (number, localNum, localCh, v)

MO(self) = A pe[self] = “M0”
ATF unRead[self] # {}
THEN A3dj € unRead[self]:
ATF localNum|self [1]][j] # qm
THEN A v’ = [v EXCEPT ![self] = Maz(v[self], localNum/[self [1]][j])]
ELSE A TRUE
ANV =w

A unRead’ = [unRead EXCEPT ![self] = unRead[self]\ {j}]
A pc’ = [pc EXCEPT ![self] = "M0"]
A UNCHANGED (number, localNum)

ELSE Adn € {m € Nat : m > v[self]} :
A number’ = [number EXCEPT ![self[1]] = n]
A localNum' = [j € Procs —
[i € OtherProcs(j)
IF i = self[1] THEN gm
ELSE localNum][j][]]]
A v’ = [v EXCEPT ![self] = 0]
A pc’ = [pc EXCEPT ![self] = “L"]
A UNCHANGED unRead
A\ UNCHANGED localCh

L(self) = A pe[self] = “L"
AN p € SubProcsOf (self[1]) : pc[p] = “ch”
A pc’ = [pc EXCEPT ![self] = “cs"]
A UNCHANGED (number, localNum, localCh, unRead, v)

cs(self) = A pe[self] = “cs”
A\ TRUE
A pc’ = [pc EXCEPT ![self] = “P"]

A UNCHANGED (number, localNum, localCh, unRead, v)

P(self) = A pclself] = “P"
A number’ = [number EXCEPT ![self[1]] = 0]
A localNum' = [j € Procs —
[i € OtherProcs(j) —
IF ¢ = self[1] THEN gm
ELSE localNum/[j][i]]]

A pc’ = [pc EXCEPT ![self] = “ncs”]

A UNCHANGED (localCh, unRead, v)

main(self) = nes(self)V M(self) vV MO(self) vV L(self) V cs(self)
V P(self)

ch(self) = A pe[self] = “ch”



A pe[(self[1])] = “M”

A localCh! = [localCh EXCEPT ![self[2]][self[1]] = 1]
A pc’ = [pc EXCEPT ![self] = “test”]

A UNCHANGED (number, localNum, unRead, v)

A

test(self) = A pclself] = "test”
A pel(self [1])] = "L"
A localNum' = [localNum EXCEPT ![self [2]][self [1]] = number[self[1]]]
A pc’ = [pc EXCEPT ![self] = “Lb"]
A UNCHANGED (number, localCh, unRead, v)

Lb(self) = A pelself] = “Lb"
A localCh/ = [localCh EXCEPT ![self [2]][self[1]] = 0]
A pc’ = [pc EXCEPT ![self] = “L2"]
A UNCHANGED (number, localNum, unRead, v)

L2(self) = A peself] = “L2"
A local Chlself [1]][self[2]] = 0
A pc’ = [pc EXCEPT ![self] = “L3"]
A UNCHANGED (number, localNum, localCh, unRead, v)

L3(self) = A pelself] = “L3"
A (localNum|[self[1]][self [2]] ¢ {0, gm}) =
((number(self [1]], self[1]) <«
(localNum|[self [1]][self [2]], self[2]))
A pc’ = [pc EXCEPT ![self] = “ch"]
A UNCHANGED (number, localNum, localCh, unRead, v)

sub(self) = ch(self)V test(self)V Lb(self)V L2(self) v L3(self)

A

wr(self) = A pc[self] = “wr"
A A localNum/|self [2]][self[1]] = gm
A pel(self[1])] € {“ncs”, “M", “MO" }
A localNum' = [localNum EXCEPT ![self [2]][self[1]] = 0]
A pc’ = [pc EXCEPT ![self] = "wr"]
A UNCHANGED (number, localCh, unRead, v)

wrp(self) = wr(self)

Next = (3self € Proclds : main(self))
V (T self € SubProcs : sub(self))
V (I self € WrProcs : wrp(self))

Spec = A Init A O[Next] yars
AV self € Proclds : WF yqrs ((pelself] # “ncs”) A main(self))
AV self € SubProcs : WF 405 ((pe[self] # “L3") A sub(self))
AV self € WrProcs : WF yqs (wrp(self))



END TRANSLATION

|

1

In statement L3, the await condition is satisfied if process (i, j) reads localNum/[self[1]][self[2]]
equal to gm. This is because that’s a possible execution, since the process could “interpret” the
gm as 0. For checking safety (namely, mutual exclusion), we want to allow that because it’s a
possibility that must be taken into account. However, for checking liveness, we don’t want to
require that the statement must be executed when localNum|[self[1]][self[2]] equals gm, since that
value could also be interpreted as localNum|self [1]][self [2]] equal to 1, which could prevent the wait
condition from being true. So we omit that fairness condition from the formula Spec produced by
translating the algorithm, and we add weak fairness of the action when localNum|self[1]][self[2]]
does not equal gm. This produces the TLA+ specification FSpec defined here.

FSpec = A Spec
AY q € SubProcs : WF 4,5 (L3(q) A (localNum|[q[1]][¢[2]] # gm))

TypeOK = A number € [Procs — Nat]
A A DOMAIN localNum = Procs
AY i € Procs : localNumli] € [OtherProcs(i) — Nat U {gm}]
A A DOMAIN localCh = Procs
AY'i € Procs : localChli] € [OtherProcs(i) — {0, 1}]

MutualExclusion = ¥ p, q € Proclds : (p # q) = ({pc[p], pclq]} # {"cs"})
StarvationFree = ¥ p € Proclds : (pc[p] = "M") ~ (pc[p] = “cs”)

Checking the invariant in the appendix of the paper.

inBakery(i, j) = V pe[(i, j)] € {" b” “L2", "L3"}
v A peli )] = "ch”

A pel(i §} € {"L", "cs"}
nCS(i) = pe[(i)] = “cs”

In TLA+, we can’t write both inDoorway(s, j, w) and inDoorway(i, j), so we change the first
to inDoorwayVal. Its definition differs from the definition of inDoorway(i, j, w) in the paper
to avoid having to add a history variable to remember the value of localNum[self[1]][j] read in
statement MO. It’s a nicer definition, but it would have required more explanation than the
definition in the paper.

The definition of inDoorway(t, j) is equivalent to the one in the paper. It is obviously implied by
Jw € Nat : inDoorwayVal(i, j, w), and type correctness implies the opposite implication.

inDoorwayVal(i, j, w) = V A pe[(i)] = “M0”
Nj ¢ unRead[(i))
A[()] > w
VA pe[(i)] = "L
A pel{i, §)] = “test”
A number[i] > w sm: replaced > by > (Aug 24)

2

inDoorway(i, 7) VA pe[(d)] = “MO”

Aj & unRead|[(i)]



v Ape[(i)] = "L
A pe[{i, 7)] = “test” sm: added Aug 23, 2021

Outside(i, j) = =(inDoorway(i, j) V inBakery(i, 7))

passed(i, j, LL) 2 17 LL= "L2" THEN V pe[(i, j)] = “L3"
VA pe[(i, j)] = “ch”
Apel(i)] € {17, e’}
ELSE A pc[(i, j)] = “ch”

Before(i, j) = A inBakery(i, j)
AV Outside(j, 1)
V inDoorwayVal(j, i, number[i])
V' A inBakery(j, i)
A (number[i], i) < (number[j], j)
A —passed(j, i, “L3")

>

A inBakery(i, j) = Before(i, j) V Before(j, i)

V inDoorway(j, 1)
A passed(i, j, “L2") = Before(i, j) V Before(j, 1)
A passed(i, j, “L3") = Before(i, j)

Inv(i, j)

I = Vi€ Procs:Yj € OtherProcs(i) : Inv(i, j)

The following is for testing. Since the spec allows the values of number[n] to get arbitrarily
large, there are infinitely many states. The obvious solution to that is to use models with a state
constraint that number[n] is at most some value TestMazNum. However, TLC would still not
be able to execute the spec because the with statement in action M allows an infinite number
of possible values for number[n]. To solve that problem, we have the model redefine Nat to a
finite set of numbers. The obvious set is 0 .. TestMazNum. However, trying that reveals a subtle
problem. Running the model produces a bogus counterexample to the StarvationFree property.

This is surprising, since constraints on the state space generally fail to find real counterexamples
to a liveness property because the counterexamples require large (possibly infinite) traces that are
ruled out by the state constraint. The remaining traces may not satisfy the liveness property, but
they are ruled out because they fail to satisfy the algorithm’s fairness requirements. In this case,
a behavior that didn’t satisfy the liveness property StarvationFree but shouldn’t have satisfied
the fairness requirements of the algorithm did satisfy the fairness requirement because of the
substitution of a finite set of numbers for Nat.



Here’s what happened: In the behavior, two nodes kept alternately entering the critical section
in a way that kept increasing their values of num until one of those values reached TestMazNum.
That one entered its critical section while the other was in its noncritical section, re-entered its
noncritical section, and then the two processes kept repeating this dance forever. Meanwhile, a
third process’s subprocess was trying to execute action M. Every time it tried to execute that
action, it saw that another process’s number equaled TestMazNum. In a normal execution, it
would just set its value of num larger than TestMaxNum and eventually enter its critical section.
However, it couldn’t do that because the substitution of 0 .. TestMaxzNum for Nat meant that
it couldn’t set num to such a value, so the enter step was disabled. The fairness requirement
on the enter action is weak fairness, which requires an action eventually to be taken only if it’s
continually enabled. Requiring strong fairness of the action would have solved this problem,
because the enabled action kept being enabled and strong fairness would rule out a behavior in
which that process’s enter step never occurred. However, it’s important that the algorithm satisfy
starvation freedom without assuming strong fairness of any of its steps.

The solution to this problem is to substitute 0 .. (TestMaxz + 1) for Nat. The state constraint will
allow the enter step to be taken, but will allow no further steps from that state. The process still
never enters its critical section, but now the behavior that keeps it from doing so will violate the
weak fairness requirements on that process’s steps.

TestMazNum = 6
A

TestNat = 0 .. (TestMazNum + 1)

3ok ok ook ok ok ok ok ok ko sk ok ok sk ok ok ok sk skok sk ok ok sk ok skok sk kol sk ook koot ok ok stk sk skl sk sk skok sk kol skl skook ok sk skoskok skokok sk skokok kokok kok

Old Version, with statement M atomic Test Results Default fairness (without the correction to
L3 fairness):

N = 2, TestMazNum = 6, 2,388 states 0:05 on Azure [Default fairness|

N = 3, TestMaxNum = 4, 5,119,808 states in 27:05 + 7:20 on Azure

Correct Fairness

N = 3, TestMaxNum = 5, 9,382,640 states in 40:34 + 5:57 on Azure

N = 3, TestMaxNum = 6, 15,530,720 states in 1:06:31 + 9:26 on Azure

N =4, TestMazNum = 2, on Azure [safety only] killed, it would have taken days

Version of 27 April 2021 with M deconstructed

N = 2, TestMaxNum = 6, 3,844

N =3, TestMazNum = 3, 12,127,440 states 1:07:06 + 12:06 on Azure (testing OCinCS)
N = 3, TestMaxNum = 4, 38,818,800 states 2:44:00 + 0:26:01 on Azure

N = 3, TestMazNum = 3, 12,127,440 states on Azure (testing invariance of I

Version of 28 April 2021 with handling of asynchronous writing fixed all checking I, Mutex &
StarvationFree

N = 2, TestMaxNum = 6, 2500 states

N = 3, TestMaxNum = 3, 1,794,168 states in 08:07 + 1:52 on Azure
N = 3, TestMaxNum = 4, 3,211.104 states in 14:06 + 3:07 on Azure
N = 3, TestMaxNum = 5, 12,071,392 states in 17:05 + 6:58 on Azure
N =4, TestMaxNum = 2 killed because it would have taken days.

3k >k 3k >k sk >k sk >k sk ok ok sk >k ok >k sk ok sk ok sk sk sk sk >k sk sk sk sk sk sk >k sk sk sk sk ok sk sk ok sk sk ok sk sk sk sk sk ok sk sk sk sk sk >k sk >k sk sk sk sk sk sk >k ok ok sk ok sk sk sk sk kok ok

\ * Modification History

\ * Last modified Wed Nov 17 18:42:50 CET 2021 by merz

\ * Last modified Thu Jul 01 12:24:37 CEST 2021 by merz

\ * Last modified Wed Apr 28 18:06:24 PDT 2021 by lamport
\ * Created Sat Apr 24 09:45:26 PDT 2021 by lamport6



